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Certi�cates



Gödel's Completeness Theorem

Theorem (Gödel 1929)

Let Σ be a set of �rst-order axioms. If ϕ is a �rst-order property

true in every structure satisfying Σ, then there is a �rst-order proof

of ϕ from Σ.
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Malcev's Theorem

Congruences θ ,δ of an algebra A permute if θ ◦δ = δ ◦θ .

A

variety V is CP if for every A ∈ V , every pair of congruences of A

permutes. E.g., the variety of Groups is CP.

Theorem (Malcev 1954)

A variety V is CP i� there is a term p(x ,y ,z) such that V satis�es

p(x ,y ,y)≈ x and p(x ,x ,y)≈ y .
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More Malcev Conditions

A variety V is CD if the congruence lattice of every member of V
is distributive.

E.g., the variety of lattices is CD.

Theorem (Jónsson 1967)

A variety is CD i� it has Jónsson Terms.

A variety is called arithmetical if it is CD and CP. E.g., Boolean

algebras.

Theorem (Pixley 1963)

A variety V is arithmetical i� there is a term m(x ,y ,z) such that

V satis�es m(x ,y ,x)≈m(x ,y ,y)≈m(y ,y ,x)≈ x .
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Certi�cates Are Useful
Algorithms

Corollary

Let A be a �nite algebraic structure. There is an algorithm that

checks whether V(A) is CP.

Proof.
Check if there is a function f ∈ {tA(x ,y ,z) : t is a ternary term}
satisfying f (x ,y ,y)≈ x and f (x ,x ,y)≈ y .

Note the same is true for CD and arithmeticity.
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Certi�cates Are Useful
Finite bases

A variety V is �nitely based if there is a �nite set of identities

axiomatizing V .

Theorem (Baker 1977)

Every CD and �nitely generated variety is �nitely based.

Proof.
Smart use of the Jónsson terms.
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Three Theorems Cooked in Córdoba



Filtral Quasivarieties



Discriminator Varieties

I The (quaternary) discriminator on a set A is the function

nA(a,b,c ,d) =

{
c if a = b,

d if a 6= b.

I A variety V is a discriminator variety if there are a class K
and a term t(x ,y ,z ,w) such that:
I K generates V
I tA = nA for all A ∈K .

I The variety of Boolean algebras is a discriminator variety:
I K = {2}
I t = ((x ↔ y)∧ z)∨ ((x ↔ y)c ∧w).
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Discriminator Varieties and Filtral Quasivarieties

Theorem (Folklore)

For a variety V t.f.a.e.:

I V is artihmetical, semisimple and VFSI is a universal class.

I V is a discriminator variety.

A quasivariety Q is �ltral if it is CD, semisimple, and QFSI is a

universal class. E.g., distributive lattices.
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A Certi�cate for Filtral Quasivarieties

Theorem (Campercholi & Vaggione 2012)

For a quasivariety Q t.f.a.e.:

I Q is a �ltral quasivariety.

I There are a class K and conjunction of equations
ϕ(x ,y ,z ,w ,u) such that:
I K generates Q,
I ϕ de�nes nA in A for all A ∈K .
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Dominions



Dominions
De�nition

Let A≤B and K a class. Say that b ∈B is dominated by A w.r.t.

K if

for all C ∈K , and all h,h′ : B→ C

h|A = h′|A implies h(b) = h′(b).

The dominion of A in B w.r.t. K , domB

K A, is the set of all such b.

Example

Let D be the variety of bounded distributive lattices.

Observe that b ∈ domB

DA.
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Dominions
Example continued

Suppose C ∈D and h,h′ : B→ C agree on A.

Let

ϕ (x ,y) := x ∧y = 0 & x ∨y = 1.

Note that ϕ is preserved by homs and

D � ∀x∃≤1y ϕ (x ,y) .

Now, B � ϕ (a,b), so C � ϕ (ha,hb) & ϕ (h′a,h′b). Since ha = h′a,
we have hb = h′b.
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PP Functions and Dominions

I A primitive positive (pp) formula is one of the form

∃z̄
∧

αi (x̄ , z̄) .

I A formula ϕ (x̄ ,y) de�nes a function in A if

A � ∀x̄∃≤1y ϕ (x̄ ,y). Notation: [ϕ]A.

Theorem (Campercholi 2016)

Let K be closed under ultraproducts, and let A≤ B . Then

b ∈ domB

K A i� there are a pp formula ϕ (x̄ ,y) and ā ∈ An such

that:

I ϕ (x̄ ,y) de�nes a function in every member of K ,

I [ϕ]B(ā) = b.
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I [ϕ]B(ā) = b.



Epimorphisms, Dominions and the Beth Property

Let K be a class and A,B ∈K .

I A homomorphism g : A→ B is a K -epimorphism if for all

C ∈K and h,h′ : B→ C we have

hg = h′g implies h = h′.

Note that

g : A→ B is a K -epimorphism⇐⇒ domB

K g (A) = B.

Theorem (Blok & Hoogland, 2006)

Let L be a semantically algebraizable general logic and let K be its

algebraic counterpart. T.f.a.e.:

I L has the Beth Property.

I Every K -epimorphism is surjective.
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An Algorithm Deciding Surjectivity of Epimorphisms

A term M(x ,y ,z) is majority-term for the class K if K satis�es

M(x ,x ,y)≈M(x ,y ,x)≈M(y ,x ,x)≈ x .

For example, (x ∨y)∧ (x ∨ z)∧ (y ∨ z) is a majority-term for the

class of all lattices.

Theorem
Let F be a �nite set of �nite algebras with a majority-term. It is

decidable whether the (quasi)variety generated by F has surjective

epimorphisms.
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Factor Congruences

Every decomposition of A
γ∼= A1×A2 produces a pair of

congruences of A

θ1 = {〈a,b〉 : π1γ(a) = π1γ(b)}
θ2 = {〈a,b〉 : π2γ(a) = π2γ(b)}.

They satisfy

θ1∩θ2 = ∆ and θ1 ◦θ2 = θ2 ◦θ1 = A2.

Any pair 〈θ ,δ 〉 satisfying the above is a pair of factor congruences.

Notation: θ♦δ .
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Equivalences

Theorem (Sánchez Terraf & Vaggione 2009)

Let V be a 0,1-variety. T.f.a.e.:

1. V has the DP.

2. V has DFC.

3. V has BFC.

Proof.
(1)⇒(2) Beth's theorem.

(2)⇒(3) Use the terms in the Malcev condition for BFC (R.

Willard) to explicitly build Φ(x ,y ,z). Massage Φ(x ,y ,z) into

Φ′(x ,y ,z) preserved by products and factors.

(3)⇒(1) Easy.
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The Toolbox at a Glance

I Beth's theorem.

I Preservation results, e.g., if ϕ(x̄) is preserved by substructures

it is universal.

I Term-interpolation theorems, e.g., the Baker-Pixley Theorem.

I Free algebras, and other quotients of the term algebra.

I Sheaf constructions such as Boolean products and global

products.
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model-theoretic properties.

I New term-interpolation results.

I Further develop the theory of global representations.
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I Syntactical reasons make for interesting math.
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