Syntactical Reasons

Miguel Campercholi

Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Argentina

XIV Congreso Dr. Antonio Monteiro, Bahía Blanca, 2017

Certificates

Gödel's Completeness Theorem

Gödel's Completeness Theorem

Theorem (Gödel 1929)

Let Σ be a set of first-order axioms. If φ is a first-order property true in every structure satisfying Σ , then there is a first-order proof of φ from Σ .

Congruences θ, δ of an algebra **A** permute if $\theta \circ \delta = \delta \circ \theta$.

Congruences θ, δ of an algebra **A** permute if $\theta \circ \delta = \delta \circ \theta$. A variety \mathscr{V} is **CP** if for every $\mathbf{A} \in \mathscr{V}$, every pair of congruences of **A** permutes.

Congruences θ, δ of an algebra **A** permute if $\theta \circ \delta = \delta \circ \theta$. A variety \mathscr{V} is CP if for every $\mathbf{A} \in \mathscr{V}$, every pair of congruences of **A** permutes. E.g., the variety of Groups is CP.

Congruences θ, δ of an algebra **A** permute if $\theta \circ \delta = \delta \circ \theta$. A variety \mathscr{V} is **CP** if for every $\mathbf{A} \in \mathscr{V}$, every pair of congruences of **A** permutes. E.g., the variety of Groups is CP.

Theorem (Malcev 1954)

A variety \mathscr{V} is CP iff there is a term p(x, y, z) such that \mathscr{V} satisfies $p(x, y, y) \approx x$ and $p(x, x, y) \approx y$.

Congruences θ, δ of an algebra **A** permute if $\theta \circ \delta = \delta \circ \theta$. A variety \mathscr{V} is **CP** if for every $\mathbf{A} \in \mathscr{V}$, every pair of congruences of **A** permutes. E.g., the variety of Groups is CP.

Theorem (Malcev 1954)

A variety \mathscr{V} is CP iff there is a term p(x, y, z) such that \mathscr{V} satisfies $p(x, y, y) \approx x$ and $p(x, x, y) \approx y$.

A variety $\mathscr V$ is CD if the congruence lattice of every member of $\mathscr V$ is distributive.

A variety \mathscr{V} is CD if the congruence lattice of every member of \mathscr{V} is distributive. E.g., the variety of lattices is CD.

A variety \mathscr{V} is CD if the congruence lattice of every member of \mathscr{V} is distributive. E.g., the variety of lattices is CD.

Theorem (Jónsson 1967)

A variety is CD iff it has Jónsson Terms.

A variety \mathscr{V} is CD if the congruence lattice of every member of \mathscr{V} is distributive. E.g., the variety of lattices is CD.

- Theorem (Jónsson 1967)
- A variety is CD iff it has Jónsson Terms.
- A variety is called arithmetical if it is CD and CP.

A variety \mathscr{V} is CD if the congruence lattice of every member of \mathscr{V} is distributive. E.g., the variety of lattices is CD.

- Theorem (Jónsson 1967)
- A variety is CD iff it has Jónsson Terms.

A variety is called arithmetical if it is CD and CP. E.g., Boolean algebras.

A variety \mathscr{V} is CD if the congruence lattice of every member of \mathscr{V} is distributive. E.g., the variety of lattices is CD.

Theorem (Jónsson 1967)

A variety is CD iff it has Jónsson Terms.

A variety is called arithmetical if it is CD and CP. E.g., Boolean algebras.

Theorem (Pixley 1963)

A variety \mathscr{V} is arithmetical iff there is a term m(x,y,z) such that \mathscr{V} satisfies $m(x,y,x) \approx m(x,y,y) \approx m(y,y,x) \approx x$.

Certificates Are Useful Algorithms

Corollary

Let A be a finite algebraic structure. There is an algorithm that checks whether $\mathbb{V}(A)$ is CP.

Certificates Are Useful Algorithms

Corollary

Let A be a finite algebraic structure. There is an algorithm that checks whether $\mathbb{V}(A)$ is CP.

Proof.

Check if there is a function $f \in \{t^{\mathbf{A}}(x, y, z) : t \text{ is a ternary term}\}\$ satisfying $f(x, y, y) \approx x$ and $f(x, x, y) \approx y$.

Certificates Are Useful Algorithms

Corollary

Let A be a finite algebraic structure. There is an algorithm that checks whether $\mathbb{V}(A)$ is CP.

Proof.

Check if there is a function $f \in \{t^{\mathbf{A}}(x, y, z) : t \text{ is a ternary term}\}$ satisfying $f(x, y, y) \approx x$ and $f(x, x, y) \approx y$.

Note the same is true for CD and arithmeticity.

Certificates Are Useful Finite bases

A variety \mathscr{V} is finitely based if there is a finite set of identities axiomatizing \mathscr{V} .

Certificates Are Useful Finite bases

A variety \mathscr{V} is finitely based if there is a finite set of identities axiomatizing \mathscr{V} .

Theorem (Baker 1977)

Every CD and finitely generated variety is finitely based.

Certificates Are Useful Finite bases

A variety \mathscr{V} is finitely based if there is a finite set of identities axiomatizing \mathscr{V} .

Theorem (Baker 1977)

Every CD and finitely generated variety is finitely based.

Proof.

Smart use of the Jónsson terms.

Three Theorems Cooked in Córdoba

Filtral Quasivarieties

Discriminator Varieties

▶ The (quaternary) discriminator on a set A is the function

$$n^{A}(a,b,c,d) = \begin{cases} c & \text{if } a = b, \\ d & \text{if } a \neq b. \end{cases}$$

Discriminator Varieties

► The (quaternary) discriminator on a set A is the function

$$n^A(a,b,c,d) = \begin{cases} c & \text{if } a = b, \\ d & \text{if } a \neq b. \end{cases}$$

A variety 𝒴 is a discriminator variety if there are a class 𝒴 and a term t(x, y, z, w) such that:

•
$$t^{\mathbf{A}} = n^{\mathbf{A}}$$
 for all $\mathbf{A} \in \mathscr{K}$.

Discriminator Varieties

► The (quaternary) discriminator on a set A is the function

$$n^A(a,b,c,d) = \begin{cases} c & \text{if } a = b, \\ d & \text{if } a \neq b. \end{cases}$$

A variety 𝒞 is a discriminator variety if there are a class ℋ and a term t(x, y, z, w) such that:

•
$$\mathscr{K}$$
 generates \mathscr{V}

•
$$t^{\mathbf{A}} = n^{\mathbf{A}}$$
 for all $\mathbf{A} \in \mathscr{K}$.

The variety of Boolean algebras is a discriminator variety:

$$\mathcal{H} = \{\mathbf{2}\}$$

$$t = ((x \leftrightarrow y) \land z) \lor ((x \leftrightarrow y)^c \land w).$$

Theorem (Folklore)

For a variety \mathscr{V} t.f.a.e.:

 $\blacktriangleright~{\mathscr V}$ is artihmetical, semisimple and ${\mathscr V}_{\rm FSI}$ is a universal class.

Theorem (Folklore)

For a variety \mathscr{V} t.f.a.e.:

- \mathscr{V} is artihmetical, semisimple and \mathscr{V}_{FSI} is a universal class.
- *V* is a discriminator variety.

Theorem (Folklore)

For a variety \mathscr{V} t.f.a.e.:

- \mathscr{V} is artihmetical, semisimple and \mathscr{V}_{FSI} is a universal class.
- \mathscr{V} is a discriminator variety.

A quasivariety \mathscr{Q} is filtral if it is CD, semisimple, and \mathscr{Q}_{FSI} is a universal class.

Theorem (Folklore)

For a variety \mathscr{V} t.f.a.e.:

- \mathscr{V} is artihmetical, semisimple and \mathscr{V}_{FSI} is a universal class.
- *V* is a discriminator variety.

A quasivariety \mathcal{Q} is filtral if it is CD, semisimple, and \mathcal{Q}_{FSI} is a universal class. E.g., distributive lattices.

Theorem (Campercholi & Vaggione 2012) For a quasivariety *Q* t.f.a.e.:

► *Q* is a filtral quasivariety.

Theorem (Campercholi & Vaggione 2012) For a quasivariety *Q* t.f.a.e.:

- *Q* is a filtral quasivariety.
- ► There are a class *ℋ* and conjunction of equations φ(x,y,z,w,u) such that:

Theorem (Campercholi & Vaggione 2012) For a quasivariety *Q* t.f.a.e.:

- *Q* is a filtral quasivariety.
- ► There are a class *X* and conjunction of equations φ(x,y,z,w,u) such that:
 - $\mathscr K$ generates $\mathscr Q$,

Theorem (Campercholi & Vaggione 2012) For a quasivariety *Q* t.f.a.e.:

- \mathscr{Q} is a filtral quasivariety.
- ► There are a class *X* and conjunction of equations φ(x,y,z,w,u) such that:
 - $\mathscr K$ generates $\mathscr Q$,
 - φ defines n^A in **A** for all $\mathbf{A} \in \mathscr{K}$.

Dominions

Definition

Let $\mathbf{A} \leq \mathbf{B}$ and $\mathscr K$ a class. Say that $b \in \mathbf{B}$ is dominated by \mathbf{A} w.r.t. $\mathscr K$ if
Definition

Let $\mathbf{A} \leq \mathbf{B}$ and \mathscr{K} a class. Say that $b \in \mathbf{B}$ is dominated by \mathbf{A} w.r.t. \mathscr{K} if for all $\mathbf{C} \in \mathscr{K}$, and all $h, h' : \mathbf{B} \to \mathbf{C}$

 $h|_A = h'|_A$ implies h(b) = h'(b).

Definition

Let $A \leq B$ and \mathscr{K} a class. Say that $b \in B$ is dominated by A w.r.t. \mathscr{K} if for all $C \in \mathscr{K}$, and all $h, h' : B \to C$

 $h|_A = h'|_A$ implies h(b) = h'(b).

The dominion of **A** in **B** w.r.t. \mathscr{K} , dom^B_{\mathscr{K}}**A**, is the set of all such *b*.

Definition

Let $\mathbf{A} \leq \mathbf{B}$ and \mathscr{K} a class. Say that $b \in \mathbf{B}$ is dominated by \mathbf{A} w.r.t. \mathscr{K} if for all $\mathbf{C} \in \mathscr{K}$, and all $h, h' : \mathbf{B} \to \mathbf{C}$

$$h|_A = h'|_A$$
 implies $h(b) = h'(b)$.

The dominion of **A** in **B** w.r.t. \mathscr{K} , dom^B_{\mathscr{K}}**A**, is the set of all such *b*. Example

Let ${\mathscr D}$ be the variety of bounded distributive lattices.

Definition

Let $\mathbf{A} \leq \mathbf{B}$ and \mathscr{K} a class. Say that $b \in \mathbf{B}$ is dominated by \mathbf{A} w.r.t. \mathscr{K} if for all $\mathbf{C} \in \mathscr{K}$, and all $h, h' : \mathbf{B} \to \mathbf{C}$

$$h|_A = h'|_A$$
 implies $h(b) = h'(b)$.

The dominion of **A** in **B** w.r.t. \mathscr{K} , dom^B_{\mathscr{K}}**A**, is the set of all such *b*. Example

Let ${\mathscr D}$ be the variety of bounded distributive lattices.

Observe that
$$b \in \operatorname{dom}_{\mathscr{D}}^{\mathbf{B}} \mathbf{A}$$
.

Suppose $\mathbf{C} \in \mathscr{D}$ and $h, h' : \mathbf{B} \to \mathbf{C}$ agree on A.

Suppose $C \in \mathscr{D}$ and $h, h' : B \to C$ agree on A. Let $\varphi(x, y) := x \land y = 0 \& x \lor y = 1.$

Suppose $C \in \mathscr{D}$ and $h, h' : B \to C$ agree on A. Let $\varphi(x, y) := x \land y = 0 \& x \lor y = 1.$

Note that ϕ is preserved by homs and

 $\mathcal{D} \vDash \forall x \exists_{\leq 1} y \ \varphi(x, y).$

Suppose $C \in \mathscr{D}$ and $h, h' : B \to C$ agree on A. Let $\varphi(x, y) := x \wedge y = 0 \& x \lor y = 1.$

Note that ϕ is preserved by homs and

$$\mathscr{D} \vDash \forall x \exists_{\leq 1} y \ \varphi(x, y).$$

Now, $\mathbf{B} \vDash \varphi(a, b)$, so $\mathbf{C} \vDash \varphi(ha, hb) \& \varphi(h'a, h'b)$.

Suppose $\mathbf{C}\in\mathscr{D}$ and $h,h':\mathbf{B}
ightarrow\mathbf{C}$ agree on A. Let

$$\varphi(x,y) := x \wedge y = 0 \& x \vee y = 1.$$

Note that ϕ is preserved by homs and

$$\mathscr{D}\vDash \forall x\exists_{\leq 1} y \ \varphi(x,y).$$

Now, $\mathbf{B} \models \varphi(a, b)$, so $\mathbf{C} \models \varphi(ha, hb) \& \varphi(h'a, h'b)$. Since ha = h'a, we have hb = h'b.

► A primitive positive (pp) formula is one of the form $\exists \bar{z} \land \alpha_i(\bar{x}, \bar{z})$.

- A primitive positive (pp) formula is one of the form $\exists \bar{z} \land \alpha_i(\bar{x}, \bar{z})$.
- ► A formula $\varphi(\bar{x}, y)$ defines a function in **A** if $\mathbf{A} \models \forall \bar{x} \exists_{\leq 1} y \ \varphi(\bar{x}, y).$

- A primitive positive (pp) formula is one of the form $\exists \bar{z} \land \alpha_i(\bar{x}, \bar{z})$.
- ► A formula $\varphi(\bar{x}, y)$ defines a function in **A** if **A** $\vDash \forall \bar{x} \exists_{\leq 1} y \ \varphi(\bar{x}, y)$. Notation: $[\varphi]^{\mathbf{A}}$.

- A primitive positive (pp) formula is one of the form $\exists \bar{z} \land \alpha_i(\bar{x}, \bar{z})$.
- ► A formula $\varphi(\bar{x}, y)$ defines a function in **A** if **A** $\models \forall \bar{x} \exists_{\leq 1} y \ \varphi(\bar{x}, y)$. Notation: $[\varphi]^{\mathbf{A}}$.

Theorem (Campercholi 2016)

Let \mathscr{K} be closed under ultraproducts, and let $\mathbf{A} \leq \mathbf{B}$. Then $b \in \operatorname{dom}_{\mathscr{K}}^{\mathbf{B}}\mathbf{A}$ iff there are a pp formula $\varphi(\bar{x}, y)$ and $\bar{a} \in A^n$ such that:

• $arphi(ar{x},y)$ defines a function in every member of \mathscr{K} ,

- A primitive positive (pp) formula is one of the form $\exists \bar{z} \land \alpha_i(\bar{x}, \bar{z})$.
- ► A formula $\varphi(\bar{x}, y)$ defines a function in **A** if **A** $\models \forall \bar{x} \exists_{\leq 1} y \ \varphi(\bar{x}, y)$. Notation: $[\varphi]^{\mathbf{A}}$.

Theorem (Campercholi 2016)

Let \mathscr{K} be closed under ultraproducts, and let $\mathbf{A} \leq \mathbf{B}$. Then $b \in \operatorname{dom}_{\mathscr{K}}^{\mathbf{B}}\mathbf{A}$ iff there are a pp formula $\varphi(\bar{x}, y)$ and $\bar{a} \in A^n$ such that:

- $\varphi(ar{x},y)$ defines a function in every member of \mathscr{K} ,
- $\blacktriangleright \ [\phi]^{\mathsf{B}}(\bar{a}) = b.$

Let $\mathscr K$ be a class and $\mathbf{A},\mathbf{B}\in \mathscr K$.

Let \mathscr{K} be a class and $\mathbf{A}, \mathbf{B} \in \mathscr{K}$.

A homomorphism g : A → B is a *K*-epimorphism if for all C ∈ *K* and h, h' : B → C we have

$$hg = h'g$$
 implies $h = h'$.

Let \mathscr{K} be a class and $\mathbf{A}, \mathbf{B} \in \mathscr{K}$.

A homomorphism g : A → B is a *K*-epimorphism if for all C ∈ *K* and h, h' : B → C we have

$$hg = h'g$$
 implies $h = h'$.

Note that

$$g: \mathbf{A} \to \mathbf{B}$$
 is a \mathscr{K} -epimorphism $\iff \operatorname{dom}_{\mathscr{K}}^{\mathbf{B}} g(\mathbf{A}) = B$.

Let \mathscr{K} be a class and $\mathbf{A}, \mathbf{B} \in \mathscr{K}$.

A homomorphism g : A → B is a *K*-epimorphism if for all C ∈ *K* and h, h' : B → C we have

$$hg = h'g$$
 implies $h = h'$.

Note that

$$g: \mathbf{A} o \mathbf{B}$$
 is a \mathscr{K} -epimorphism $\iff \operatorname{dom}_{\mathscr{K}}^{\mathbf{B}} g(\mathbf{A}) = B$.

Theorem (Blok & Hoogland, 2006)

Let L be a semantically algebraizable general logic and let \mathcal{K} be its algebraic counterpart. T.f.a.e.:

- L has the Beth Property.
- Every *K*-epimorphism is surjective.

An Algorithm Deciding Surjectivity of Epimorphisms

A term M(x, y, z) is majority-term for the class \mathcal{K} if \mathcal{K} satisfies

 $M(x,x,y) \approx M(x,y,x) \approx M(y,x,x) \approx x.$

An Algorithm Deciding Surjectivity of Epimorphisms

A term M(x, y, z) is majority-term for the class \mathcal{K} if \mathcal{K} satisfies

 $M(x,x,y) \approx M(x,y,x) \approx M(y,x,x) \approx x.$

For example, $(x \lor y) \land (x \lor z) \land (y \lor z)$ is a majority-term for the class of all lattices.

An Algorithm Deciding Surjectivity of Epimorphisms

A term M(x,y,z) is majority-term for the class $\mathscr K$ if $\mathscr K$ satisfies

$$M(x,x,y) \approx M(x,y,x) \approx M(y,x,x) \approx x.$$

For example, $(x \lor y) \land (x \lor z) \land (y \lor z)$ is a majority-term for the class of all lattices.

Theorem

Let \mathscr{F} be a finite set of finite algebras with a majority-term. It is decidable whether the (quasi)variety generated by \mathscr{F} has surjective epimorphisms.

Every decomposition of $\bm{A} \stackrel{\gamma}{\cong} \bm{A}_1 \times \bm{A}_2$ produces a pair of congruences of \bm{A}

$$egin{aligned} & heta_1 = \{ \langle a, b
angle : \pi_1 \gamma(a) = \pi_1 \gamma(b) \} \ & heta_2 = \{ \langle a, b
angle : \pi_2 \gamma(a) = \pi_2 \gamma(b) \}. \end{aligned}$$

Every decomposition of $\textbf{A} \stackrel{\gamma}{\cong} \textbf{A}_1 \times \textbf{A}_2$ produces a pair of congruences of A

$$egin{aligned} & heta_1 = \{ \langle a,b
angle : \pi_1 \gamma(a) = \pi_1 \gamma(b) \} \ & heta_2 = \{ \langle a,b
angle : \pi_2 \gamma(a) = \pi_2 \gamma(b) \}. \end{aligned}$$

They satisfy

$$heta_1 \cap heta_2 = \Delta$$
 and $heta_1 \circ heta_2 = heta_2 \circ heta_1 = A^2$.

Every decomposition of $\textbf{A} \stackrel{\gamma}{\cong} \textbf{A}_1 \times \textbf{A}_2$ produces a pair of congruences of A

$$\begin{aligned} \theta_1 &= \{ \langle a, b \rangle : \pi_1 \gamma(a) = \pi_1 \gamma(b) \} \\ \theta_2 &= \{ \langle a, b \rangle : \pi_2 \gamma(a) = \pi_2 \gamma(b) \}. \end{aligned}$$

They satisfy

$$heta_1 \cap heta_2 = \Delta$$
 and $heta_1 \circ heta_2 = heta_2 \circ heta_1 = A^2.$

Any pair $\langle \theta, \delta \rangle$ satisfying the above is a pair of factor congruences.

Every decomposition of $\textbf{A} \stackrel{\gamma}{\cong} \textbf{A}_1 \times \textbf{A}_2$ produces a pair of congruences of A

$$\begin{aligned} \theta_1 &= \{ \langle a, b \rangle : \pi_1 \gamma(a) = \pi_1 \gamma(b) \} \\ \theta_2 &= \{ \langle a, b \rangle : \pi_2 \gamma(a) = \pi_2 \gamma(b) \}. \end{aligned}$$

They satisfy

$$heta_1 \cap heta_2 = \Delta$$
 and $heta_1 \circ heta_2 = heta_2 \circ heta_1 = A^2.$

Any pair $\langle \theta, \delta \rangle$ satisfying the above is a pair of factor congruences. Notation: $\theta \Diamond \delta$.

Reciprocaly, if $heta \Diamond \delta$ then

 $\mathbf{A} \cong \mathbf{A}/\boldsymbol{\theta} \times \mathbf{A}/\boldsymbol{\delta}.$

Reciprocaly, if $heta \Diamond \delta$ then

 $\mathbf{A} \cong \mathbf{A}/\boldsymbol{\theta} \times \mathbf{A}/\boldsymbol{\delta}.$

So, we have the correspondence

{Direct product decompositions of \mathbf{A} } $\subseteq \{\langle \theta, \delta \rangle : \theta \Diamond \delta\}.$

Reciprocaly, if $heta \Diamond \delta$ then

 $\mathbf{A} \cong \mathbf{A}/\boldsymbol{\theta} \times \mathbf{A}/\boldsymbol{\delta}.$

So, we have the correspondence

{Direct product decompositions of \mathbf{A} } $\leq \{\langle \theta, \delta \rangle : \theta \Diamond \delta\}.$

An algebra A has BFC if the factor congruences of A form a distributive sublattice of Con A.

Reciprocaly, if $heta \Diamond \delta$ then

 $\mathbf{A} \cong \mathbf{A}/\boldsymbol{\theta} \times \mathbf{A}/\boldsymbol{\delta}.$

So, we have the correspondence

{Direct product decompositions of \mathbf{A} } \leftrightarrows { $\langle \theta, \delta \rangle : \theta \Diamond \delta$ }.

An algebra **A** has BFC if the factor congruences of **A** form a distributive sublattice of Con **A**. A variety \mathscr{V} has BFC if every $\mathbf{A} \in \mathscr{V}$ has BFC.

Reciprocaly, if $heta \Diamond \delta$ then

 $\mathbf{A} \cong \mathbf{A}/\boldsymbol{\theta} \times \mathbf{A}/\boldsymbol{\delta}.$

So, we have the correspondence

{Direct product decompositions of \mathbf{A} } $\leq \{\langle \theta, \delta \rangle : \theta \Diamond \delta\}.$

An algebra **A** has BFC if the factor congruences of **A** form a distributive sublattice of Con **A**. A variety \mathscr{V} has BFC if every $\mathbf{A} \in \mathscr{V}$ has BFC.

 $CD \Rightarrow FHP \Rightarrow BFC.$

Central Elements

Encoding factor congruences

Say that $\mathscr V$ is a 0,1-variety if there are constants $0,1\in \mathscr L_{\mathscr V}$ such that

 $\mathscr{V} \vDash 0 = 1 \to x \approx y.$

Say that $\mathscr V$ is a 0,1-variety if there are constants $0,1\in \mathscr L_{\mathscr V}$ such that

$$\mathscr{V} \vDash 0 = 1 \to x \approx y.$$

E.g., bounded lattices.

Say that $\mathscr V$ is a 0,1-variety if there are constants $0,1\in \mathscr L_{\mathscr V}$ such that

$$\mathscr{V} \vDash 0 = 1 \to x \approx y.$$

E.g., bounded lattices. An element $e\in \mathbf{A}$ is central if there are $heta \Diamond \delta$ such that

 $0 \ \theta \ e \ \delta \ 1.$

Say that $\mathscr V$ is a 0,1-variety if there are constants $0,1\in \mathscr L_{\mathscr V}$ such that

$$\mathscr{V} \vDash 0 = 1 \to x \approx y.$$

E.g., bounded lattices. An element $e\in {f A}$ is central if there are $\theta \diamondsuit \delta$ such that

 $0\;\theta\;e\,\delta\;1.$

E.g., e is central in a bounded lattice L iff e is complemented in L.

Say that $\mathscr V$ is a 0,1-variety if there are constants $0,1\in \mathscr L_{\mathscr V}$ such that

$$\mathscr{V} \vDash 0 = 1 \to x \approx y.$$

E.g., bounded lattices. An element $e \in \mathbf{A}$ is central if there are $\theta \diamondsuit \delta$ such that

 $0 \theta e \delta 1.$

E.g., *e* is central in a bounded lattice L iff *e* is complemented in L. Does this always work?

$$\{\langle \theta, \delta \rangle : \theta \Diamond \delta\} \stackrel{?}{\rightleftharpoons} \{e \in A : e \text{ is central}\}.$$
Let $\mathscr V$ be a 0,1-variety.

Let \mathscr{V} be a 0,1-variety. An algebra **A** has the Determining Property (DP) if for all $\theta \Diamond \delta$, $\theta' \Diamond \delta'$ and all $e \in A$:

$$\left.\begin{array}{c} 0 \ \theta \ e \ \delta \ 1 \\ 0 \ \theta' \ e \ \delta' \ 1 \end{array}\right\} \Longrightarrow \begin{array}{c} \theta = \theta' \\ \delta = \delta'. \end{array}$$

Let \mathscr{V} be a 0,1-variety. An algebra **A** has the Determining Property (DP) if for all $\theta \Diamond \delta$, $\theta' \Diamond \delta'$ and all $e \in A$:

$$\left.\begin{array}{c} 0 \ \theta \ e \ \delta \ 1 \\ 0 \ \theta' \ e \ \delta' \ 1 \end{array}\right\} \Longrightarrow \begin{array}{c} \theta = \theta' \\ \delta = \delta'. \end{array}$$

The variety \mathscr{V} has the DP if every $\mathbf{A} \in \mathscr{V}$ has the DP.

Let \mathscr{V} be a 0,1-variety. An algebra **A** has the Determining Property (DP) if for all $\theta \Diamond \delta$, $\theta' \Diamond \delta'$ and all $e \in A$:

$$\left.\begin{array}{c} 0 \ \theta \ e \ \delta \ 1 \\ 0 \ \theta' \ e \ \delta' \ 1 \end{array}\right\} \Longrightarrow \begin{array}{c} \theta = \theta' \\ \delta = \delta'. \end{array}$$

The variety \mathscr{V} has the DP if every $\mathbf{A} \in \mathscr{V}$ has the DP. Here the correspondence works.

$$\{\langle \theta, \delta \rangle : \theta \Diamond \delta\} \rightleftarrows \{e \in A : e \text{ is central}\}.$$

Definable Factor Congruences

Let \mathscr{V} be a 0,1-variety. Say that \mathscr{V} has DFC if there is a formula $\Phi(x,y,z)$ such that for all $\mathbf{A}, \mathbf{B} \in \mathscr{V}$

$$\mathbf{A} \times \mathbf{B} \vDash \Phi((a, b), (a', b'), (0, 1)) \Longleftrightarrow a = a'.$$

Definable Factor Congruences

Let \mathscr{V} be a 0,1-variety. Say that \mathscr{V} has DFC if there is a formula $\Phi(x,y,z)$ such that for all $\mathbf{A}, \mathbf{B} \in \mathscr{V}$

$$\mathbf{A} \times \mathbf{B} \vDash \Phi((a, b), (a', b'), (0, 1)) \Longleftrightarrow a = a'.$$

For bounded lattices

$$\Phi(x,y,z) := x \lor z = y \lor z.$$

Definable Factor Congruences

Let \mathscr{V} be a 0,1-variety. Say that \mathscr{V} has DFC if there is a formula $\Phi(x,y,z)$ such that for all $\mathbf{A}, \mathbf{B} \in \mathscr{V}$

$$\mathbf{A} \times \mathbf{B} \vDash \Phi((a, b), (a', b'), (0, 1)) \Longleftrightarrow a = a'.$$

For bounded lattices

$$\Phi(x,y,z) := x \lor z = y \lor z.$$

We can use first-order language to "talk" about the coordinates of elements in direct products.

Theorem (Sánchez Terraf & Vaggione 2009) Let \mathscr{V} be a 0,1-variety. T.f.a.e.:

Theorem (Sánchez Terraf & Vaggione 2009)
Let 𝒴 be a 0,1-variety. T.f.a.e.:
1. 𝒴 has the DP.

Theorem (Sánchez Terraf & Vaggione 2009) Let \mathscr{V} be a 0,1-variety. T.f.a.e.:

- 1. \mathscr{V} has the DP.
- 2. 𝒴 has DFC.

Theorem (Sánchez Terraf & Vaggione 2009) Let \mathscr{V} be a 0,1-variety. T.f.a.e.:

- 1. \mathscr{V} has the DP.
- 2. 𝒴 has DFC.
- 3. 𝒴 has BFC.

Theorem (Sánchez Terraf & Vaggione 2009)
Let 𝒞 be a 0,1-variety. T.f.a.e.:
1. 𝒱 has the DP.
2. 𝒱 has DFC.

3. *𝒴 has* BFC.

Proof. $(1) \Rightarrow (2)$ Beth's theorem.

Theorem (Sánchez Terraf & Vaggione 2009) Let \mathscr{V} be a 0,1-variety. T.f.a.e.:

- 1. \mathscr{V} has the DP.
- 2. 𝒴 has DFC.
- 3. 𝒴 has BFC.

Proof.

(1) \Rightarrow (2) Beth's theorem. (2) \Rightarrow (3) Use the terms in the Malcev condition for BFC (R. Willard) to explicitly build $\Phi(x, y, z)$.

Theorem (Sánchez Terraf & Vaggione 2009) Let \mathscr{V} be a 0,1-variety. T.f.a.e.:

- 1. \mathscr{V} has the DP.
- 2. 𝒴 has DFC.
- 3. 𝒴 has BFC.

Proof.

(1)⇒(2) Beth's theorem.

(2) \Rightarrow (3) Use the terms in the Malcev condition for BFC (R. Willard) to explicitly build $\Phi(x, y, z)$. Massage $\Phi(x, y, z)$ into $\Phi'(x, y, z)$ preserved by products and factors.

Theorem (Sánchez Terraf & Vaggione 2009) Let \mathscr{V} be a 0,1-variety. T.f.a.e.:

- 1. \mathscr{V} has the DP.
- 2. 𝒴 has DFC.
- 3. 𝒴 has BFC.

Proof.

(1) \Rightarrow (2) Beth's theorem. (2) \Rightarrow (3) Use the terms in the Malcev condition for BFC (R. Willard) to explicitly build $\Phi(x, y, z)$. Massage $\Phi(x, y, z)$ into $\Phi'(x, y, z)$ preserved by products and factors. (3) \Rightarrow (1) Easy.

Beth's theorem.

- Beth's theorem.
- ▶ Preservation results, e.g., if $\varphi(\bar{x})$ is preserved by substructures it is universal.

- Beth's theorem.
- ▶ Preservation results, e.g., if $\varphi(\bar{x})$ is preserved by substructures it is universal.
- ► Term-interpolation theorems, e.g., the Baker-Pixley Theorem.

- Beth's theorem.
- ▶ Preservation results, e.g., if $\varphi(\bar{x})$ is preserved by substructures it is universal.
- ► Term-interpolation theorems, e.g., the Baker-Pixley Theorem.
- Free algebras, and other quotients of the term algebra.

- Beth's theorem.
- ▶ Preservation results, e.g., if $\varphi(\bar{x})$ is preserved by substructures it is universal.
- ► Term-interpolation theorems, e.g., the Baker-Pixley Theorem.
- Free algebras, and other quotients of the term algebra.
- Sheaf constructions such as Boolean products and global products.

Current and Future Projects

 Design and implementation of algorithms to test algebraic and model-theoretic properties.

Current and Future Projects

- Design and implementation of algorithms to test algebraic and model-theoretic properties.
- New term-interpolation results.

Current and Future Projects

- Design and implementation of algorithms to test algebraic and model-theoretic properties.
- New term-interpolation results.
- ► Further develop the theory of global representations.

Two Things to Take Away

Two Things to Take Away

Syntactical reasons make for interesting math.

Two Things to Take Away

- Syntactical reasons make for interesting math.
- Do not vote for Macri.

