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Introduction

Admissibility Theory

Given a logic L, an L-unifier of a formula ¢ is a substitution o
such that -, o.

A rule '/ is L-admissible in L iff every common L-unifier of T is
also an L-unifier of ¢.

/¢ is passive L-admissible in L iff I has no common L-unifier.
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Introduction

Admissibility Theory

Given a logic L, an L-unifier of a formula ¢ is a substitution o
such that -, o.

A rule '/ is L-admissible in L iff every common L-unifier of T is
also an L-unifier of ¢.

/¢ is passive L-admissible in L iff I has no common L-unifier.

A logic is structurally complete iff every admissible rule is a
derivable rule.
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Introduction

Admissibility Theory

Given a logic L, an L-unifier of a formula ¢ is a substitution o
such that -, o.

A rule '/ is L-admissible in L iff every common L-unifier of T is
also an L-unifier of ¢.

/¢ is passive L-admissible in L iff I has no common L-unifier.

A logic is structurally complete iff every admissible rule is a
derivable rule.

A logic is almost structurally complete iff every admissible rule
is either derivable rule or a passive admissible.
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Introduction

@ CPC is structurally complete.
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Introduction

@ CPC is structurally complete.

@ IPC is not structurally complete.
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Introduction

@ CPC is structurally complete.
@ IPC is not structurally complete.

e Godel logic is (hereditarily) structurally complete.
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Introduction

CPC is structurally complete.
IPC is not structurally complete.
Godel logic is (hereditarily) structurally complete.

Infinite valued tukasiewicz logic is not structurally complete.
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Introduction

CPC is structurally complete.

IPC is not structurally complete.

o

o

e Godel logic is (hereditarily) structurally complete.

@ Infinite valued tukasiewicz logic is not structurally complete.
o

n-valued tukasiewicz logic is not structurally complete but
almost structurally complete.
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Introduction

CPC is structurally complete.
IPC is not structurally complete.
Godel logic is (hereditarily) structurally complete.

Infinite valued tukasiewicz logic is not structurally complete.

n-valued tukasiewicz logic is not structurally complete but
almost structurally complete.

@ Any n-contractive extension of Basic logic is almost
structurally complete.
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Introduction

Algebraizable logics

Deductive Systems <+— Quasivarieties

L — K

J.Gispert Structural Completeness for many-valued logics



Introduction

Algebraizable logics

Deductive Systems <+— Quasivarieties
L —> K

(Prop(X),F1)  <— (Eq(X), Fk)
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Introduction
Algebraizable logics

Deductive Systems <+— Quasivarieties
L —> K

(Prop(X),F1)  <— (Eq(X), Fk)

7 : Prop(X) — P(Eq(X)) o : Eq(X) — P(Prop(X))
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Introduction
Algebraizable logics

Deductive Systems <+— Quasivarieties

L — K

(Prop(X),F1)  <— (Eq(X), Fk)

7 @ Prop(X) — P(Eq(X)) o : Eq(X) — P(Prop(X))
Fu{e} € Prop(X) T U{p~q} C Eq(X)
ML iff 7[M] Fx () Yk prqiffolX]tLo(p~q)
¢ A o(7(p)) p~q=x T(c(p~ q))‘
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Introduction

Algebraizable logics and Algebraic logic

Finitary Extensions of L +— Quasivarieties of K
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Introduction

Algebraizable logics and Algebraic logic

Finitary Extensions of L +— Quasivarieties of K

Axiomatic Extensions =~ +— (Relative) Varieties
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Introduction

Algebraizable logics and Algebraic logic

Finitary Extensions of L +— Quasivarieties of K
Axiomatic Extensions =~ +— (Relative) Varieties

(Finite) Axiomatization —«+— (Finite) Axiomatization
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Introduction

Algebraizable logics and Algebraic logic

Finitary Extensions of L +— Quasivarieties of K
Axiomatic Extensions =~ +— (Relative) Varieties
(Finite) Axiomatization —«+— (Finite) Axiomatization

Deduction Theorem — EDPCR
Local Deduction Theorem <+— RCEP
—

Interpolation Theorem Amalgamation Property
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Introduction

Algebraic Admissibility Theory

Given a quasivariety K, we say that a quasiequation
a1 ~7& - &ap Yy, > e

is K-admissible iff for every term substitution o if
K = o(aj) = o(n;) for i =1+ n, then K |= o(€) = o(n).

is passive in K iff there is no term substitution ¢ such that

K = o(aj) = o(yi) for i =1+ n.

K is structurally complete iff every K-admissible quasiequation is
valid in K.

K is almost structurally complete iff every admissible

quasiequation is either valid in K or passive in K. s
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Introduction

Algebraic logic

Theorem (Rybakov 1997, Olson et al. 2008 )

Let L be an algebraizable logic and K its quasivariety semantics,

then L is (almost) structurally complete iff K is (almost)
structurally complete.

o1
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Introduction

Structural completeness and free algebras

Theorem (Bergman 1991)

Let K be a quasivariety, then the following properties are
equivalent.

© K is structurally complete.

@ Each proper subquasivariety of K generates a proper
subvariety of V(K).

O K is the least V(K)-quasivariety.
Q K = Q(Freex(w)) = Q(Freeyk)(w)).
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Introduction
Almost Structural completeness and free algebras

Theorem (Dzik-Stronkowski 2016)

Let K be a quasivariety. The following are equivalent
© K is almost structurally complete.
@ fForevery A € K, A x Freeg(w) € Q(Freex(w)).

© For every A € K, if there is an homomorphism from A into
Freex(w) then A € Q(Freeg(w)).

s
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Introduction
Almost Structural completeness and free algebras

Theorem (Dzik-Stronkowski 2016)

Let K be a quasivariety. The following are equivalent
© K is almost structurally complete.
@ Forevery S € Kg;, S x Freeg(w) € Q(Freex(w)).

© For every P € Kgp, if there is an homomorphism from A into
Freex(w) then A € Q(Freeg(w)).

s
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Introduction
Almost Structural completeness and free algebras

Theorem (Dzik-Stronkowski 2016)

Let K be a quasivariety. The following are equivalent
© K is almost structurally complete.

@ There is B a subalgebra of Freeg(w), such that for every
S € Kg/, S x B € Q(Freeg(w)).

© For every P € Kgp, if there is an homomorphism from A into
Freeg(w) then A € ZSP(Freex(w)).
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Introduction
Almost Structural completeness and free algebras

Theorem (Dzik-Stronkowski 2016)

Let K be a quasivariety. If By is a subalgebra of Freeg(w), then
the following are equivalent

© K is almost structurally complete.
@ fForeveryS € Kg/, S x By € Q(Freeg(w)).

© For every P € Kgp, if there is an homomorphism from A into
Freeg(w) then A € ZSP(Freex(w)).

s
©
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Introduction

Goal

To algebraically study (almost) structural completeness of some
algebraizable many-valued logics in order to characterize and
axiomatize (all) finitary extensions.
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Introduction

Goal

To study (almost) structural completeness of some varieties and
quasivarieties of (many-valued) algebras in order to characterize
and axiomatize (all) subquasivarieties.
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Introduction

@ Godel logics.

@ Nilpotent minimum logics.

o tukasiewicz logics
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Godel logic

Godel-Dummett Logic

Godel-Dummett Logic (G) is the axiomatic extension of the
Intuitionistic logic (IPC) given by the axiom

LIN (¢ =) V(¢ = ¢)
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Godel logic
Godel-Dummett Logic

Godel-Dummett Logic (G) is the axiomatic extension of the
Intuitionistic logic (IPC) given by the axiom

LIN (¢ =) V(¢ = ¢)

Standard semantics:
Let [0,1]¢ = ({a€eR:0<a<1};A,V,—,7,0,1). For every
a,be0,1], aA b= min{a, b} and aV b = max{a, b}

L Lofase o [1 ifa=0
a =1 b otherwise. "¢ @2 "1 0 otherwise.

I Fo,1)¢ ¢ iff for every h: Prop(x) — [0,1],
h(¢) =1 whenever hl' = {1}
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Godel logic

Completeness Theorem

Theorem (Dummett 1959)

2 |_G (%) iff X ':[071]6 (2
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Godel logic

Completeness Theorem

Theorem (Dummett 1959)

2 |_G (%) iff X ':[0»1]6 (2

Algebraic logic

The Godel-Dummett logic is algebraizable with G the class of all
Godel-algebras as its equivalent quasivariety semantics.
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Godel logic

Godel-algebra

A Gédel-algebra is an algebra (A, A,V,—,—,0,1) such that

e (A A,V,0,1) is a bounded distributive lattice.

o For every a,b € A, a — b is the pseudocomplent of a relative
to b,
iie. a— b=max{ce A:aNc < b}

e a=a—0.
(L) Forevery a,bc A(a— b)V (b—a)=1.
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Godel logic

Godel-algebra

A Gédel-algebra is an algebra (A, A,V,—,—,0,1) such that

e (A A,V,0,1) is a bounded distributive lattice.

o For every a,b € A, a — b is the pseudocomplent of a relative
to b,
iie. a— b=max{ce A:aNc < b}

e a=a—0.
(L) Forevery a,bc A(a— b)V (b—a)=1.

A Godel algebra is a Heyting algebra satisfying (L).
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Godel logic

Godel-chains

We say that a Godel-algebra is a Godel-chain, provided that it is
totally ordered.
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Godel logic
Godel-chains

We say that a Godel-algebra is a Godel-chain, provided that it is
totally ordered.

Let (A, <,0,1) be a totally ordered bounded set, if we define for

every a,b € A,
aA b= min{a, b}, aV b= max{a, b},
G b 1, ifa<b; IO 1, ifa=0;
| b, otherwise. ’ - 10, ifa#0. "

then A = (A, A,V,—,—,0,1) is a Godel-chain.
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Godel logic
Godel-chains

We say that a Godel-algebra is a Godel-chain, provided that it is
totally ordered.

Let (A, <,0,1) be a totally ordered bounded set, if we define for

every a,b € A,
aA b= min{a, b}, aV b= max{a, b},
G b 1, ifa<b; IO 1, ifa=0;
| b, otherwise. ’ - 10, ifa#0. "

then A = (A, A,V,—,—,0,1) is a Godel-chain.

Every Godel-chain is of this form.
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Godel logic

Finite Godel-chains

Therefore up to isomorphism for each natural number n, there is
only one Godel-chain G, with exactly n elements.

G,=({0,1,2,...,n—1},A,V,—,—,0,n—1).

Notice that Gy is the trivial algebra and G; is the 2-element
Boolean algebra.

G,—> G, iffn<m
DU
®
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Godel logic

G-varieties

o G is a locally finite variety.
o G=V([0,1]g) =V{Gn:n>1})
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Godel logic
G-varieties

o G is a locally finite variety.
o G=V([0,1]g) =V{Gn:n>1})

o A variety V of Godel-algebras is proper subvariety of G iff
V =G, =V(G,) for some n > 0.
o G, is axiomatizable by \/((x,- < xip1)~ 1
i<n
0G1CG,CG3C---CG,C---G

(TR
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Godel logic
G-varieties

o G is a locally finite variety.
o G=V([0,1]g) =V{Gn:n>1})

o A variety V of Godel-algebras is proper subvariety of G iff
V =G, = V(G,) for some n > 0.
G, Iis axiomatizable by \/((x,- < xip1)~ 1

i<n
G1CG2CG3C---CG,C--G

G = Q([0,1]¢) = Q({Gn : n > 1}).
Gn = Q(G,) for every n > 0.

(]

o

e
[
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Godel logic

Structural completeness of G

Theorem (Dzik-Wronski 1973)

Godel logic is structurally complete.
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Godel logic

Structural completeness of G

Theorem (Dzik-Wronski 1973)

Godel logic is structurally complete.

For every n > 1, G, is embeddable into Freeg(w).
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Godel logic
Structural completeness of G

Theorem (Dzik-Wronski 1973)

Godel logic is structurally complete.

For every n > 1, G, is embeddable into Freeg(w).
Q(Freec(w)) = Q({Gn : n > 1}) =G,
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Godel logic
Structural completeness of G

Theorem (Dzik-Wronski 1973)

Godel logic is structurally complete.

For every n > 1, G, is embeddable into Freeg(w).
O(Freeg(w)) = Q({G, : n>1}) =G. ’

Let n > 1. For every 2 < k < n, Gy is embeddable into FreeGn(w).J

Godel logic is hereditarily structurally complete.
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Godel logic

Quasivarieties of Godel algebras

Every quasivariety of Godel algebras is a variety.
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NM-logic

Nilpotent Minimum Logic

Nilpotent Minimum Logic (NML) is the axiomatic extension of
the Monoidal t-norm logic (MTL) given by the axioms

Inv == — @
WNM (5o = L)V (1 Ao — ¥ * )
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NM-logic
Nilpotent Minimum Logic

Nilpotent Minimum Logic (NML) is the axiomatic extension of
the Monoidal t-norm logic (MTL) given by the axioms

Inv == — @
WNM (5o = L)V (1 Ao — ¥ * )

Standard Semantics: (=o,1),,,)
[0, 1)nm = ([0, 1]; %, —, A, VV, =, 0, 1) where for every a, b € [0, 1],
aA b= min{a, b}, aV b= max{a, b}, ~a=1-a,
a*b—{ min{a, b}, |fb>'1—a; and
0, otherwise.

2 b 1, if a < b;
~ | max{1—a, b} otherwise.
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Completeness Theorem

Theorem (Esteva Godo 2001, Noguera et al 2008)

Xy o iff T Ep0 1 ¢
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Completeness Theorem

Theorem (Esteva Godo 2001, Noguera et al 2008)

Xy o iff T Ep0 1 ¢

Algebraic logic

The Nilpotent Minimum Logic NML is algebraizable with NM the
class of all NM-algebras as its equivalent quasivariety semantics.
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NM-logic

NM-algebras

A NM-algebra is a bounded integral residuated lattice satisfying
the following equations:

(x=y)Vy—=x)~1 (L)
X XX (l)

S(x*xy)V(xAy = xxy)~1 (WNM)
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NM-logic

NM-algebras

A NM-algebra is a bounded integral residuated lattice satisfying
the following equations:

(x=y)Vly—=x)=1 (L)
X XX (l)
S(x*xy)V(xAy = xxy)~1 (WNM)

Example: [0, 1]y is a NM-algebra.
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NM-logic

NM-chains

We say that a NM-algebra is a NM-chain, provided that it is
totally ordered.
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NM-logic

NM-chains

We say that a NM-algebra is a NM-chain, provided that it is
totally ordered.

Let (A, <,0,1) a totally ordered bounded set equipped with an
involutive negation —,

s
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NM-logic

NM-chains

We say that a NM-algebra is a NM-chain, provided that it is
totally ordered.

Let (A, <,0,1) a totally ordered bounded set equipped with an
involutive negation —,if we define for every a, b € A,

b — 0, if b<—a; L 1, if a <b;
FPE an b, otherwise. 2 | —aV b, otherwise.

aA b= min{a, b} aV b= max{a, b},
then A = (A, x,—,A,V,0,1) is a NM-chain.
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NM-logic

NM-chains

We say that a NM-algebra is a NM-chain, provided that it is
totally ordered.

Let (A, <,0,1) a totally ordered bounded set equipped with an
involutive negation —,if we define for every a, b € A,

1, if a<b;

0, if b<-a;
axb = a—> b= )
-aV b, otherwise.

aA b, otherwise.

aA b= min{a, b} aV b= max{a, b},
then A = (A, x,—,A,V,0,1) is a NM-chain.

Every NM-chain is of this form.
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NM-logic

Finite NM-chains

Therefore up to isomorphism for each finite n € N, there is only
one NM-chain A, with exactly n elements.

Aspi1={[—nnNZ,x,—, A V,—n,n).

A2n — <A2n+1 N {0}7 *, =, A,\/, —-n, n>‘

For every n, k > 0,
o A, — A2k+1 iff Ay, — Agk iff A2,,+1 — A2k+1 iff n < k.
o Azpi1 5 Ak

(ORI -
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NM-logic

Negation fixpoint

Let A be an NM-algebra,
a € A is a negation fixpoint (or just fixpoint, for short) iff
-a=a.

Let C be an NM-chain. Then C ~. {c} is the universe of a
subalgebra of C which we denote by C~.

Az = Agni1™

s
©
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NM-logic
NM-varieties

Let
Sn(Xo, e ,Xn) = /\((X,‘ — X,'+1) — XiJr]_) — \/ Xi
i<n i<n+1
V(x) = ~(=x%)? A(x) = (=(=x)?)?
where x2 is an abbreviation of x x x.

Let A be an NM-chain. Then we have

@ A does not have a fixpoint iff V(x) ~ A(x) holds in A.

@ A has less than 2n + 2 elements if and only if
Sn(x0, .-, xn) = 1 holds in A.

e .
©
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NM-logic

NM-varieties

NM is a locally finite variety.

NM = V([O, 1]/\//\//) = V({An n > 1})
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NM-logic
NM-varieties

NM is a locally finite variety. I

NM = V([O, 1]/\//\//) = V({An n > 1})

NM— = NM + V(x) =~ A(x)

NM-— = V({Az, : n > 0}) )

(TR
[
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NM-logic
NM-varieties

Theorem (Gispert 03)

Every nontrivial variety of NM-algebras is of one of the following
types:

O NM =V([0,1]) = V({A,: n>1})

Q@ NM-— =YVY([0,1]7) = V({Az,: n > 0})

© NMypy1 = V(A2mt1) for some m >0

QO NMy, = V(Az,) for some n > 0

@ NMopomi1 = V({A2n, A2m+1}) for some n > m >0

O NM—2,1 = V({[0,1] 7, Aomi1}) = V({A2, : n >

0} U {A2m41})

(TR
[
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NM-logic
NM-varieties as quasivarieties

Theorem (Noguera et al. 08)

Every nontrivial variety of NM-algebras is of one of the following
types:

O NM = Q([0,1]) = Q({A, : n > 1})

@ NM- = Q(0,1]) = Q({Az, : n > 0})

© NMopmy1 = Q(Aomy1) for some m >0

QO NMy, = Q(Az,) for some n >0

@ NMopomi1 = Q({A2n, Aomt1}) for some n > m > 0

O NM—ymi1 = Q({[0, 1], Agmi1}) = Q{Azn: n >

0} U{A2mi1})

(ORI -
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NM-logic

Lattice of NM-varieties

NM

Subvarieties

of NM
NM2m+1
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NM-logic

Structural completeness of NM

Proposition
NM js not structurally complete.

. O
©
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NM-logic

Structural completeness of NM

—

Proposition
NM js not structurally complete.

Proof:
-x ~ x = 0 ~ 1 is NM-admissible (passive) but not valid in NM.

(TR
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NM-logic

Structural completeness of NM-

NM— is hereditarily structurally complete.

(TR
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NM-logic

Structural completeness of NM-

NM— is hereditarily structurally complete.

Proposition

For every n > 0, Ay, is embeddable into Freeyy;— (w).

(TR
©

J.Gispert Structural Completeness for many-valued logics



NM-logic
Structural completeness of NM-
NM— is hereditarily structurally complete.

Proposition

For every n > 0, Ay, is embeddable into Freeyy;— (w).

Q(FreeNM_(w)) = Q({Azn n> 0}) = NM—
For every n > 0, Q(Freeny,,(w)) = Q(A2,) = NMb>, |
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NM-logic

Almost structural completeness of NM

If M ¢ NM—, then

Proposition

For every k > 1,
A, x Ay is embeddable into Freey(w) if and only if Ay € M

(TR
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NM-logic
Almost structural completeness of NM

If M ¢ NM—, then

Proposition

For every k > 1,
A, x Ay is embeddable into Freey(w) if and only if Ay € M

Q(Freey(w)) = Q({A2 x Ag : Ay € M}) )
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NM-logic
Almost structural completeness of NM

If M ¢ NM—, then

Proposition

For every k > 1,
A, x Ay is embeddable into Freey(w) if and only if Ay € M

Q(Freey(w)) = Q({A2 x Ag : Ay € M}) )

M is almost structurally complete
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NM-logic

Almost structural completeness of NM

NM js almost structurally complete and all their subvarieties are
almost structurally complete.

(TR
©

J.Gispert Structural Completeness for many-valued logics



NM-logic

Axiomatization of admissible quasiequations

For every variety of NM-algebras the quasiequation
—-x &~ x = 0 = 1 axiomatizes all passive admissible quasiequations.

(TR
©
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NM-logic

Axiomatization of admissible quasiequations

For every variety of NM-algebras the quasiequation
—-x &~ x = 0 = 1 axiomatizes all passive admissible quasiequations.

Proof:

(Jefabek 2010)

The rule —=(p VvV —p)"/ L axiomatizes all passive rules for every
n-contractive axiomatic extension of MTL.

NM is 2 contractive (x? = x3)

—p ¢ p A ~(p V —p)?
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NM-logic

NM-quasivarieties

Proposition

Let Ml be a non trivial variety of NM-algebras and K be an
M-quasivariety. Then K is a proper M-quasivariety iff there is
Azni1 € M\ K for some n > 1.

o1
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NM-logic

NM-quasivarieties

Theorem

Let M be a non trivial NM-variety. If K is proper M-quasivariety
and k = max{n € N: Azpy1 € K}, then

K= Q({A2n A, € M}U{A2 X A2m+1 : A2m+1 & M}U{Aszrl})
Moreover, K is axiomatized relative to Ml by the quasiequation
X~ ax = Se(x0,. .-, xk) ~1ifk>0

or

(TR
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NM-logic

Quasivarieties of NM

Lo(NM)  ({(n,m, k) € (wF)*:n>m >k}, <%

where
(1, my, k1) <3 (n2, ma, ko) iff n1 < np, my < mp and ky < ko
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©

J.Gispert Structural Completeness for many-valued logics



NM-logic

Quasivarieties of NM

La(NM)
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tukasiewicz logic
tukasiewicz logics

The Infinite valued tukasiewicz Calculus, t

Axioms:
Ll o = (¥ — o)
L2, (p =) = (v = v) = (p = v))
L3. ((p =) = ¥) = (v = ¢) = ¢)
L4, (= = =) = (¢ = )

Rules:

Modus Ponens. {¢, o — ¥}/1.

(ORI -
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tukasiewicz logic

Original logic semantics

0,1y =({aeR:0<a<1};—, )
For all a,b € [0, 1],

a— b= L fa<b, a=1-—a
| 1—a+ b, otherwise. ' e '

(ORI -
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tukasiewicz logic
Original logic semantics

0,1y =({aeR:0<a<1};—, )
For all a,b € [0, 1],
1, if a < b;
a— b= , —a=1-a

1—a+ b, otherwise.

Let T U{p} C Prop(X), then

r ):[071]{'_ (Y2 Iﬂ:
for every h: Prop(x) — [0,1], h(¢) = 1 whenever hl' = {1}
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tukasiewicz logic

Completeness Theorems

Weak Completeness Theorem

Theorem (Rose-Rosser 1958, Chang 1959)

Pt it Fpay, ¢
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tukasiewicz logic
Completeness Theorems

Weak Completeness Theorem

Theorem (Rose-Rosser 1958, Chang 1959)

Pt it Fpay, ¢

Strong Finite Completeness Theorem

Theorem (Hay 1963)

901,...,80,1 l_Loo SOIff 901,---780n ':[O,I]L SD

£ 1
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tukasiewicz logic

Algebraic logic

The infinite valued tukasiewicz calculus L, is algebraizable with
MYV the class of all MV-algebras as its equivalent quasivariety
semantics.

(ORI -
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tukasiewicz logic
MV-algebras

An MV-algebra is an algebra (A, @, -, 0) satisfying the following
equations:

MV1I (x®y)®zrxd(yd2z)

MV2 x®y~ydx

MV3 x@® 0~ x

MV4  —(—x) =~ x

MV5 x @& -0~ -0

MV6 —(—x@y)@®y~ -(-y®x)dx.

(ORI -
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tukasiewicz logic

1 =ger 0.

X =y =def "X D Y.
XVYy =def (X = y) = y.
XAY =def —(—xV y).
XOY =def (XD y).

For any MV-algebra A, a < b iff a— b =1 endows A with a
distributive lattice-order (A, V, A), called the natural order of A.

An MV-algebra whose natural order is total is said to be an
MV-chain.

J.Gispert Structural Completeness for many-valued logics
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tukasiewicz logic

MV-chains and totally ordered abelian groups

Let (G,,+,—,0,<) be a totally ordered abelian group and an
element 0 < u € G, if we define (G, u) = ([0, u], ®, =, 0) by

O,ul={acG|0<a<u}, adb=uA(a+b), "a=u-—a,

then ([0, u], &, —,0) is an MV-chain.

Moreover every MV-chain is of this form.
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tukasiewicz logic
Examples

e [0,1]; =T(R,1),

o 0,1 NQ=T(Q,1),
Forevery 0 < n < w
o L,=T0(Z,n)=({0,1,...,n},®,—,0),

) LL;; = r(Z X Jex Za (n70)) =
{(k,1): (0,0) < (k, 1) < (n,0)},®,7,0).
() Lf, r(Z Xlex Za (nv 5)) =

({(k:,/) :(0,0) < (k,i) <(n,s)},®,—,0), where 0 < s < n.

@ S, =TI (T,n) where T is a totally ordered dense subgroup of
R such that TN Q = Z. =
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tukasiewicz logic

Finite MV-chains

For every 0 < n < w, every n+ 1 element MV-chain is isomorphic
toL,=T1(Z,n)=({0,1,...,n},®,—,0)

Let 0 < n,k <w. L, < Ly if and only if n|k. J

(ORI -
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tukasiewicz logic
\AVAVETISTES

The class MV of all MV-algebras is a (not locally finite) variety. J

(Chang's completeness thorem)
MV = V([0,1]) = V({L, : n > 0}).

For every n > 0, MV, = V(L,) is a locally finite variety.
MYV, is the equivalent quasivariety semantics of £, the
n + 1-valued tukasiewicz logic.

Moreover if V is a variety of MV-algebras,
V is locally finite iff V C MV, for some n > 0

o
[
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tukasiewicz logic

MV-varieties

Theorem (Komori, 1981)

V is a proper subvariety of MV iff there exist two finite sets | and
J (in a reduced form) of integers > 1, not both empty, such that

V=V, =V{Lm|mel}U{LY|neJ}).

(ORI -
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tukasiewicz logic

MV-varieties

Theorem (Komori, 1981)

V is a proper subvariety of MV iff there exist two finite sets | and
J (in a reduced form) of integers > 1, not both empty, such that

V=V, =V{Lm|mel}U{LY|neJ}).

o Every proper subvariety of MV is finitely axiomatizable.

@ The lattice of all varieties of MV-algebras is a Pseudo-Boolean
algebra.
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tukasiewicz logic

MV-varieties as quasivarieties

MV = Q([0,1] n Q) = ([0, 1]) = Q({Ln : n > 0}).

Vi = Q{Lm|mel}U{LE | ne J}).

(ORI -
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tukasiewicz logic
Structural completeness of Lukasiewicz logics

Theorem (Pogorzelski, Torzak, Wojtylak 1970's, Dzik 2008,

Jerabek 2010)
o to, (MYV) is not structurally complete.

o to, (MYV) is not almost structurally complete.
e t,1 (MV,) is not structurally complete.
o L1 (MV,) is hereditarily almost structurally complete.
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tukasiewicz logic

Structural completeness of Lukasiewicz logics

° Vy (13 = V(L) is structurally complete.

@ Vy (1) and B are the only structurally complete varieties of
MV-algebras.

e V is almost structurally complete iff V is locally finite or
V =V, 11y for some reduced pair (I,{1}).

(ORI -
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tukasiewicz logic
Structural completeness of Lukasiewicz logics

° Vy (13 = V(L) is structurally complete.

@ Vy (1) and B are the only structurally complete varieties of
MV-algebras.

e V is almost structurally complete iff V is locally finite or
V =V, 11y for some reduced pair (I,{1}).

For every reduced pair (1, J),
Q(Freey, ) = Q({L1 x L, : ne€ [} U{Ly x L}, : m € J}).

£
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tukasiewicz logic
Structural completeness of Lukasiewicz logics

° Vy (13 = V(L) is structurally complete.
@ Vy (1) and B are the only structurally complete varieties of
MV-algebras.

e V is almost structurally complete iff V is locally finite or
V =V, 11y for some reduced pair (I,{1}).

For every reduced pair (1, J),
Q(Freey, ) = Q({L1 x L, : n€ [} U{Ly x L}, : m € J}).
Q(Freey, ,,) = Q(L1 x L) = Q(L]) = Q(LY) = V(LY).

£
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tukasiewicz logic
Structural completeness of Lukasiewicz logics

° Vy (13 = V(L) is structurally complete.

@ Vy (1) and B are the only structurally complete varieties of
MV-algebras.

e V is almost structurally complete iff V is locally finite or
V =V, 11y for some reduced pair (I,{1}).

For every reduced pair (1, J),

Q(Freey, ) = Q({L1 x L, : n€ [} U{Ly x L}, : m € J}).
Q(Freey, ;) = Q(L1 x L1) = O(L}) = Q(L) = V(L¥).
Q(Freey, ;) = Q({L1 x Ly : n € I} U{Ly x L1}),
Viqy = Q({Ln: n € I} U{Li}).

£
[

J.Gispert Structural Completeness for many-valued logics



tukasiewicz logic

MV-quasivarieties

Theorem (Adams-Dziobiak)
The class MV s Q-universal, in the sense that, for every
quasivariety K of algebras of finite type (not necessarily
MV-algebras), the lattice of all quasivarieties of K is the
homomorphic image of a sublattice of the lattice of all
quasivarieties of MV.

Lo(K) € HS(Lo(MV))
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tukasiewicz logic

Locally finite MV-quasivarieties

In the case of MV-algebras:
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©

J.Gispert Structural Completeness for many-valued logics



tukasiewicz logic

Locally finite MV-quasivarieties

In the case of MV-algebras:

The following conditions are equivalent:

@ K is a locally finite quasivariety.
e K< MV, for some n € N.

e K is subquasivariety contained in a discriminator variety.

(ORI -
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tukasiewicz logic

Locally finite MV-quasivarieties

In the case of MV-algebras:

The following conditions are equivalent:

@ K is a locally finite quasivariety.
e K< MV, for some n € N.

e K is subquasivariety contained in a discriminator variety.

Vaggione et al: " The subquasivariety lattice of a discriminator
variety”
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tukasiewicz logic

Locally finite MV-quasivarieties

Every locally finite quasivariety of MV-algebras is generated by a
finite set of critical algebras.

A critical algebra is a finite algebra not belonging to the
quasivariety generated by all its proper subalgebras. From the
characterization of critical MV-algebras (Gispert-Torrens)

s
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tukasiewicz logic

Locally finite MV-quasivarieties

Every locally finite quasivariety of MV-algebras is generated by a
finite set of critical algebras.

A critical algebra is a finite algebra not belonging to the
quasivariety generated by all its proper subalgebras. From the
characterization of critical MV-algebras (Gispert-Torrens)

Let V be a locally finite MV-variety. Then
o Lo(V) is finite
o Every member of Lgo(V) is finitely based.

Moreover for any K € Lo(V),
K is a variety iff K is generated by MV-chains.

e e
[
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tukasiewicz logic

Quasivarieties generated by MV-chains

Two MV-chains generate the same quasivariety iff they generate
the same variety and they contain the same rational elements.

Given A =T(G, b), a is a rational element of A iff there exist
mnéew 0<n<m+#0and c € G such that b = mc and
a = nc. In that case, we say that a = .

J.Gispert Structural Completeness for many-valued logics
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tukasiewicz logic

Quasivarieties generated by MV-chains

Theorem

K is a quasivariety generated by MV -chains if and only if there are
«, "y, k subsets of positive integers, not all of them empty, and for
every i € vy, a nonempty subset (i) C Div(i) such that

K= Q({Ln:ne€a}U{L¥:icn, dery(i)}U{Sk:ker}).

(ORI -
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tukasiewicz logic

Quasivarieties generated by MV-chains

Theorem

K is a quasivariety generated by MV -chains if and only if there are
«, "y, k subsets of positive integers, not all of them empty, and for
every i € vy, a nonempty subset (i) C Div(i) such that

K= Q({Ln:ne€a}U{L¥:icn, dery(i)}U{Sk:ker}).

o Every quasivariety generated by MV/-chains contained in a
proper subvariety of MV is finitely axiomatizable.

@ The lattice of all quasivarieties generated by MV-chains is a
bounded distributive lattice

[N -
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tukasiewicz logic

From the characterization of quasivarieties generated by MV-chains
it can be deduced:
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tukasiewicz logic

From the characterization of quasivarieties generated by MV-chains
it can be deduced:

o Q(L1) is the least V(L¥)-quasivariety generated by chains.

(ORI -
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tukasiewicz logic

From the characterization of quasivarieties generated by MV-chains
it can be deduced:

o Q(L1) is the least V(L¥)-quasivariety generated by chains.

e Q(L,) is the least V(L,)-quasivariety generated by chains.
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tukasiewicz logic

From the characterization of quasivarieties generated by MV-chains
it can be deduced:

o Q(L1) is the least V(L¥)-quasivariety generated by chains.
e Q(L,) is the least V(L,)-quasivariety generated by chains.

@ For every reduced pair (/,J),
Q({L, : nel}yU{LL : me J})is the least
V. J-quasivariety generated by chains.

(ORI -
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tukasiewicz logic

Structurally complete quasivarieties and least
V-quasivarieties.

For every reduced pair (1, J),
Q({L1 x Ly :nel}U{Ly x L}, : me J}) = Q(Freey, ;) and
therefore it is the least V; j-quasivariety.

(ORI -
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tukasiewicz logic

(Almost) structural completeness again

For every reduced pair (/, J),

© Q({Li xLp:nel}U{Ly x LY : m € J}) is the least
V. j-quasivariety.

o O({Ly:ne 1} U{LL : me J}) is the least V) j-quasivariety
generated by chains.

(ORI -
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tukasiewicz logic

(Almost) structural completeness again

For every reduced pair (/, J),
© Q({Li xLp:nel}U{Ly x LY : m € J}) is the least
V. j-quasivariety.

o O({Ly:ne 1} U{LL : me J}) is the least V) j-quasivariety
generated by chains.

Thus,

Let (1,J) be a reduced pair. Then Q({L,:ne€ I} U{LL : me J})
is almost structurally complete.
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tukasiewicz logic

Axiomatization of admissible rules.

MV-admissible quasiequations.

(Jefabek)

@ An infinite basis of non passive admissible rules in order to
axiomatize all admissible £ -rules. Infinite axiomatization of
MV-admissible quasiequations.

o MV-admissible quasiequations are not finitely axiomatizable.

@ LetV be a variety of MV-algebras. Then
{(xV—x)"=0=0~1 :n€w} isa basis for passive
V-admissible quasiequations.

(ORI -
©

J.Gispert Structural Completeness for many-valued logics



tukasiewicz logic

Axiomatization of admissible rules.

MV-admissible quasiequations.

(Jefabek)
@ An infinite basis of non passive admissible rules in order to

axiomatize all admissible £ -rules. Infinite axiomatization of
MV-admissible quasiequations.

o MV-admissible quasiequations are not finitely axiomatizable.

@ LetV be a variety of MV-algebras. Then
{(xV—x)"=0=0~1 :n€w} isa basis for passive
V-admissible quasiequations.

Q(Freeyry) = Q(M([0,1])) is the only almost structurally
complete MV-quasivariety 2-n
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tukasiewicz logic

Axiomatization of admissible rules.

Admissible quasiequations in locally finite MV-varieties

o LetV be an MV-variety. Then
V is locally finite iff V is n-contractive for some n € w.

@ Every locally finite MV-variety is almost structurally complete.
(Dzik)

@ (xV—x)"~0=0~1is a basis of passive admissible
quasiequations for every n-contractive subvariety of MV.
(Jerabek)
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tukasiewicz logic

Basis for admissible quasiequations for proper subvarieties
of MV

Let V) 4 be a proper subvariety of MV.

o Q= Q({Ln:nel}U{LL, : me J}) is almost structurally
complete.
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tukasiewicz logic

Basis for admissible quasiequations for proper subvarieties
of MV

Let V) 4 be a proper subvariety of MV.

o Q= Q({Ln:nel}U{LL, : me J}) is almost structurally
complete.

° Q,l’J is a V) j-quasivariety (V(Q,{J) =VJ)
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tukasiewicz logic

Basis for admissible quasiequations for proper subvarieties
of MV

Let V) 4 be a proper subvariety of MV.

o Q= Q({Ln:nel}U{LL, : me J}) is almost structurally
complete.

° Q,l’J is a V) j-quasivariety (V(Q,{J) =VJ)

o O({L,:ne 1} U{LL : me J}) is finitely axiomatizable.
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tukasiewicz logic

Basis for admissible quasiequations for proper subvarieties
of MV

Let V) 4 be a proper subvariety of MV.

o Q= Q({Ln:nel}U{LL, : me J}) is almost structurally
complete.

° Q,l’J is a V) j-quasivariety (V(Q,{J) =VJ)
o O({L,:ne 1} U{LL : me J}) is finitely axiomatizable.

@ (xV—x)"~ 0= 0~ 1is a basis for passive V; j-admissible
quasiequations where n = max{/ U {maxJ + 1}}
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tukasiewicz logic

Basis for admissible quasiequations for proper subvarieties
of MV

Let V) 4 be a proper subvariety of MV.

o Q= Q({Ln:nel}U{LL, : me J}) is almost structurally
complete.

° Q,l’J is a V) j-quasivariety (V(Q,{J) =VJ)
o O({L,:ne 1} U{LL : me J}) is finitely axiomatizable.

@ (xV—x)"~ 0= 0~ 1is a basis for passive V; j-admissible
quasiequations where n = max{/ U {maxJ + 1}}

All'V j-admissible quasiequatons are finitely axiomatizable. o

(5]
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tukasiewicz logic

Basis for admissible quasiequations for proper subvarieties
of MV

Let (1,J) be a reduced pair, then a base for admissible
quasiequations of V; ; is given by

o A(Qn) =[(-x)"1e x]Vy~1=y=1 for every
m € Div(J) \ Div(l) minimal with respect the divisibility.
o A(Ux):=[(-x)"tex]Vym1l=q,g(z)Vy=~1 for
every 1 < k € Div(l), where Iy, = {n € | : k|n}.
o CCl:=(pV—p)"~0= 0= 1 where
n=max{/ U {maxJ+1}}.
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Conclusions

Conclusions

@ Results on admissibilty theory allow to characterize and
axiomatize the lattice of subquasivarieties (finitary extensions).
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Conclusions

Conclusions

@ Results on admissibilty theory allow to characterize and
axiomatize the lattice of subquasivarieties (finitary extensions).

@ Results on certain quasivarieties (locally finite, generated by

chains) allow to obtain axiomatization of admissible
quasiequations.
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Conclusions

Conclusions

@ Results on admissibilty theory allow to characterize and
axiomatize the lattice of subquasivarieties (finitary extensions).

@ Results on certain quasivarieties (locally finite, generated by
chains) allow to obtain axiomatization of admissible
quasiequations.

@ There is a relation among least V-quasivarieties generated by
chains and (almost) structural completeness
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Conclusions

Future Work

@ Similar algebraic approach to admissible rules for other
many-valued logics: BL, MTL, FL...
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Conclusions

Future Work

@ Similar algebraic approach to admissible rules for other
many-valued logics: BL, MTL, FL...

@ Study the relation among almost structural completeness and
least V-quasivarieties generated by (finite) subdirectly
irreducible algebras.
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Conclusions

Future Work

@ Similar algebraic approach to admissible rules for other
many-valued logics: BL, MTL, FL...

@ Study the relation among almost structural completeness and
least V-quasivarieties generated by (finite) subdirectly
irreducible algebras.

@ Multiple conclusion admissible rules and universal classes.
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Conclusions

THANK YOU FOR YOUR ATTENTION
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