
Un teorema de convergencia para modelos
exponenciales con dispersión bivariados

Lila Ricci, Gabriela Boggio

Centro Marplatense de Investigaciones Matemáticas - FCEyN - UNMdP
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Exponential Dispersion Models

1947 Tweedie pointed out the main properties of EDMs;
but his ideas remained unknown for decades.

1972 Nelder and Wedderburn introduced Natural
Exponential Family; they can represent the error
distribution in generalized linear models (GLMs).

1987 Jørgensen rescued Tweedie’s ideas and defined an
extended family of distributions named Exponential
Dispersion Model. They broaden the field of GLMs,
allowing the researchers to choose, between infinite
probability distributions, the one that optimally
represents their data.

2012 Jørgensen and Mart́ınez developed a unified
methodology to build Multivariate Exponential
Dispersion Models (MEDMs) with fixed known
marginals and a flexible correlation structure.
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Multivariate Exponential Dispersion Models

The method to obtain MEDMs is based on an extended
convolution method.

It ensures a k + k(k + 1)/2 parameters distribution for
k−dimensional models, with marginal distributions that belong to
the same family.
These new MEDMs have a flexible covariance structure.
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Construction of bivariate exponential dispersion models

The bivariate case is obtained as follows: let Z = (Z1,Z2) be
expressed as

Z = (U1,U2) + (U1, 0) + (0,U2)

where the three terms are independent with CGF s given by

(s1, s2)→ λ12κθ(s1, s2)

(s1, s2)→ λ1κθ(s1, 0)

(s1, s2)→ λ2κθ(0, s2)

with κθ(s1, s2) = κ(θ1 + s1, θ2 + s2)− κ(θ1, θ2), being κ the
cumulant function of the generated bivariate natural exponential
family.



The reproductive MEDM is defined by the scale transformation
Y = Z/λ, the random vector Y has mean µ = κ̇ (θ) and
covariance matrix

Cov (Y) =

[
σ11µ

2
1 σ12φµ1µ2

σ12φµ1µ2 σ22µ
2
2

]
where σij are the components of the dispersion matrix

Σ =

[
1
λ11

λ12
λ11λ22

λ12
λ11λ22

1
λ22

]
;

we will denote it by Y ∼ ED(µ,Σ).



Negative correlation

One slight disadvantage of the method is that only positive
correlations are obtained. Recently Cuenin, Jrgensen and
Kokonendji (2015) gave a variables-in-common method for
constructing multivariate distributions admitting negative
correlations, but it is restricted to Tweedie models.



A particular case: bivariate Gamma
While passing from uni to multivariate distributions there is more
than one direction to choose.

Kibble and Moran bivariate Gamma distribution (see Kotz, 2000
and Letac, 2007) is defined by the cumulant function

κ(θ1, θ2) = − log (θ1θ2 − ρ) , ρ > 0

with domain

Θ = {(θ1, θ2) , θ1 < 0, θ2 < 0, θ1θ2 − ρ > 0} .

The moment generating function (MGF ) in terms of µ is then

M(s; µ,Λ) =

(
1− µ1

s1

λ11
− µ2

s2

λ22
+ µ1µ2 (1− φ)

s1s2

λ11λ22

)−λ12

×
(

1− µ1
s1

λ11

)−λ1
(

1− µ2
s2

λ22

)−λ2

. (1)

Note that when φ = 0, meaning independence, (1) becomes

M(s1, s2; µ,Λ) = (1− µ1
s1

λ11
)−λ11(1− µ2

s2

λ22
)−λ22 . (2)
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Extending some results

Jørgensen, Mart́ınez and Tsao (1994) proved an important
theorem, that asses Gamma convergence of some EDMs under
weaker conditions than those required for asymptotic convergence
of variance functions.

The above mentioned authors conjectured that previous results
might be extended to those MEDMs that they had just defined.
Our goal is to extend to bi-dimensional space the result about
convergence of EDMs to a Gamma model, that has been proved in
the univariate case.
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Necessary tools

An essential tool in the study of these domains of attraction has
been the theory of regularly varying functions. that were defined
by J. Karamata (see deHaan, 1975 and deHaan and Resnick,
1987), they behave asymptotically as their Laplace transforms.

The next definition was given by Omey and Willekens (1989),
extending the concept of regular variation to R2

+.

Definition
A measurable function u : R2

+ −→ R+ is regularly varying at
infinity (zero) with indexes α, β ∈ R if ∀x , y > 0 and t > 0, the
limit

lim
min(t,s)→∞(0)

u(tx , sy)

u(t, s)
= xαyβ,

exists and is finite.

Notation: u ∈ VR (α, β)0;
If α = β = 0 the function is said to be slowly varying at infinity
(zero), L ∈ VL∞(0).
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Regular variation of measures

The concept of regular variation can be extended to measures as
follows.

Definition
A measure ν on R2

+ is said to vary regularly at infinity or zero with
indexes α, β ∈ R if the distribution function
ν̄ (x , y) = ν {(0, x ]× (0, y ]} does.



Bivariate Karamata theorems

Hereafter the notation “f (x) ∼ kg(x) when x →∞” means that

lim
x→∞

f (x)
g(x) = k .

Next we extend a theorem stated by Jørgensen, Mart́ınez and Tsao
(1994), that relates regular variation of a measure with regular
variation of its Laplace transform.

Theorem
Let ν be a measure on R2

+ with Laplace transform ω (·, ·), then

ν̄ (t, s) ∼
1

Γ (α + 1) Γ (β + 1)
tαsβL (t, s)⇐⇒

ω

(
1

t
,

1

s

)
∼ tαsβL (t, s)

when min (t, s)→∞, L ∈ VL∞, α and β being non negative
numbers and ν̄ the function given in the previous definition.
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We proved that the statement on the left is equivalent to affirm
that ν̄ ∈ VR(α, β)∞.

Now let ν be a measure of the form

ν (dx , dy) = g (x , y) xα−1yβ−1dxdy ,

g being analytic and zero at (0, 0), then ν ∈ VR(α, β)0. Theorem
1 allows us to say that the MGF of the natural exponential family
generated by such a measure takes the form

Mν(θ1, θ2) = (−θ1)−α (−θ2)−β L (−θ1,−θ2) , θ1, θ2 < 0, (3)

where L (−θ1,−θ2) ∈ VL∞.
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Bivariate Karamata representation

de Haan and Resnick (1987) proved an extension of Karamata
representation to the multivariate regular variation case; we are
interested in the particular case of bivariate slow variation.

A slowly varying function L : R2
+ → R can be represented as

L (x , y) = d (x , y) exp


‖(x ,y)‖ˆ

1

a (t, t)

t
dt

 (4)

where d : R2
+ → R and a : R2

+ → R such that
lim

t→∞
| d (tx , ty)− d0 |= 0 for some 0 < d0 <∞ and

lim
t→∞

a (t, t) = 0.
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The main result

Theorem
Let Y ∼ ED(µ,Σ) be a bivariate EDM generated by the measure
ν with support S ⊆ (0,∞)× (0,∞). Suppose that ν is regularly
varying at zero or infinity with the same index on both variables.
Given (3) and if l(x , y) satisfies:

lim
c→0(∞)

1

c

∂l (−δ1(cµ),−δ2(cµ))

∂δi (cµ)
= 0, i = 1, 2 (5)

for all µ ∈ R2
+ and Σ =

[
1
λ11

λ12
λ11λ22

λ12
λ11λ22

1
λ22

]
with λ11 > 0, λ22 > 0

and λ12 ≥ 0, then

1

c
ED(cµ,Σ)

d−→
c→0(∞)

Γ (µ,Σα)

where Γ is the bivariate Gamma defined previously and

Σα =

[ 1
αλ11

0

0 1
αλ22

]
.

The theorem will be proved for ν regularly varying at zero (L
slowly varying in infinity); the proof for ν regularly varying at
infinity is similar.



Proof

Let Z = (Z1,Z2)T ∼ ED∗(θ,Λ) be the bivariate additive EDM
generated by ν, constructed as described above with MGF

M∗(s; θ,Λ) =

[
eκ(θ1+s1,θ2)

]λ1
[
eκ(θ1,θ2+s2)

]λ2
[
eκ(θ1+s1,θ2+s2)

]λ12[
eκ(θ1,θ2)

]λ1+λ2+λ12
.

Replacing by κ we obtain

M∗(s; θ,Λ) =

(
1 +

s1

θ1

)−αλ11
(

1 +
s2

θ2

)−αλ22

×
[

L (−θ1 − s1,−θ2)

L (−θ1,−θ2)

]λ1
[

L (−θ1,−θ2 − s2)

L (−θ1,−θ2)

]λ2

×
[

L (−θ1 − s1,−θ2 − s2)

L (−θ1,−θ2)

]λ12



Given the scale transformation Y = (Y1,Y2)T =
(

Z1
λ11
, Z2
λ22

)T
and

MGF s properties, the MGF for the perturbed reproductive model
1
c ED(cµ,Σ) results, for µi > 0 fix, i = 1, 2 and c small enough to
ensure that cµ ∈ Ω

M

(
1

c
s; τ−1 (cµ) ,Λ

)
=
(

1 + s1
λ11cδ1(cµ)

)−αλ11

×
(

1 + s2
λ22cδ2(cµ)

)−αλ22

×

[
L
(
−δ1(cµ)− s1

λ11c
,−δ2(cµ)

)
L(−δ1(cµ),−δ2(cµ))

]λ1

×

[
L
(
−δ1(cµ),−δ2(cµ)− s2

λ22c

)
L(−δ1(cµ),−δ2(cµ))

]λ2

×

[
L
(
−δ1(cµ)− s1

λ11c
,−δ2(cµ)− s2

λ22c

)
L(−δ1(cµ),−δ2(cµ))

]λ12

,



Let us denote by hi (s; c ,µ,Λ) the expressions with exponent λi

(i = 1, 2) and by h12 (s; c ,µ,Λ) the one with exponent λ12 so the
MGF can be written as follows:

M

(
1

c
s; τ−1 (cµ) ,Λ

)
=

(
1 +

s1

λ11cδ1(cµ)

)−αλ11

×
(

1 +
s2

λ22cδ2(cµ)

)−αλ22

× hλ1
1 (s; c ,µ,Λ)

× hλ2
2 (s; c ,µ,Λ)

× hλ12
12 (s; c ,µ,Λ) . (6)

The following equalities will be proved:

lim
c→0

cδi (cµ) = − α
µi
, i = 1, 2, (7a)

lim
c→0

hi (s; c ,µ,Λ) = 1, i = 1, 2, (7b)

lim
c→0

h12 (s; c,µ,Λ) = 1, (7c)



To prove (7a) note that given condition (5), we have that

cδi (cµ) =
−α

µi + 1
c
∂l(−τ−1(cµ))

∂δi (cµ)

= − α
µi
.

Before proving (7b) and in order to simplify the notation we define

θ̃
T

=
(
θ̃1, θ̃2

)T
= (δ1(cµ), δ2(cµ))T , it can be proved that

δi (cµ), i = 1, 2 are strictly increasing functions.
Now, to obtain lim

c→0
h1 (s; c ,µ,Λ), we apply (4), in such a way that

h1 (s; c ,µ,Λ), with τ−1 (cµ) in terms of θ̃ can be expressed as

h1

(
s; c , θ̃,Λ

)
=

L
(
−θ̃1 (1 + z1) ,−θ̃2

)
L
(
−θ̃1,−θ̃2

)
=

d
(
−θ̃1 (1 + z1) ,−θ̃2

)
d
(
−θ̃1,−θ̃2

) exp


nˆ

m

a (t, t)

t
dt

 (8)



where m =
∥∥∥(−θ̃1,−θ̃2

)∥∥∥, n =
∥∥∥(−θ̃1 {1 + z1} ,−θ̃2

)∥∥∥, being

‖· ‖ any norm and z1 = s1

λ1c θ̃1
.



Taking into account that lim
c→0

(1 + z1) = 1− s1µ1
λ1α

> 0 because

s1 < 0 and given the conditions required for bivariate Karamata
representation, it can be deduced that

lim
c→0

d
(
−θ̃1 (1 + z1) ,−θ̃2

)
d
(
−θ̃1,−θ̃2

) =
d0

d0
= 1. (9)

We also have that

a(t, t) ≤ sup
m≤t≤n

a(t, t) and that
1

t
≤ 1

m
,

and then
nˆ

m

a (t, t)

t
dt ≤ sup

m≤t≤n
a(t, t)

1

m
(n −m).



For type 1 norm defined as ‖(x , y)‖1 = |x |+ |y | we have that

n −m =| θ̃1 || 1 + z1 | + | θ̃2 | − | θ̃1 | − | θ̃2 |
=| θ̃1 | (| 1 + z1 | −1) ,

and

nˆ

m

a (t, t)

t
dt ≤ sup

m≤t≤n
a(t, t)

1

| θ̃1 | + | θ̃2 |
| θ̃1 | (| 1 + z1 | −1) .

Now, given that 1
|θ̃1|
≥ 1
|θ̃1|+|θ̃2|

lim
c→0

nˆ

m

a (t, t)

t
dt ≤ lim

c→0
sup

m≤t≤n
a(t, t)

1

| θ̃1 |
| θ̃1 | (| 1 + z1 | −1) = 0,

hence

lim
c→0

exp


nˆ

m

a (t, t)

t
dt

 = 1. (10)



Putting together both results (9) and (10) and replacing in (8):

lim
c→0

h1 (s; c ,µ,Λ) = 1.

Limits for h2 and h12 when c → 0 can be obtained in a similar way,
then taking limits in (6) we have that

lim
c→0

M

{
1

c
s; τ−1 (cµ) ,Λ

}
=

(
1− µ1

s1

αλ11

)−αλ11
(

1− µ2
s2

αλ22

)−αλ22

,

and this is the expression for the MGF of the bivariate dispersion
model Γ (µ,Σα) for independent variables, as was proved in (2).
The matrix Σα takes the following form:

Σα =

[ 1
αλ11

0

0 1
αλ22

]
.

�



Example
Let the bivariate EDM, ED(µ,Σ) be generated by the following
measure, that is an extension of the measure presented by Letac
(1992):

ν (dy1, dy2) =
(
e2y1 − 1

) (
e2y2 − 1

)
dy1dy2, (y1, y2) ∈ R2

+. (11)

The CGF is:

κ(θ1, θ) = log

ˆ ∞
0

ˆ ∞
0

ey1θ1+y2θ2ν (dy1, dy2)

= log
2

θ2
1 + 2θ1

+ log
2

θ2
2 + 2θ2

.

In order to analyse if ν varies regularly we obtain the distribution
function ν̄(y1, y2) = ν {(0, y1]× (0, y2]}:

ν̄(y1, y2) =

ˆ y1

0

(
e2u − 1

)
du

ˆ y2

0

(
e2s − 1

)
ds

=

[
e2y1

2
− y1 −

1

2

] [
e2y2

2
− y2 −

1

2

]



Taking limits:

lim
t→0

ν̄(ty1, ty2)

ν̄(t, t)
= lim

t→0

e2ty1 − 2ty1 − 1

e2t − 2t − 1

e2ty2 − 2ty2 − 1

e2t − 2t − 1

= (y1y2)2 ,

then ν̄ ∈ VR(2, 2)0 and by Definition 2 the measure ν varies
regularly. Given (3) we can affirm that the MGF is

Mν(θ1, θ2) = eκ(θ)

=
2

θ2
1 + 2θ1

2

θ2
2 + 2θ2

= (−θ1)−2 (−θ2)−2 L (−θ1,−θ2) ,

where L ∈ VL∞ is

L (−θ1,−θ2) =
4θ1θ2

(θ1 + 2) (θ2 + 2)
.



Let us analyse conditions (5):

∂l (−θ1,−θ2)

∂θi
=

1

θi
− 1

θi + 2
=

2

θi (θi + 2)
i = 1, 2.

and taking into account that

∂2κ

∂θi∂θi
=

2

θ2
i + 2θi

+
4 (θi + 1)2

(θi + 2)2
i = 1, 2

these second derivatives can be expressed in terms of mean values:

κ̈θiθi (θ1, θ2) = Vi (µi ) = µ2
i + 1−

√
µ2

i + 1 i = 1, 2,

giving
∂l (−θ1,−θ2)

∂θi
=
√
µ2

i + 1− 1 i = 1, 2.



Then, taking limits and applying L’ Hôpital:

lim
c→0

1

c

∂l
(
−θ̃1,−θ̃2

)
∂θ̃i

= lim
c→0

√
c2µ2

i + 1− 1

c

= lim
c→0

1

2

(
c2µ2

i + 1
)− 1

2 2cµ2
i = 0,

for i = 1, 2, so conditions (5) are satisfied. Now, given (4) and
according with Theorem 2, EDMs generated by (11) satisfy that
when c → 0:

1

c
ED(cµ,Σ)

d→ Γ (µ,Σα)

Γ being the bivariate Gamma distribution for independent variables

with Σα =

[ 1
2λ11

0

0 1
2λ22

]
.



Conclusions and discussion

I Fisher (1953) pointed out the importance of describing data
in their natural habitat.

I Gaussian distribution is particularly relevant for small
dispersion data. EDMs are appropiate to modelize large
dispersion data.

I Jørgensen and Mart́ınez conjectured that results proved by
them in the univariate case, could be proved for those
MEDMs they defined in 2013.

I Contributions made by J. Karamata extended to Rk some
theorems for regular variation functions establishing that they
behave asymptotically as their Laplace transforms.
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I We proved that bivariate EDMs generated by regularly varying
measures, tend to a bivariate independent Gamma distribution
when the mean parameter goes to some extreme in the
parameter domain, imposing no conditions on the asymptotic
behaviour of the variance function.

I Hitz and Evans (2016) developed an extension of Karamata
theorem to multivariate regular variation functions, their
results open a new line of research of convergence properties
of dispersion models for extremes (Jørgensen, 2010).
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