
List matrix partition problems on chordal graphs
parameterized by leafage

Flavia Bonomo

Universidad de Buenos Aires, Argentina

XVII Congreso Dr. Antonio Monteiro
UNS, Bah́ıa Blanca, 9 de junio de 2023

Flavia Bonomo (UBA) List matrix partition problems and leafage Congreso Dr. Antonio Monteiro 1 / 33



Outline

Outline

1 Generalized list matrix partition problems
Matrix partition problems
With lists
On chordal graphs
With objective functions
With bounds
Problem definition

2 GLMP on graphs of bounded thinness
Thinness
The algorithm
Complexity boundaries

3 Algorithmic applications to chordal and co-comparability graphs
Thinness and leafage of chordal graphs
Thinness and chromatic number of co-comparability graphs

Flavia Bonomo (UBA) List matrix partition problems and leafage Congreso Dr. Antonio Monteiro 2 / 33



Generalized list matrix partition problems

Outline

1 Generalized list matrix partition problems
Matrix partition problems
With lists
On chordal graphs
With objective functions
With bounds
Problem definition

2 GLMP on graphs of bounded thinness
Thinness
The algorithm
Complexity boundaries

3 Algorithmic applications to chordal and co-comparability graphs
Thinness and leafage of chordal graphs
Thinness and chromatic number of co-comparability graphs

Flavia Bonomo (UBA) List matrix partition problems and leafage Congreso Dr. Antonio Monteiro 3 / 33



Generalized list matrix partition problems Matrix partition problems

Matrix partition problems
(Feder, Hell, Klein and Motwani, 1999)

For each symmetric matrix M over {0, 1, ∗}, the M-Partition
Problem seeks a partition of the input graph into independent sets,
cliques, or arbitrary sets, with certain pairs of sets being required to have
no edges, or to have all edges joining them, as encoded in the matrix M.
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Generalized list matrix partition problems Matrix partition problems

Example: bipartition and complete bipartition
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Generalized list matrix partition problems Matrix partition problems

Example: Split partition

Flavia Bonomo (UBA) List matrix partition problems and leafage Congreso Dr. Antonio Monteiro 6 / 33



Generalized list matrix partition problems Matrix partition problems

Example: r -coloring
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Generalized list matrix partition problems With lists

Adding lists

In the List M-Partition Problem, additionally, each vertex v has a
list L(v) of the sets S1, . . . ,Sr to which it can belong. That is, we have a
fixed r × r matrix M, an input graph G = (V ,E ) and an input function
L : V → P({1, . . . , r}).

In the r -coloring case, the problem is known as List r-Coloring.

In a more general setting, that is not necessarily a partition, each vertex v
has a list L(v) of combinations of the sets S1, . . . ,Sr to which it can
belong (that may include the empty combination). That is, we have a
fixed r × r matrix M, an input graph G = (V ,E ) and an input function
L : V → P(P({1, . . . , r})).
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Generalized list matrix partition problems On chordal graphs

Chordal graphs

A graph is chordal if it does not contain a chordless cycle of length at least
4 (Cn, n ≥ 4).
They are also called triangulated or rigid circuit.
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Generalized list matrix partition problems On chordal graphs

Matrix partition problems on chordal graphs

Feder, Hell, Klein, Nogueira and Protti identified several cases of r × r
matrices M for which the list M-partition problem is polynomial-time
solvable. For instance,

Theorem (Feder, Hell, Klein, Nogueira and Protti, 2005)

If all diagonal entries of M are zero, then the Chordal List
M-Partition problem can be solved in time O(nr(2r)r ), linear in n.

Idea: A solution is, in particular, a r -coloring. Chordal graphs are either
not r -colorable or have treewidth at most r − 1. The algorithm then works
with a tree-decomposition of the graph.
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Generalized list matrix partition problems On chordal graphs

Matrix partition problems on chordal graphs

However,

Theorem (Feder, Hell, Klein, Nogueira and Protti, 2005)

There are matrices M such that the M-Partition problem is
NP-complete for chordal graphs.
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Generalized list matrix partition problems With objective functions

Adding weights and an objective function

We still have an r × r matrix M, an input graph G = (V ,E ), and input
arbitrary nonnegative weight functions w1, . . . ,wt on V .
The objective is to minimize or maximize a linear function∑

1≤i≤t;1≤j≤r cijwi (Sj).

Examples:

Max Weight Independent Set

M =

0 ∗

∗ ∗


t = 1, w1 : V → N0

c11 = 1; c12 = 0;

Max Weight Clique

M =

1 ∗

∗ ∗


t = 1, w1 : V → N0

c11 = 1; c12 = 0;
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Generalized list matrix partition problems With bounds

Adding bounds on the sizes of the sets

In this case, we can add to the M-partition problem, constraints about the
number (or sum of weights) of elements that can be placed on each of the
sets.

In the coloring setting, this is called in the literature bounded coloring (the
size of any color class does not exceed a given bound), capacitated
coloring (different upper bounds for each color), equitable coloring (some
of the upper bounds are ⌈nr ⌉ and some ⌊nr ⌋, in order to make the
difference of color class sizes at most one).

In combination with lists, they are called list coloring problem with
cardinalities (exact expected number), list coloring problem with bounded
cardinalities (upper bounds on the expected number), weighted locally
bounded list coloring (more general, with different weight functions and
bounds).
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Generalized list matrix partition problems Problem definition

Generalized list matrix partition problems

Generalized (p, q, r)-List Matrix Partition ((p, q, r)-GLMP)
For a graph G = (V ,E ), the aim is to find subsets of vertices S1, . . . ,Sr (r fixed,
not necessarily disjoint), such that:

The objective is to minimize or maximize a linear function∑
1≤i≤t;1≤j≤r cijwi (Sj), for a family of arbitrary nonnegative weights

w1, . . . ,wt on V .

Each vertex v has a list L(v) of combinations of the sets S1, . . . ,Sr to which
it can belong (that may include the empty combination).

There is an r × r symmetric matrix M over {0, 1, ∗}, stating the nature and
adjacency conditions on the sets Sj .

There is a family of nonnegative weights b1, . . . , bp on V , p fixed and each
bi bounded by a fixed polynomial q(n), and restrictions on the weight of
intersections and unions of the output sets, expressed as:

0 ≤ ℓiJ∩ ≤ bi (
⋂

j∈J Sj) ≤ uiJ∩, such that 1 ≤ i ≤ p, J ⊆ {1, . . . , r}.
0 ≤ ℓiJ∪ ≤ bi (

⋃
j∈J Sj) ≤ uiJ∪, such that 1 ≤ i ≤ p, J ⊆ {1, . . . , r}.
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GLMP on graphs of bounded thinness Thinness

Interval graphs

The right-end ordering of the vertices of an interval graph satisfies
the following property: for each triple (r , s, t) with r < s < t, if
vtvr ∈ E , then vtvs ∈ E .

1
2 3

4

5
6

7
8

In other words, the neighbours of vertex t with index less than t are
t − 1, t − 2, . . . , t − d .

Moreover, G is an interval graph if and only if there exists an ordering
of its vertices satisfying the property above (Ramalingam and Pandu
Rangan, 1988 / Olariu, 1991).

The thinness of a graph was introduced by Mannino, Oriolo, Ricci,
and Chandran in 2007, such that graphs with bounded thinness are a
generalization of interval graphs (that are exactly the graphs with
thinness 1) and capture some of their algorithmic properties.
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GLMP on graphs of bounded thinness Thinness

k-thin graphs

Definition

A graph G = (V ,E ) is k-thin if there exist an ordering v1, . . . , vn of V and a
partition of V into k classes such that, for each triple (r , s, t) with r < s < t, if
vr , vs belong to the same class and vtvr ∈ E , then vtvs ∈ E .

In other words, the neighbours of vertex t with index less than t on each class are
the greatest of each class.

The minimum k such that G is k-thin is called the thinness of G , thin(G ).
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GLMP on graphs of bounded thinness Thinness

Graphs with high and low thinness

Trees, co-bipartite graphs, split graphs, permutation graphs, circular-arc
graphs and cographs have unbounded thinness.

Interval bigraphs have thinness at most 2 (B. and Brito, 2022).

Deciding if the thinness of a graph is at most k is NP-complete (Shitov,
2021).

The problem is open for fixed k ≥ 2.
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GLMP on graphs of bounded thinness The algorithm

(p, q, r)-GLMP problems on graphs with bounded thinness

We are given the (p, q, r)-GLMP instance and a k-thin representation of
G = (V ,E ), with ordering < of V , namely v1 < · · · < vn, and partition of
V into k classes V 1, . . . ,V k .

We will solve such a problem by dynamic programming, as a shortest or
longest path problem (according to minimization or maximization of the
objective function) in an auxiliary acyclic digraph D = (X ,A) whose nodes
correspond to states and whose arcs are weighted and labeled. The total
weight of the path is the value of the objective function in the solution
that can be built by using the arc labels.
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GLMP on graphs of bounded thinness The algorithm

GLMP resembles knapsack (the graph becomes irrelevant)

Generalized (p, q, r)-List Matrix Partition ((p, q, r)-GLMP)
For a graph set G = (V ,E ), the aim is to find subsets of vertices S1, . . . ,Sr
(r fixed, not necessarily disjoint), such that:

The objective is to minimize or maximize a linear function∑
1≤i≤t;1≤j≤r cijwi (Sj), for a family of arbitrary nonnegative weights

w1, . . . ,wt on V .

Each vertex v has a list L(v) of combinations of the sets S1, . . . ,Sr to which
it can belong (that may include the empty combination).

There is an r × r symmetric matrix M over {0, 1, ∗}, stating the nature and
adjacency conditions on the sets Sj .

There is a family of nonnegative weights b1, . . . , bp on V , p fixed and each
bi bounded by a fixed polynomial q(n), and restrictions on the weight of
intersections and unions of the output sets, expressed as:

0 ≤ ℓiJ∩ ≤ bi (
⋂

j∈J Sj) ≤ uiJ∩, such that 1 ≤ i ≤ p, J ⊆ {1, . . . , r}.
0 ≤ ℓiJ∪ ≤ bi (

⋃
j∈J Sj) ≤ uiJ∪, such that 1 ≤ i ≤ p, J ⊆ {1, . . . , r}.
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GLMP on graphs of bounded thinness The algorithm

GLMP resembles knapsack (the graph becomes irrelevant)
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GLMP on graphs of bounded thinness The algorithm

Sketch of the algorithm

A state is a tuple, containing:

a number s ≤ n indicating we are considering Gs = G [{v1, . . . , vs}].

nonnegative parameters ℓiJ∩, uiJ∩, ℓiJ∪, uiJ∪, for 1 ≤ i ≤ p, J ⊆ {1, . . . , r};
they are at most 2r+2p, and each of them may take a nonnegative value at
most nq(n), which is an upper bound for bi (V ), for every 1 ≤ i ≤ p.

a family of nonnegative parameters {αij}1≤i≤k;1≤j≤r , meaning that we
cannot pick for Sj a vertex of the first αij vertices of the set V i of the
partition; there are kr such parameters and each of them may take a
nonnegative value at most n − 1.

a family of nonnegative parameters {βij}1≤i≤k;1≤j≤r , meaning that we
cannot pick for Sj a vertex on the last βij vertices of the set V i of the
partition; there are kr such parameters and each of them may take a
nonnegative value at most n − 1.

The total number of states is then at most n2kr+1(nq(n))2
r+2p, that is polynomial

in n, since k, r , and p are constant and q(n) is polynomial in n.
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GLMP on graphs of bounded thinness The algorithm

Sketch of the algorithm: how do we use the thinness

Example of a state of G10 and the computation of the parameters {βij}i ,j
for a predecessor state of G9, assuming that β2,1 = 0, {1} ∈ L(v10), all the
weight constraints are satisfied, and we are assigning, as one of the
possibilities, v10 ∈ V 2 to the set S1.
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GLMP on graphs of bounded thinness The algorithm

(p, q, r)-GLMP on k-thin graphs

Theorem (B., De Estrada, 2019)

Given as input a k-thin representation of a graph G ,
(p, q, r)-Generalized List Matrix Partition Problem can be
solved in O(n4kr+2(nq(n))2

r+3p) time, that is, XP with respect to the fixed
parameters r , p, and k .
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GLMP on graphs of bounded thinness Complexity boundaries

Tightness of the algorithmic results

All the conditions in blue (number r of sets fixed, number p of weights bi
fixed, weights bi polynomially bounded by q(n)) are necessary for the
existence of a polynomial time algorithm in graphs of bounded thinness,
unless P = NP, even in the feasibility case (without objective function).

If p = 1 but the only weight b1 is not polynomially bounded, GLMP is
NP-complete in edgeless graphs, even if r = 2, M =

( ∗ ∗
∗ ∗

)
and

L(v) = P({1, 2}) for every v (Bentz, 2019).

If p is not bounded, GLMP is NP-complete in star forests and linear
forests, even if r = 2, M =

(
0 ∗
∗ 0

)
(coloring problem),

L(v) = {{1}, {2}}, and bi (v) ∈ {0, 1} for every v and every i (Bentz,
2019).

In both cases, the instance can be made connected (a path) with
r = 3 and using lists.
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GLMP on graphs of bounded thinness Complexity boundaries

When the number of output sets is not fixed

The coloring problem is polynomial time solvable in chordal graphs
(Golumbic, 1980), but it is NP-complete for subclasses of 2-thin
graphs (B., Brandwein, Oliveira, Sampaio, Sansone and Szwarcfiter,
2023).

The list-coloring problem is NP-complete for interval graphs (Biro,
Hujter and Tuza, 1992).

The capacitated coloring problem is NP-complete for interval graphs
(Bodlaender and Jansen, 1995).

The coloring problem with lists and capacities (De Werra, 1997), is
NP-complete on paths (Dror, Finke, Gravier and Kubiak, 1999), even
for lists of size at most 2, and in star forests (Bentz, 2019).

The coloring problem with weights and capacities is NP-complete in
edgeless graphs, even if p = 1, b1 is polynomially bounded, and each
vertex can take any color (Bentz, 2019).
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Algorithmic applications to chordal and co-comparability graphs

Outline

1 Generalized list matrix partition problems
Matrix partition problems
With lists
On chordal graphs
With objective functions
With bounds
Problem definition

2 GLMP on graphs of bounded thinness
Thinness
The algorithm
Complexity boundaries

3 Algorithmic applications to chordal and co-comparability graphs
Thinness and leafage of chordal graphs
Thinness and chromatic number of co-comparability graphs

Flavia Bonomo (UBA) List matrix partition problems and leafage Congreso Dr. Antonio Monteiro 26 / 33



Algorithmic applications to chordal and co-comparability graphs Thinness and leafage of chordal graphs

Thinness of chordal graphs

Recall that interval graphs are equivalent to graphs of thinness 1.

Trees can have logarithmic thinness:

thin(T ) ≤ log3(n + 2)

and the thinness of the complete binary tree of height h is ⌈h+1
3 ⌉.

Moreover, the thinness of a tree can be computed in O(n log n) time
(Brandwein and Sansone, 2021).
Split graphs can have linear thinness, thin(Kn ⊟ Sn) ≥ n

2 (B.,
Gonzalez, Oliveira, Sampaio and Szwarcfiter, 2020).

K4 ⊟ S4
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Algorithmic applications to chordal and co-comparability graphs Thinness and leafage of chordal graphs

Leafage of a chordal graph

A graph is chordal if and only if it is the intersection graph of subtrees of a
tree (Gavril, 1974), called host tree.

The leafage ℓ(G ) of a chordal graph G (Lin, McKee and West, 1998), is
the minimum number of leaves of a host tree.

chordal graphs of leafage 2 = interval graphs

The leafage of a graph G and an optimal representation can be computed
in O(n3) time (Habib and Stacho, 2009).
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Algorithmic applications to chordal and co-comparability graphs Thinness and leafage of chordal graphs

Bound of thinness in terms of leafage

Theorem (B., Brettell, Munaro and Paulusma, 2022)

The thinness of a chordal graph can be bounded in terms of its leafage:

thin(G ) ≤ max{1, ℓ(G )− 1}.

Moreover, an (ℓ(G )− 1)-thin representation can be efficiently computed.
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Algorithmic applications to chordal and co-comparability graphs Thinness and leafage of chordal graphs

Algorithmic consequences of the bound

Corollary

Generalized List Matrix Partition Problems is in XP for
chordal graphs parameterized by leafage, thus polynomially solvable for
chordal graphs with bounded leafage.

Recall that

Theorem (Feder, Hell, Klein, Nogueira and Protti, 2005)

There are matrices M such that the M-Partition problem is
NP-complete for chordal graphs.
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Algorithmic applications to chordal and co-comparability graphs Thinness and chromatic number of co-comparability graphs

(p, q, r)-GLMP on co-comparability graphs

Theorem (B., Mattia and Oriolo, 2011)

The thinness of a co-comparability graph G can be bounded in terms of its
chromatic number:

thin(G ) ≤ χ(G ).

Moreover, a χ(G )-thin representation can be efficiently computed.

The bound does not hold for general graphs, not even for comparability
graphs, since bipartite graphs can have arbitrarily large thinness
(Chandran, Mannino and Oriolo, 2007). Indeed, List 3-Coloring is
NP-complete for bipartite graphs (Kubale, 1992).
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Algorithmic applications to chordal and co-comparability graphs Thinness and chromatic number of co-comparability graphs

Algorithmic consequences of the bound

Corollary

If all diagonal entries of the input r × r matrix M are zero, and no vertex
has the empty combination in its list, then the co-comparability
(p, q, r)-GLMP problem can be solved in polynomial time.

Idea: A solution is, in particular, an r -coloring. Co-comparability graphs
are either not r -colorable or have thinness at most r , and an r -thin
representation can be efficiently computed. Then we use the algorithm for
graphs of bounded thinness.

There are matrices M such that List M-Partition is NP-complete for
co-comparability graphs. For instance, when M =

( 1 ∗ ∗
∗ 1 ∗
∗ ∗ 1

)
, co-comparability

List M-Partition is equivalent to comparability List 3-Coloring,
which is NP-complete (Kubale, 1992).
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Algorithmic applications to chordal and co-comparability graphs Thinness and chromatic number of co-comparability graphs

Muchas gracias!!
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