tr			

INVESTIGATION

Admissible rules and (almost) structural completeness for many-valued logics.

Joan Gispert

Facultat de Matemàtiques. Universitat de Barcelona jgispertb@ub.edu

XIV Congreso Dr. Monteiro Bahía Blanca, 31 de Mayo, 1 y 2 de Junio de 2017

Given a logic *L*, an *L*-unifier of a formula φ is a substitution σ such that $\vdash_L \sigma \varphi$.

A rule Γ/φ is *L*-admissible in *L* iff every common *L*-unifier of Γ is also an *L*-unifier of φ .

 Γ/φ is **passive** *L*-admissible in *L* iff Γ has no common *L*-unifier.

イロン 不同と 不同と 不同と

Las unassignation

Given a logic *L*, an *L*-unifier of a formula φ is a substitution σ such that $\vdash_L \sigma \varphi$.

A rule Γ/φ is *L*-admissible in *L* iff every common *L*-unifier of Γ is also an *L*-unifier of φ .

 Γ/φ is **passive** *L*-admissible in *L* iff Γ has no common *L*-unifier.

A logic is **structurally complete** iff every admissible rule is a derivable rule.

イロト イヨト イヨト イヨト

Given a logic *L*, an *L*-unifier of a formula φ is a substitution σ such that $\vdash_L \sigma \varphi$.

A rule Γ/φ is *L*-admissible in *L* iff every common *L*-unifier of Γ is also an *L*-unifier of φ .

 Γ/φ is **passive** *L*-admissible in *L* iff Γ has no common *L*-unifier.

A logic is **structurally complete** iff every admissible rule is a derivable rule.

A logic is **almost structurally complete** iff every admissible rule is either derivable rule or a passive admissible.

・ロン ・回 と ・ ヨ と ・ ヨ と

Introduction	(
--------------	---

æ

• CPC is structurally complete.

||◆ 聞 > ||◆ 臣 > ||◆ 臣 >

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions

- CPC is structurally complete.
- IPC is not structurally complete.

in the states of the section

æ

臣

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions

- CPC is structurally complete.
- IPC is not structurally complete.
- Gödel logic is (hereditarily) structurally complete.

프 🖌 🔺 프

Limit UNVERSITATE INACELONA

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions

- CPC is structurally complete.
- IPC is not structurally complete.
- Gödel logic is (hereditarily) structurally complete.
- Infinite valued Łukasiewicz logic is not structurally complete.

• • = •

→

INVESTOR ENVELON

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions

- CPC is structurally complete.
- IPC is not structurally complete.
- Gödel logic is (hereditarily) structurally complete.
- Infinite valued Łukasiewicz logic is not structurally complete.
- *n*-valued Łukasiewicz logic is not structurally complete but almost structurally complete.

通 とう ほうとう ほうど

INVESTOR ENVELON

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions

- CPC is structurally complete.
- IPC is not structurally complete.
- Gödel logic is (hereditarily) structurally complete.
- Infinite valued Łukasiewicz logic is not structurally complete.
- *n*-valued Łukasiewicz logic is not structurally complete but almost structurally complete.
- Any *n*-contractive extension of Basic logic is almost structurally complete.

向下 イヨト イヨト

Land UNIVERSITY DE NACELO

 Introduction
 Gödel logic
 NM-logic
 Łukasiewicz logic
 Conclusions

 Algebraizable logics
 Image: Conclusion of the second second

$\mathsf{Deductive \ Systems} \quad \longleftrightarrow \quad \mathsf{Quasivarieties}$

 $L \quad \longleftrightarrow \quad \mathbb{K}$

æ –

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
Algebraiz	able logics			

 $\mathsf{Deductive \ Systems} \ \longleftrightarrow \ \mathsf{Quasivarieties}$

 $\begin{array}{cccc} L & \longleftrightarrow & \mathbb{K} \\ \langle Prop(X), \vdash_L \rangle & \longleftrightarrow & \langle Eq(X), \models_{\mathbb{K}} \rangle \end{array}$

|▲□ ▶ ▲ 目 ▶ ▲ 目 → ○ ○ ○

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
Algebraiza	able logics			
	Deductive Syste	$ems \leftrightarrow$	Quasivarieties	
	L	\longleftrightarrow	K	

 $\langle Prop(X), \vdash_L
angle \quad \longleftrightarrow \quad \langle Eq(X), \models_{\mathbb{K}}
angle$

 $\tau: \operatorname{Prop}(X) \to \mathcal{P}(\operatorname{Eq}(X)) \qquad \qquad \sigma: \operatorname{Eq}(X) \to \mathcal{P}(\operatorname{Prop}(X))$

Line UNVERSION MACELOW

|▲□ ▶ ▲ 目 ▶ ▲ 目 → ○ ○ ○

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
Algebraizat	ole logics			
	Deductive System	ms \longleftrightarrow	Quasivarieties	
	L	\longleftrightarrow	K	
	$\langle Prop(X), \vdash_L angle$	\longleftrightarrow	$\langle Eq(X),\models_{\mathbb{K}} angle$	
au : Prop(X	$\mathcal{L}(X) \to \mathcal{P}(Eq(X))$		$\sigma: Eq(X) \to \mathcal{P}(P)$	rop(X))
$\Gamma\cup\{\varphi\}\subseteq$	Prop(X)		$\Sigma \cup \{p pprox q\} \subseteq$	E = Eq(X)
$\Gamma \vdash_L \varphi$ iff c	$\tau[\Gamma] \models_{\mathbb{K}} \tau(\varphi)$	$\Sigma\models_{\mathbb{K}}$	$p \approx q$ iff $\sigma[\Sigma] \vdash_L \sigma$	(p pprox q)
$\varphi \dashv \vdash_L \sigma(\tau$	$(\varphi))$		$p pprox q = \mathbf{K} \tau(\sigma($	$(p \approx q))$
				<

in the states of the section

æ

Algebraizable logics and Algebraic logic

Finitary Extensions of $L \quad \longleftrightarrow$ Quasivarieties of \mathbb{K}

- 4 回 2 - 4 □ 2 - 4 □

æ

Algebraizable logics and Algebraic logic

- Finitary Extensions of $L \quad \longleftrightarrow$ Quasivarieties of \mathbb{K}
 - Axiomatic Extensions \longleftrightarrow (Relative) Varieties

(4回) (4回) (4回)

2

Algebraizable logics and Algebraic logic

- Finitary Extensions of $L \quad \longleftrightarrow$ Quasivarieties of \mathbb{K}
 - Axiomatic Extensions \longleftrightarrow (Relative) Varieties
- (Finite) Axiomatization \leftrightarrow (Finite) Axiomatization

イロン イヨン イヨン イヨン

Algebraizable logics and Algebraic logic

- Finitary Extensions of $L \quad \longleftrightarrow$ Quasivarieties of \mathbb{K}
 - Axiomatic Extensions \longleftrightarrow (Relative) Varieties
- (Finite) Axiomatization \leftrightarrow (Finite) Axiomatization
 - Deduction Theorem \longleftrightarrow EDPCR
- Local Deduction Theorem \longleftrightarrow RCEP
 - Interpolation Theorem \iff Amalgamation Property

・ロン ・回と ・ヨン・

Algebraic Admissibility Theory

Given a quasivariety $\mathbb K,$ we say that a quasiequation

$$\alpha_1 \approx \gamma_1 \& \cdots \& \alpha_n \approx \gamma_n \Rightarrow \epsilon \approx \eta$$

is \mathbb{K} -admissible iff for every term substitution σ if $\mathbb{K} \models \sigma(\alpha_i) \approx \sigma(\gamma_i)$ for $i = 1 \div n$, then $\mathbb{K} \models \sigma(\epsilon) \approx \sigma(\eta)$.

is **passive** in \mathbb{K} iff there is no term substitution σ such that $\mathbb{K} \models \sigma(\alpha_i) \approx \sigma(\gamma_i)$ for $i = 1 \div n$.

 $\mathbb K$ is structurally complete iff every $\mathbb K\text{-}\mathsf{adm}\mathsf{issible}$ quasiequation is valid in $\mathbb K.$

 \mathbb{K} is **almost structurally complete** iff every admissible quasiequation is either valid in \mathbb{K} or passive in \mathbb{K} .

Algebraic logic

Theorem (Rybakov 1997, Olson et al. 2008)

Let L be an algebraizable logic and \mathbb{K} its quasivariety semantics, then L is (almost) structurally complete iff \mathbb{K} is (almost) structurally complete.

- 4 回 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □

Theorem (Bergman 1991)

Let $\mathbb K$ be a quasivariety, then the following properties are equivalent.

- **1** \mathbb{K} is structurally complete.
- ② Each proper subquasivariety of K generates a proper subvariety of V(K).
- **3** \mathbb{K} is the least $\mathcal{V}(\mathbb{K})$ -quasivariety.
- $\mathbb{K} = \mathcal{Q}(\operatorname{Free}_{\mathbb{K}}(\omega)) = \mathcal{Q}(\operatorname{Free}_{\mathcal{V}(\mathbb{K})}(\omega)).$

Theorem (Dzik-Stronkowski 2016)

Let $\mathbb K$ be a quasivariety. The following are equivalent

- **1** K is almost structurally complete.
- **2** For every $\mathbf{A} \in \mathbb{K}$, $\mathbf{A} \times \mathbf{Free}_{\mathbb{K}}(\omega) \in \mathcal{Q}(\mathbf{Free}_{\mathbb{K}}(\omega))$.
- For every A ∈ K, if there is an homomorphism from A into Free_K(ω) then A ∈ Q(Free_K(ω)).

Theorem (Dzik-Stronkowski 2016)

Let $\mathbb K$ be a quasivariety. The following are equivalent

1 K is almost structurally complete.

- **2** For every $\mathbf{S} \in \mathbb{K}_{SI}$, $\mathbf{S} \times \mathbf{Free}_{\mathbb{K}}(\omega) \in \mathcal{Q}(\mathbf{Free}_{\mathbb{K}}(\omega))$.
- For every P ∈ K_{FP}, if there is an homomorphism from A into Free_K(ω) then A ∈ Q(Free_K(ω)).

Theorem (Dzik-Stronkowski 2016)

Let $\mathbb K$ be a quasivariety. The following are equivalent

- **1** K is almost structurally complete.
- 2 There is B a subalgebra of Free_K(ω), such that for every S ∈ K_{SI}, S × B ∈ Q(Free_K(ω)).
- For every P ∈ K_{FP}, if there is an homomorphism from A into Free_K(ω) then A ∈ *ISP*(Free_K(ω)).

Theorem (Dzik-Stronkowski 2016)

Let \mathbb{K} be a quasivariety. If \mathbf{B}_2 is a subalgebra of $\mathbf{Free}_{\mathbb{K}}(\omega)$, then the following are equivalent

- **1** \mathbb{K} is almost structurally complete.
- 2 For every $S \in \mathbb{K}_{SI}$, $S \times B_2 \in \mathcal{Q}(Free_{\mathbb{K}}(\omega))$.
- For every P ∈ K_{FP}, if there is an homomorphism from A into Free_K(ω) then A ∈ *ISP*(Free_K(ω)).

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
Goal				

To algebraically study (almost) structural completeness of some algebraizable many-valued logics in order to characterize and axiomatize (all) finitary extensions.

向下 イヨト イヨト

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
Goal				

To study (almost) structural completeness of some varieties and quasivarieties of (many-valued) algebras in order to characterize and axiomatize (all) subquasivarieties.

白 とう きょう きょう

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions

• Gödel logics.

• Nilpotent minimum logics.

Łukasiewicz logics

< 注) < 注)

Line UNVERSION MACELOW

æ

Gödel-Dummett Logic (G) is the axiomatic extension of the Intuitionistic logic (IPC) given by the axiom

LIN $(\varphi \to \psi) \lor (\psi \to \varphi)$

▲圖 → ▲ 国 → ▲ 国 →

æ

Gödel-Dummett Logic (G) is the axiomatic extension of the Intuitionistic logic (IPC) given by the axiom

$$\mathsf{LIN} \ (\varphi \to \psi) \lor (\psi \to \varphi)$$

Standard semantics:

Let $[0,1]_G = \langle \{a \in \mathbb{R} : 0 \le a \le 1\}; \land, \lor, \rightarrow, \neg, 0, 1 \rangle$. For every $a, b \in [0,1], a \land b = min\{a, b\}$ and $a \lor b = max\{a, b\}$ $a \to b = \begin{cases} 1, & \text{if } a \le b; \\ b & \text{otherwise.} \end{cases}$ and $\neg a := a \to 0 = \begin{cases} 1, & \text{if } a = 0; \\ 0 & \text{otherwise.} \end{cases}$

$$\begin{array}{l} \Gamma \models_{[0,1]_G} \varphi \text{ iff for every } h : Prop(x) \to [0,1], \\ h(\varphi) = 1 \text{ whenever } h\Gamma = \{1\} \end{array}$$

<ロ> (四) (四) (三) (三) (三)

I	ntr	nd	ucti	on		

Gödel logic

NM-logic

Łukasiewicz logic

Completeness Theorem

Theorem (Dummett 1959)

$\Sigma \vdash_{\mathcal{G}} \varphi \text{ iff } \Sigma \models_{[0,1]_{\mathcal{G}}} \varphi$

イロン 不同と 不同と 不同と

Introd	luction	

Gödel logic

NM-logic

Łukasiewicz logic

Completeness Theorem

Theorem (Dummett 1959)

$\Sigma \vdash_{\mathcal{G}} \varphi \text{ iff } \Sigma \models_{[0,1]_{\mathcal{G}}} \varphi$

Algebraic logic

The Gödel-Dummett logic is algebraizable with \mathbb{G} the class of all Gödel-algebras as its equivalent quasivariety semantics.

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
Gödel-alge	ebra			

A Gödel-algebra is an algebra $\langle A, \wedge, \vee, \rightarrow, \neg, \bar{0}, \bar{1} \rangle$ such that

- $\langle A, \wedge, \vee, \bar{0}, \bar{1} \rangle$ is a bounded distributive lattice.
- For every a, b ∈ A, a → b is the pseudocomplent of a relative to b,

i.e.
$$a \rightarrow b = max\{c \in A : a \land c \leq b\}.$$

•
$$\neg a = a \rightarrow \overline{0}$$
.

(L) For every $a, b \in A$ $(a \rightarrow b) \lor (b \rightarrow a) = \overline{1}$.

通 とう ほうとう ほうど

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
Gödel-alge	ebra			

A Gödel-algebra is an algebra $\langle A, \wedge, \vee, \rightarrow, \neg, \bar{0}, \bar{1} \rangle$ such that

- $\langle A, \wedge, \vee, \bar{0}, \bar{1} \rangle$ is a bounded distributive lattice.
- For every a, b ∈ A, a → b is the pseudocomplent of a relative to b,

i.e.
$$a \rightarrow b = max\{c \in A : a \land c \leq b\}.$$

•
$$\neg a = a \rightarrow \overline{0}$$
.

(L) For every $a, b \in A$ $(a \rightarrow b) \lor (b \rightarrow a) = \overline{1}$.

A Gödel algebra is a Heyting algebra satisfying (L).

向下 イヨト イヨト

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
Gödel-chai	ins			

We say that a Gödel-algebra is a **Gödel-chain**, provided that it is totally ordered.

同 と く き と く き と

Line UNVERSION MACELOW

æ

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
Gödel-chair	าร			

We say that a Gödel-algebra is a **Gödel-chain**, provided that it is totally ordered.

Let $\langle A,\leq,\bar{0},\bar{1}\rangle$ be a totally ordered bounded set, if we define for every $a,b\in A$,

$$\begin{aligned} a \wedge b &= \min\{a, b\}, & a \vee b &= \max\{a, b\}, \\ a \to b &= \left\{ \begin{array}{ll} \bar{1}, & \text{if } a \leq b; \\ b, & \text{otherwise.} \end{array} \right., & \neg a &= a \to \bar{0} = \left\{ \begin{array}{ll} \bar{1}, & \text{if } a = 0; \\ 0, & \text{if } a \neq 0. \end{array} \right., \end{aligned}$$

then $\mathbf{A} = \langle A, \wedge, \vee, \rightarrow, \neg, \overline{0}, \overline{1} \rangle$ is a Gödel-chain.

(4月) (1日) (日)

æ

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
Gödel-chair	าร			

We say that a Gödel-algebra is a **Gödel-chain**, provided that it is totally ordered.

Let $\langle A,\leq,\bar{0},\bar{1}\rangle$ be a totally ordered bounded set, if we define for every $a,b\in A$

$$\begin{aligned} \mathbf{a} \wedge \mathbf{b} &= \min\{\mathbf{a}, \mathbf{b}\}, \qquad \mathbf{a} \vee \mathbf{b} &= \max\{\mathbf{a}, \mathbf{b}\}, \\ \mathbf{a} \rightarrow \mathbf{b} &= \left\{ \begin{array}{cc} \bar{1}, & \text{if } \mathbf{a} \leq \mathbf{b}; \\ \mathbf{b}, & \text{otherwise.} \end{array} \right\}, \qquad \neg \mathbf{a} &= \mathbf{a} \rightarrow \bar{\mathbf{0}} = \left\{ \begin{array}{cc} \bar{1}, & \text{if } \mathbf{a} = \mathbf{0}; \\ \mathbf{0}, & \text{if } \mathbf{a} \neq \mathbf{0}. \end{array} \right\}, \end{aligned}$$

then $\textbf{A}=\langle \textit{A},\wedge,\vee,\rightarrow,\neg,\bar{0},\bar{1}\rangle$ is a Gödel-chain.

Every Gödel-chain is of this form.

(4月) (1日) (日)

Therefore up to isomorphism for each natural number n, there is only one Gödel-chain **G**_n with exactly n elements.

$$\mathbf{G}_n = \langle \{0, 1, 2, \dots, n-1\}, \wedge, \vee, \rightarrow, \neg, 0, n-1 \rangle.$$

Notice that \mathbf{G}_1 is the trivial algebra and \mathbf{G}_2 is the 2-element Boolean algebra.

$$\mathbf{G}_n \hookrightarrow \mathbf{G}_m$$
 iff $n \leq m$

・ 同 ト ・ ヨ ト ・ ヨ ト

in the sector

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
G-varieties				

• G is a locally finite variety.

•
$$\mathbb{G} = \mathcal{V}([0,1]_G) = \mathcal{V}(\{\mathbf{G}_n : n > 1\})$$

・ロト ・回ト ・ヨト ・ヨト

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
G-varieties				

• G is a locally finite variety.

•
$$\mathbb{G} = \mathcal{V}([0,1]_G) = \mathcal{V}(\{\mathbf{G}_n : n > 1\})$$

A variety V of Gödel-algebras is proper subvariety of G iff
 V = G_n = V(G_n) for some n > 0.

•
$$\mathbb{G}_n$$
 is axiomatizable by $\bigvee_{i < n} ((x_i \leftrightarrow x_{i+1}) \approx \overline{1})$

•
$$\mathbb{G}_1 \subsetneq \mathbb{G}_2 \subsetneq \mathbb{G}_3 \subsetneq \cdots \subsetneq \mathbb{G}_n \subsetneq \cdots \mathbb{G}_n$$

< E

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
G-varieties				

• G is a locally finite variety.

•
$$\mathbb{G} = \mathcal{V}([0,1]_G) = \mathcal{V}(\{\mathbf{G}_n : n > 1\})$$

A variety V of Gödel-algebras is proper subvariety of G iff
 V = G_n = V(G_n) for some n > 0.

•
$$\mathbb{G} = \mathcal{Q}([0,1]_G) = \mathcal{Q}(\{\mathbf{G}_n : n > 1\}).$$

•
$$\mathbb{G}_n = \mathcal{Q}(\mathbf{G}_n)$$
 for every $n > 0$.

Theorem (Dzik-Wronski 1973)

Gödel logic is structurally complete.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Theorem (Dzik-Wronski 1973)

Gödel logic is structurally complete.

For every n > 1, \mathbf{G}_n is embeddable into $\mathbf{Free}_{\mathbb{G}}(\omega)$.

Theorem (Dzik-Wronski 1973)

Gödel logic is structurally complete.

For every n > 1, \mathbf{G}_n is embeddable into $\operatorname{Free}_{\mathbb{G}}(\omega)$. $\mathcal{Q}(\operatorname{Free}_{\mathbb{G}}(\omega)) = \mathcal{Q}(\{\mathbf{G}_n : n > 1\}) = \mathbb{G}$.

(4月) (4日) (4日)

Theorem (Dzik-Wronski 1973)

Gödel logic is structurally complete.

For every n > 1, \mathbf{G}_n is embeddable into $\operatorname{Free}_{\mathbb{G}}(\omega)$. $\mathcal{Q}(\operatorname{Free}_{\mathbb{G}}(\omega)) = \mathcal{Q}(\{\mathbf{G}_n : n > 1\}) = \mathbb{G}$.

Let n > 1. For every $2 \le k \le n$, \mathbf{G}_k is embeddable into $\mathsf{Free}_{\mathbb{G}_n}(\omega)$.

Theorem

Gödel logic is hereditarily structurally complete.

- ∢ ⊒ →

Introduction

Gödel logic

NM-logic

Łukasiewicz logic

Conclusions

Last UNIVERSITY DE MACELONA

æ

Quasivarieties of Gödel algebras

Every quasivariety of Gödel algebras is a variety.

$$L_{\mathcal{V}}(\mathbb{G}) = L_{\mathcal{Q}}(\mathbb{G})$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
Nilpotent	Minimum L	ogic		

Nilpotent Minimum Logic (**NML**) is the axiomatic extension of the Monoidal t-norm logic (MTL) given by the axioms

・ 同 ト ・ ヨ ト ・ ヨ ト …

Limit UNVERSITATE INACELONA

Nilpotent Minimum Logic (NML) is the axiomatic extension of the Monoidal t-norm logic (MTL) given by the axioms

$$\begin{array}{l} \mathsf{Inv} \ \neg \neg \varphi \to \varphi \\ \mathsf{WNM} \ (\psi \ast \varphi \to \bot) \lor (\psi \land \varphi \to \psi \ast \varphi) \end{array} \end{array}$$

Standard Semantics:
$$(\models_{[0,1]_{NM}})$$

 $[0,1]_{NM} = \langle [0,1]; *, \rightarrow, \land, \lor, \neg, 0, 1 \rangle$ where for every $a, b \in [0,1]$,
 $a \land b = min\{a, b\}, a \lor b = max\{a, b\}, \neg a = 1 - a,$
 $a * b = \begin{cases} min\{a, b\}, & \text{if } b > 1 - a; \\ 0, & \text{otherwise.} \end{cases}$ and
 $a \rightarrow b = \begin{cases} 1, & \text{if } a \leq b; \\ max\{1-a, b\} & \text{otherwise.} \end{cases}$

・ 同 ト ・ ヨ ト ・ ヨ ト

in the states of the section

Completeness Theorem

Theorem (Esteva Godo 2001, Noguera et al 2008)

 $\Sigma \vdash_{NML} \varphi \text{ iff } \Sigma \models_{[0,1]_{NM}} \varphi$

Line UNVERSION MACELOW

Completeness Theorem

Theorem (Esteva Godo 2001, Noguera et al 2008)

 $\Sigma \vdash_{\textit{NML}} \varphi \textit{ iff } \Sigma \models_{[0,1]_{\textit{NM}}} \varphi$

Algebraic logic

The Nilpotent Minimum Logic NML is algebraizable with \mathbb{NM} the class of all NM-algebras as its equivalent quasivariety semantics.

A **NM-algebra** is a bounded integral residuated lattice satisfying the following equations:

$$(x
ightarrow y) \lor (y
ightarrow x) pprox ar{1}$$
 (L)

$$\neg \neg x \approx x$$
 (I)

$$eg(x * y) \lor (x \land y \to x * y) \approx \overline{1}$$
 (WNM)

(4回) (4回) (4回)

in the states of the section

A **NM-algebra** is a bounded integral residuated lattice satisfying the following equations:

$$(x o y) \lor (y o x) pprox ar{1}$$
 (L)

$$\neg \neg x \approx x$$
 (I)

$$eg(x * y) \lor (x \land y \to x * y) \approx \overline{1}$$
 (WNM)

Example: $[0, 1]_{NM}$ is a NM-algebra.

回 と く ヨ と く ヨ と

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
NM-chains				

We say that a NM-algebra is a **NM-chain**, provided that it is totally ordered.

同 と く き と く き と

Line UNVERSION MACELOW

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
NM-chains				

We say that a NM-algebra is a $\ensuremath{\text{NM-chain}}$, provided that it is totally ordered.

Let $\langle A,\leq,\bar{0},\bar{1}\rangle$ a totally ordered bounded set equipped with an involutive negation $\neg,$

(1日) (1日) (日)

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
NM-chains				

We say that a NM-algebra is a $\ensuremath{\text{NM-chain}}$, provided that it is totally ordered.

Let $\langle A, \leq, \bar{0}, \bar{1} \rangle$ a totally ordered bounded set equipped with an involutive negation \neg , if we define for every $a, b \in A$,

$$a*b = \begin{cases} \bar{0}, & \text{if } b \leq \neg a; \\ a \wedge b, & \text{otherwise.} \end{cases} \quad a \to b = \begin{cases} \bar{1}, & \text{if } a \leq b; \\ \neg a \lor b, & \text{otherwise.} \end{cases},$$
$$a \wedge b = min\{a, b\} \qquad a \lor b = max\{a, b\},$$
then $\mathbf{A} = \langle A, *, \rightarrow, \land, \lor, \bar{0}, \bar{1} \rangle$ is a NM-chain.

(1日) (日) (日)

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
NM-chains				

We say that a NM-algebra is a $\ensuremath{\text{NM-chain}}$, provided that it is totally ordered.

Let $\langle A, \leq, \bar{0}, \bar{1} \rangle$ a totally ordered bounded set equipped with an involutive negation \neg , if we define for every $a, b \in A$,

$$a*b = \begin{cases} \bar{0}, & \text{if } b \leq \neg a; \\ a \wedge b, & \text{otherwise.} \end{cases} \qquad a \to b = \begin{cases} \bar{1}, & \text{if } a \leq b; \\ \neg a \lor b, & \text{otherwise.} \end{cases},$$
$$a \wedge b = min\{a, b\} \qquad a \lor b = max\{a, b\},$$
then $\mathbf{A} = \langle A, *, \rightarrow, \land, \lor, \bar{0}, \bar{1} \rangle$ is a NM-chain.
Every NM-chain is of this form.

伺下 イヨト イヨト

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
Finite NM	1-chains			

Therefore up to isomorphism for each finite $n \in \mathbb{N}$, there is only one NM-chain \mathbf{A}_n with exactly *n* elements.

$$\mathbf{A}_{2n+1} = \langle [-n, n] \cap \mathbb{Z}, *, \rightarrow, \land, \lor, -n, n \rangle.$$

$$\mathbf{A}_{2n} = \langle A_{2n+1} \smallsetminus \{0\}, *, \rightarrow, \wedge, \vee, -n, n \rangle.$$

For every n, k > 0,

• $\mathbf{A}_{2n} \hookrightarrow \mathbf{A}_{2k+1}$ iff $\mathbf{A}_{2n} \hookrightarrow \mathbf{A}_{2k}$ iff $\mathbf{A}_{2n+1} \hookrightarrow \mathbf{A}_{2k+1}$ iff $n \leq k$. • $\mathbf{A}_{2n+1} \not\hookrightarrow \mathbf{A}_{2k}$.

・ロン ・回 と ・ ヨ と ・ ヨ と

INVESTOR ENVELON

Negation fixpoint

Let **A** be an NM-algebra, $a \in A$ is a **negation fixpoint** (or just **fixpoint**, for short) iff $\neg a = a$.

Let **C** be an NM-chain. Then $C \setminus \{c\}$ is the universe of a subalgebra of **C** which we denote by **C**⁻.

 $\mathbf{A_{2n}}=\mathbf{A_{2n+1}}^{-}$

- 4 同 6 4 日 6 4 日 6

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
NM-varietie	es			

Let

$$S_n(x_0,\ldots,x_n) = \bigwedge_{i < n} ((x_i \rightarrow x_{i+1}) \rightarrow x_{i+1}) \rightarrow \bigvee_{i < n+1} x_i$$

$$\nabla(x) = \neg(\neg x^2)^2 \qquad \qquad \Delta(x) = (\neg(\neg x)^2)^2$$

where x^2 is an abbreviation of x * x.

Lemma

Let A be an NM-chain. Then we have

- **()** A does not have a fixpoint iff $\nabla(x) \approx \Delta(x)$ holds in A.
- **2** A has less than 2n + 2 elements if and only if $S_n(x_0, ..., x_n) \approx \overline{1}$ holds in **A**.

イロト イポト イヨト イヨト

NM-varieties

 \mathbb{NM} is a locally finite variety.

 $\mathbb{NM} = \mathcal{V}([0,1]_{NM}) = \mathcal{V}(\{\mathbf{A}_n : n > 1\})$

$$\mathbb{NM}$$
 is a locally finite variety. $\mathbb{NM} = \mathcal{V}([0,1]_{\mathsf{NM}}) = \mathcal{V}(\{\mathbf{A}_n:n>1\})$

$$\mathbb{NM} = \mathbb{NM} + \nabla(x) \approx \Delta(x)$$

 $\mathbb{NM}^{-} = \mathcal{V}(\{\mathbf{A}_{2n} : n > 0\})$

・ロト ・回 ト ・ヨト ・ヨト

Conclusions

NM-varieties

Theorem (Gispert 03)

Every nontrivial variety of NM-algebras is of one of the following types:

$$\mathbb{NM} = \mathcal{V}([\mathbf{0},\mathbf{1}]) = \mathcal{V}(\{\mathbf{A}_n : n > 1\})$$

3
$$\mathbb{NM}_{2m+1} = \mathcal{V}(\mathsf{A}_{2m+1})$$
 for some $m > 0$

•
$$\mathbb{NM}_{2n} = \mathcal{V}(\mathbf{A}_{2n})$$
 for some $n > 0$

•
$$\mathbb{NM}_{2m+1} = \mathcal{V}(\{[0,1]^-, A_{2m+1}\}) = \mathcal{V}(\{A_{2n} : n > 0\} \cup \{A_{2m+1}\})$$

イロト イヨト イヨト イヨト

NM-varieties as quasivarieties

Theorem (Noguera et al. 08)

Every nontrivial variety of NM-algebras is of one of the following types:

$$\mathbb{NM} = \mathcal{Q}([\mathbf{0},\mathbf{1}]) = \mathcal{Q}(\{\mathbf{A}_n : n > 1\})$$

$$\mathbb{NM} - = \mathcal{Q}([\mathbf{0},\mathbf{1}]^{-}) = \mathcal{Q}(\{\mathbf{A}_{2n}: n > 0\})$$

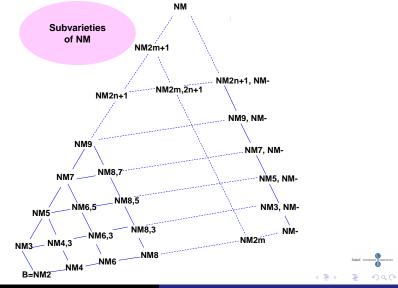
$${f 3}$$
 $\mathbb{NM}_{2m+1}=\mathcal{Q}({f A}_{2m+1})$ for some $m>0$

•
$$\mathbb{NM}_{2n} = \mathcal{Q}(\mathbf{A}_{2n})$$
 for some $n > 0$

•
$$\mathbb{NM}_{2n2m+1} = \mathcal{Q}(\{A_{2n}, A_{2m+1}\})$$
 for some $n > m > 0$

○
$$\mathbb{NM}_{2m+1} = \mathcal{Q}(\{[0,1]^-, A_{2m+1}\}) = \mathcal{Q}(\{A_{2n} : n > 0\} \cup \{A_{2m+1}\})$$

Lattice of NM-varieties



J.Gispert Structural Completeness for many-valued logics

NM-logic

Łukasiewicz logic

Conclusions

Structural completeness of NM

Proposition

 \mathbb{NM} is not structurally complete.

æ

(4回) (4回) (4回)

NM-logic

Łukasiewicz logic

Conclusions

INVESTOR ENVELON

Structural completeness of NM

Proposition

 \mathbb{NM} is not structurally complete.

Proof:

 $eg x \approx x \Rightarrow \overline{0} \approx \overline{1}$ is NM-admissible (passive) but not valid in NM.

(4月) (4日) (4日)

Theorem

 \mathbb{NM} - is hereditarily structurally complete.

Theorem

 $\mathbb{NM}-$ is hereditarily structurally complete.

Proposition

For every n > 0, \mathbf{A}_{2n} is embeddable into $\mathbf{Free}_{\mathbb{NM}-}(\omega)$.

イロト イヨト イヨト イヨト

Theorem

 $\mathbb{NM}-$ is hereditarily structurally complete.

Proposition

For every n > 0, \mathbf{A}_{2n} is embeddable into $\mathbf{Free}_{\mathbb{NM}-}(\omega)$.

$$\mathcal{Q}(\mathsf{Free}_{\mathbb{NM}-}(\omega)) = \mathcal{Q}(\{\mathsf{A}_{2n} : n > 0\}) = \mathbb{NM}-$$

For every
$$n>0$$
, $\mathcal{Q}(\mathsf{Free}_{\mathbb{NM}_{2n}}(\omega))=\mathcal{Q}(\mathsf{A}_{2n})=\mathbb{NM}_{2n}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Almost structural completeness of NM

If $\mathbb{M} \not\subseteq \mathbb{NM}-$, then

Proposition

For every k > 1, $\mathbf{A}_2 \times \mathbf{A}_k$ is embeddable into $\mathbf{Free}_{\mathbb{M}}(\omega)$ if and only if $\mathbf{A}_k \in \mathbb{M}$

J.Gispert

Almost structural completeness of NM

If $\mathbb{M} \not\subseteq \mathbb{NM}-$, then

Proposition

For every k > 1, $\mathbf{A}_2 \times \mathbf{A}_k$ is embeddable into $\mathbf{Free}_{\mathbb{M}}(\omega)$ if and only if $\mathbf{A}_k \in \mathbb{M}$

 $\mathcal{Q}(\mathsf{Free}_{\mathbb{M}}(\omega)) = \mathcal{Q}(\{\mathsf{A}_2 \times \mathsf{A}_k : \mathsf{A}_k \in \mathbb{M}\})$

Almost structural completeness of NM

If $\mathbb{M} \not\subseteq \mathbb{NM}-$, then

Proposition

For every k > 1, $\mathbf{A}_2 \times \mathbf{A}_k$ is embeddable into $\mathbf{Free}_{\mathbb{M}}(\omega)$ if and only if $\mathbf{A}_k \in \mathbb{M}$

$$\mathcal{Q}(\mathsf{Free}_{\mathbb{M}}(\omega)) = \mathcal{Q}(\{\mathsf{A}_2 imes \mathsf{A}_k : \mathsf{A}_k \in \mathbb{M}\})$$

Theorem

 ${\mathbb M}$ is almost structurally complete

イロト イヨト イヨト イヨト

Introduction

Gödel logic

NM-logic

Łukasiewicz logic

Conclusions

Almost structural completeness of NM

Theorem

 \mathbb{NM} is almost structurally complete and all their subvarieties are almost structurally complete.

- ∢ ⊒ →

Axiomatization of admissible quasiequations

Theorem

For every variety of NM-algebras the quasiequation $\neg x \approx x \Rightarrow \overline{0} \approx \overline{1}$ axiomatizes all passive admissible quasiequations.

Axiomatization of admissible quasiequations

Theorem

For every variety of NM-algebras the quasiequation $\neg x \approx x \Rightarrow \overline{0} \approx \overline{1}$ axiomatizes all passive admissible quasiequations.

Proof:

(Jeřábek 2010)

The rule $\neg (p \lor \neg p)^n / \bot$ axiomatizes all passive rules for every *n*-contractive axiomatic extension of MTL.

 \mathbb{NM} is 2 contractive ($x^2 \approx x^3$)

$$eg p \leftrightarrow p \dashv \vdash_{\mathit{NML}}
eg (p \lor \neg p)^2$$

イロト イヨト イヨト イヨト

INVESTOR ENVELON

NM-quasivarieties

Proposition

Let \mathbb{M} be a non trivial variety of NM-algebras and \mathbb{K} be an \mathbb{M} -quasivariety. Then \mathbb{K} is a proper \mathbb{M} -quasivariety iff there is $\mathbf{A}_{2n+1} \in \mathbb{M} \setminus \mathbb{K}$ for some n > 1.

- 4 同 2 4 日 2 4 日 2

NM-quasivarieties

Theorem

Let \mathbb{M} be a non trivial NM-variety. If \mathbb{K} is proper \mathbb{M} -quasivariety and $k = \max \{n \in \mathbb{N} : \mathbf{A}_{2n+1} \in \mathbb{K}\}$, then

$$\mathbb{K} = \mathcal{Q}(\{\mathbf{A}_{2n} : \mathbf{A}_{2n} \in \mathbb{M}\} \cup \{\mathbf{A}_2 \times \mathbf{A}_{2m+1} : \mathbf{A}_{2m+1} \in \mathbb{M}\} \cup \{\mathbf{A}_{2k+1}\})$$

Moreover, $\mathbb K$ is axiomatized relative to $\mathbb M$ by the quasiequation

$$x pprox
eg x \Rightarrow S_k(x_0, \dots, x_k) pprox \overline{1} ext{ if } k > 0$$

or

$$x \approx \neg x \Rightarrow \overline{0} \approx \overline{1}$$
 if $k = 0$.

イロト イヨト イヨト イヨト

Introduction

Gödel logic

NM-logic

Łukasiewicz logic

Conclusions

Э

Quasivarieties of \mathbb{NM}

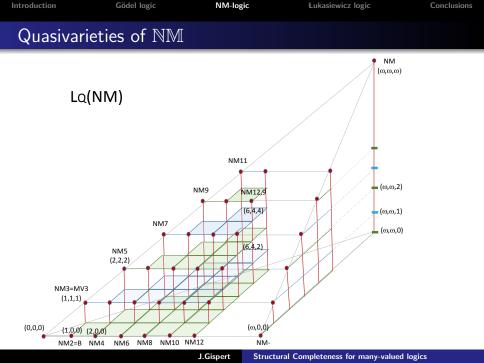
Theorem

$$L_Q(\mathbb{NM})\cong \langle \{(n,m,k)\in \left(\omega^+
ight)^3:n\geq m\geq k\},\leq^3
angle$$

where

$$(n_1, m_1, k_1) \leq^3 (n_2, m_2, k_2)$$
 iff $n_1 \leq n_2$, $m_1 \leq m_2$ and $k_1 \leq k_2$

・ロト ・回ト ・ヨト ・ヨト



Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
Łukasiewicz	logics			

The Infinite valued Łukasiewicz Calculus, \mathtt{L}_∞

Axioms:

$$\begin{array}{ll} \texttt{L1.} & \varphi \to (\psi \to \varphi) \\ \texttt{L2.} & (\varphi \to \psi) \to ((\psi \to \nu) \to (\varphi \to \nu)) \\ \texttt{L3.} & ((\varphi \to \psi) \to \psi) \to ((\psi \to \varphi) \to \varphi) \\ \texttt{L4.} & (\neg \psi \to \neg \varphi) \to (\varphi \to \psi) \end{array}$$

Rules:

Modus Ponens.
$$\{\varphi, \varphi \rightarrow \psi\}/\psi$$
.

・ロト ・回ト ・ヨト ・ヨト

Э

NM-logic

Łukasiewicz logic

•

・ロト ・回ト ・ヨト ・ヨト

Conclusions

æ

Original logic semantics

$$[0,1]_{\mathsf{L}} = \langle \{ a \in \mathbb{R} : 0 \le a \le 1 \};
ightarrow, \neg
angle$$

$$\begin{array}{ll} \text{For all } a,b\in [0,1],\\ a\rightarrow b=\left\{ \begin{array}{ll} 1, & \text{if } a\leq b;\\ 1-a+b, & \text{otherwise.} \end{array} \right., \qquad \neg a=1-a \end{array} \right.$$

NM-logic

Łukasiewicz logic

Conclusions

æ

Original logic semantics

$$[0,1]_{\mathsf{L}} = \langle \{ \mathsf{a} \in \mathbb{R} : \mathsf{0} \le \mathsf{a} \le 1 \}; \rightarrow, \neg \rangle$$

$$\begin{array}{ll} \text{For all } a,b\in [0,1],\\ a\rightarrow b=\left\{ \begin{array}{ll} 1, & \text{if } a\leq b;\\ 1-a+b, & \text{otherwise.} \end{array} \right., \qquad \neg a=1-a. \end{array} \right.$$

Let $\Gamma \cup \{\varphi\} \subseteq Prop(X)$, then

$$\begin{split} & \Gamma \models_{[0,1]_{L}} \varphi \text{ iff} \\ & \text{for every } h : Prop(x) \to [0,1], \ h(\varphi) = 1 \text{ whenever } h\Gamma = \{1\} \end{split}$$

(4回) (4回) (4回)

in the state of th

Completeness Theorems

Weak Completeness Theorem

Theorem (Rose-Rosser 1958, Chang 1959)

$$\vdash_{{\it I}_{\infty}} \varphi \textit{ iff } \models_{[0,1]_{{\it I}}} \varphi$$

イロト イヨト イヨト イヨト

Completeness Theorems

Weak Completeness Theorem

Theorem (Rose-Rosser 1958, Chang 1959)

$$\vdash_{{\it I}_{\infty}} \varphi \textit{ iff } \models_{[0,1]_{{\it I}}} \varphi$$

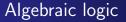
Strong Finite Completeness Theorem

Theorem (Hay 1963)

$$\varphi_1,\ldots,\varphi_n\vdash_{\boldsymbol{\ell}_{\infty}}\varphi$$
 iff $\varphi_1,\ldots,\varphi_n\models_{[0,1]_{\boldsymbol{\ell}}}\varphi$

Image: A (1)

INVESTOR ENVELON



The infinite valued Łukasiewicz calculus L_{∞} is algebraizable with \mathbb{MV} the class of all MV-algebras as its equivalent quasivariety semantics.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
MV-algebra	IS			

An **MV-algebra** is an algebra $\langle A, \oplus, \neg, 0 \rangle$ satisfying the following equations:

 $\begin{array}{ll} \mathsf{MV1} & (x \oplus y) \oplus z \approx x \oplus (y \oplus z) \\ \mathsf{MV2} & x \oplus y \approx y \oplus x \\ \mathsf{MV3} & x \oplus 0 \approx x \\ \mathsf{MV4} & \neg(\neg x) \approx x \\ \mathsf{MV5} & x \oplus \neg 0 \approx \neg 0 \\ \mathsf{MV6} & \neg(\neg x \oplus y) \oplus y \approx \neg(\neg y \oplus x) \oplus x. \end{array}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

in the states of the section

= 990

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions

•
$$1 =_{def} \neg 0.$$

• $x \rightarrow y =_{def} \neg x \oplus y.$
• $x \lor y =_{def} (x \rightarrow y) \rightarrow y.$
• $x \land y =_{def} \neg (\neg x \lor \neg y).$
• $x \odot y =_{def} \neg (\neg x \oplus \neg y).$

For any MV-algebra **A**, $a \le b$ iff $a \to b = 1$ endows **A** with a distributive lattice-order $\langle A, \lor, \land \rangle$, called the *natural order* of *A*.

An MV-algebra whose natural order is total is said to be an $\ensuremath{\text{MV-chain}}$.

向下 イヨト イヨト

Limit UNVERSITATE INACELONA

æ

MV-chains and totally ordered abelian groups

Let $\langle G, +, -, 0, \leq \rangle$ be a totally ordered abelian group and an element $0 < u \in G$, if we define $\Gamma(G, u) = \langle [0, u], \oplus, \neg, 0 \rangle$ by

$$[0,u] = \{a \in G \mid 0 \leq a \leq u\}, \ a \oplus b = u \wedge (a+b), \ \neg a = u-a,$$

then $\langle [0, u], \oplus, \neg, 0 \rangle$ is an MV-chain.

Moreover every MV-chain is of this form.

向下 イヨト イヨト

Introduction	Gödel logic	NM-logic	Łukasiewicz logic	Conclusions
Examples				

•
$$[0,1]_{\underline{\mathsf{L}}} = \Gamma(\mathbb{R},1),$$

• $[0,1]_{L} \cap \mathbb{Q} = \Gamma(\mathbb{Q},1)$,

For every $0 < n < \omega$

•
$$L_n = \Gamma(\mathbb{Z}, n) = \langle \{0, 1, \ldots, n\}, \oplus, \neg, 0 \rangle$$

•
$$\mathcal{L}_n^{\omega} = \Gamma(\mathbb{Z} \times_{lex} \mathbb{Z}, (n, 0)) = \langle \{(k, i) : (0, 0) \leq (k, i) \leq (n, 0)\}, \oplus, \neg, 0 \rangle.$$

•
$$L_n^s = \Gamma(\mathbb{Z} \times_{lex} \mathbb{Z}, (n, s)) = \langle \{(k, i) : (0, 0) \leq (k, i) \leq (n, s)\}, \oplus, \neg, 0 \rangle$$
, where $0 \leq s < n$.

• $S_n = \Gamma(T, n)$ where T is a totally ordered dense subgroup of \mathbb{R} such that $T \cap \mathbb{Q} = \mathbb{Z}$.

A (10) A (10) A (10) A

æ

Land Conversion of Conversion

æ

Finite MV-chains

For every
$$0 < n < \omega$$
, every $n + 1$ element MV-chain is isomorphic to $L_n = \Gamma(\mathbb{Z}, n) = \langle \{0, 1, \dots, n\}, \oplus, \neg, 0 \rangle$

Let $0 < n, k < \omega$. $L_n \hookrightarrow L_k$ if and only if n|k.

イロン イヨン イヨン イヨン

The class \mathbb{MV} of all MV-algebras is a (not locally finite) variety.

(Chang's completeness thorem)

 $\mathbb{MV} = \mathcal{V}([0,1]) = \mathcal{V}(\{L_n : n > 0\}).$

For every n > 0, $\mathbb{MV}_n = \mathcal{V}(L_n)$ is a locally finite variety. \mathbb{MV}_n is the equivalent quasivariety semantics of \mathfrak{t}_{n+1} the n + 1-valued Łukasiewicz logic.

Moreover if \mathbb{V} is a variety of MV-algebras, \mathbb{V} is locally finite iff $\mathbb{V} \subseteq \mathbb{MV}_n$ for some n > 0

・ 同 ト ・ ヨ ト ・ ヨ ト

MV-varieties

Theorem (Komori, 1981)

 \mathbb{V} is a proper subvariety of \mathbb{MV} iff there exist two finite sets I and J (in a reduced form) of integers ≥ 1 , not both empty, such that

$$\mathbb{V} = \mathcal{V}_{I,J} := \mathcal{V}(\{\mathbf{L}_m \mid m \in I\} \cup \{\mathbf{L}_n^{\omega} \mid n \in J\}).$$

MV-varieties

Theorem (Komori, 1981)

 \mathbb{V} is a proper subvariety of \mathbb{MV} iff there exist two finite sets I and J (in a reduced form) of integers ≥ 1 , not both empty, such that

$$\mathbb{V} = \mathcal{V}_{I,J} := \mathcal{V}(\{\mathbf{L}_m \mid m \in I\} \cup \{\mathbf{L}_n^{\omega} \mid n \in J\}).$$

- Every proper subvariety of MV is finitely axiomatizable.
- The lattice of all varieties of MV-algebras is a Pseudo-Boolean algebra.

▲ □ ► ▲ □ ►

Introduction

Gödel logic

NM-logic

Łukasiewicz logic

Conclusions

Э

MV-varieties as quasivarieties

$$\mathbb{MV} = \mathcal{Q}([0,1] \cap \mathbb{Q}) = \mathcal{Q}([0,1]) = \mathcal{Q}(\{L_n : n > 0\}).$$

$$\mathcal{V}_{I,J} := \mathcal{Q}(\{\mathbf{L}_m \mid m \in I\} \cup \{\mathbf{L}_n^{\omega} \mid n \in J\}).$$

回 と く ヨ と く ヨ と

Theorem (Pogorzelski, Torzak, Wojtylak 1970's, Dzik 2008, Jerabek 2010)

- t_{∞} (MV) is not structurally complete.
- \mathcal{L}_{∞} (MV) is not almost structurally complete.
- L_{n+1} (\mathbb{MV}_n) is not structurally complete.
- \mathcal{L}_{n+1} (\mathbb{MV}_n) is hereditarily almost structurally complete.

INVESTOR ENVELON

Structural completeness of Łukasiewicz logics

Theorem

- $\mathcal{V}_{\emptyset,\{1\}} = \mathcal{V}(L_1^{\omega})$ is structurally complete.
- *V*_{∅,{1}} and B are the only structurally complete varieties of MV-algebras.
- \mathbb{V} is almost structurally complete iff \mathbb{V} is locally finite or $\mathbb{V} = \mathcal{V}_{I,\{1\}}$ for some reduced pair $(I,\{1\})$.

<ロ> (日) (日) (日) (日) (日)

Theorem

- $\mathcal{V}_{\emptyset,\{1\}} = \mathcal{V}(L_1^{\omega})$ is structurally complete.
- *V*_{∅,{1}} and B are the only structurally complete varieties of MV-algebras.
- \mathbb{V} is almost structurally complete iff \mathbb{V} is locally finite or $\mathbb{V} = \mathcal{V}_{I,\{1\}}$ for some reduced pair $(I,\{1\})$.

For every reduced pair (I, J), $\mathcal{Q}(\operatorname{Free}_{\mathcal{V}_{I,J}}) = \mathcal{Q}(\{L_1 \times L_n : n \in I\} \cup \{L_1 \times L_m^1 : m \in J\}).$

イロト イヨト イヨト イヨト

Theorem

- $\mathcal{V}_{\emptyset,\{1\}} = \mathcal{V}(L_1^{\omega})$ is structurally complete.
- *V*_{∅,{1}} and B are the only structurally complete varieties of MV-algebras.
- \mathbb{V} is almost structurally complete iff \mathbb{V} is locally finite or $\mathbb{V} = \mathcal{V}_{I,\{1\}}$ for some reduced pair $(I,\{1\})$.

For every reduced pair (I, J), $\mathcal{Q}(\operatorname{Free}_{\mathcal{V}_{I,J}}) = \mathcal{Q}(\{\operatorname{L}_1 \times \operatorname{L}_n : n \in I\} \cup \{\operatorname{L}_1 \times \operatorname{L}_m^1 : m \in J\}).$ $\mathcal{Q}(\operatorname{Free}_{\mathcal{V}_{0,\{1\}}}) = \mathcal{Q}(\operatorname{L}_1 \times \operatorname{L}_1^1) = \mathcal{Q}(\operatorname{L}_1^1) = \mathcal{Q}(\operatorname{L}_1^\omega) = \mathcal{V}(\operatorname{L}_1^\omega).$

イロト イヨト イヨト イヨト

Theorem

- $\mathcal{V}_{\emptyset,\{1\}} = \mathcal{V}(L_1^{\omega})$ is structurally complete.
- *V*_{∅,{1}} and B are the only structurally complete varieties of MV-algebras.
- \mathbb{V} is almost structurally complete iff \mathbb{V} is locally finite or $\mathbb{V} = \mathcal{V}_{I,\{1\}}$ for some reduced pair $(I,\{1\})$.

For every reduced pair
$$(I, J)$$
,
 $\mathcal{Q}(\operatorname{Free}_{\mathcal{V}_{I,J}}) = \mathcal{Q}(\{\operatorname{L}_1 \times \operatorname{L}_n : n \in I\} \cup \{\operatorname{L}_1 \times \operatorname{L}_m^1 : m \in J\}).$
 $\mathcal{Q}(\operatorname{Free}_{\mathcal{V}_{\emptyset,\{1\}}}) = \mathcal{Q}(\operatorname{L}_1 \times \operatorname{L}_1^1) = \mathcal{Q}(\operatorname{L}_1^1) = \mathcal{Q}(\operatorname{L}_1^\omega) = \mathcal{V}(\operatorname{L}_1^\omega).$
 $\mathcal{Q}(\operatorname{Free}_{\mathcal{V}_{I,\{1\}}}) = \mathcal{Q}(\{\operatorname{L}_1 \times \operatorname{L}_n : n \in I\} \cup \{\operatorname{L}_1 \times \operatorname{L}_1^1\}).$
 $\mathcal{V}_{I,\{1\}} = \mathcal{Q}(\{\operatorname{L}_n : n \in I\} \cup \{\operatorname{L}_1^1\}).$

イロト イポト イヨト イヨト

MV-quasivarieties

Theorem (Adams-Dziobiak)

The class \mathbb{MV} is Q-universal, in the sense that, for every quasivariety \mathbb{K} of algebras of finite type (not necessarily MV-algebras), the lattice of all quasivarieties of \mathbb{K} is the homomorphic image of a sublattice of the lattice of all quasivarieties of \mathbb{MV} .

 $L_Q(\mathbb{K}) \in \mathcal{HS}(L_Q(\mathbb{MV}))$

- A 同 ト - A 三 ト - A 三 ト

Introduction

Gödel logic

NM-logic

Łukasiewicz logic

Conclusions

æ

Locally finite MV-quasivarieties

In the case of MV-algebras:

● ▶ < ミ ▶

- < ≣ →

Locally finite MV-quasivarieties

In the case of MV-algebras:

The following conditions are equivalent:

- \mathbb{K} is a locally finite quasivariety.
- $\mathbb{K} \subseteq \mathbb{MV}_n$ for some $n \in \mathbb{N}$.
- \mathbb{K} is subquasivariety contained in a discriminator variety.

向下 イヨト イヨト

Locally finite MV-quasivarieties

In the case of MV-algebras:

The following conditions are equivalent:

- \mathbb{K} is a locally finite quasivariety.
- $\mathbb{K} \subseteq \mathbb{MV}_n$ for some $n \in \mathbb{N}$.
- K is subquasivariety contained in a discriminator variety.

Vaggione et al: "The subquasivariety lattice of a discriminator variety"

向下 イヨト イヨト

INVESTOR ENVELON

Locally finite MV-quasivarieties

Every locally finite quasivariety of MV-algebras is generated by a finite set of critical algebras.

A **critical** algebra is a finite algebra not belonging to the quasivariety generated by all its proper subalgebras. From the characterization of critical MV-algebras (Gispert-Torrens)

Locally finite MV-quasivarieties

Every locally finite quasivariety of MV-algebras is generated by a finite set of critical algebras.

A **critical** algebra is a finite algebra not belonging to the quasivariety generated by all its proper subalgebras. From the characterization of critical MV-algebras (Gispert-Torrens)

Let 𝔍 be a locally finite MV-variety. Then

- $L_Q(\mathbb{V})$ is finite
- Every member of $L_Q(\mathbb{V})$ is finitely based.

Moreover for any $\mathbb{K} \in L_Q(\mathbb{V})$, \mathbb{K} is a variety iff \mathbb{K} is generated by MV-chains.

(4月) (4日) (4日)

Quasivarieties generated by MV-chains

Theorem

Two MV-chains generate the same quasivariety iff they generate the same variety and they contain the same rational elements.

Given $\mathbf{A} = \Gamma(G, b)$, *a* is a **rational element** of \mathbf{A} iff there exist $m, n \in \omega, 0 \le n \le m \ne 0$ and $c \in G$ such that b = mc and a = nc. In that case, we say that $a = \frac{n}{m}$.

Quasivarieties generated by MV-chains

Theorem

 \mathbb{K} is a quasivariety generated by MV-chains if and only if there are α, γ, κ subsets of positive integers, not all of them empty, and for every $i \in \gamma$, a nonempty subset $\gamma(i) \subseteq Div(i)$ such that

 $\mathbb{K} = \mathcal{Q}(\{\mathbf{L}_n : n \in \alpha\} \cup \{\mathbf{L}_i^{d_i} : i \in \gamma, \ d_i \in \gamma(i)\} \cup \{\mathbf{S}_k : k \in \kappa\}).$

A (1) > A (1) > A

Quasivarieties generated by MV-chains

Theorem

 \mathbb{K} is a quasivariety generated by MV-chains if and only if there are α, γ, κ subsets of positive integers, not all of them empty, and for every $i \in \gamma$, a nonempty subset $\gamma(i) \subseteq Div(i)$ such that

$$\mathbb{K} = \mathcal{Q}(\{\mathbf{L}_n : n \in \alpha\} \cup \{\mathbf{L}_i^{d_i} : i \in \gamma, \ d_i \in \gamma(i)\} \cup \{\mathbf{S}_k : k \in \kappa\}).$$

- Every quasivariety generated by MV-chains contained in a proper subvariety of MIV is finitely axiomatizable.
- The lattice of all quasivarieties generated by MV-chains is a bounded distributive lattice

< ∃⇒

From the characterization of quasivarieties generated by MV-chains it can be deduced:

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Land UNIVERSITY DE MACELONA

æ

Limit UNVERSITATE INACELONA

æ

From the characterization of quasivarieties generated by MV-chains it can be deduced:

• $\mathcal{Q}(L_n^1)$ is the least $\mathcal{V}(L_n^{\omega})$ -quasivariety generated by chains.

・回 と く ヨ と く ヨ と

From the characterization of quasivarieties generated by MV-chains it can be deduced:

- $\mathcal{Q}(L^1_n)$ is the least $\mathcal{V}(L^\omega_n)$ -quasivariety generated by chains.
- $\mathcal{Q}(L_n)$ is the least $\mathcal{V}(L_n)$ -quasivariety generated by chains.

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Limit UNVERSITATE INACELONA

From the characterization of quasivarieties generated by MV-chains it can be deduced:

- $\mathcal{Q}(L^1_n)$ is the least $\mathcal{V}(L^\omega_n)$ -quasivariety generated by chains.
- $\mathcal{Q}(L_n)$ is the least $\mathcal{V}(L_n)$ -quasivariety generated by chains.

• For every reduced pair (I, J), $\mathcal{Q}(\{L_n : n \in I\} \cup \{L_m^1 : m \in J\})$ is the least $\mathcal{V}_{I,J}$ -quasivariety generated by chains.

・ロン ・回と ・ヨン ・ヨン

INVESTOR ENVELON

Structurally complete quasivarieties and least V-quasivarieties.

Theorem

For every reduced pair (I, J), $\mathcal{Q}(\{L_1 \times L_n : n \in I\} \cup \{L_1 \times L_m^1 : m \in J\}) = \mathcal{Q}(Free_{\mathcal{V}_{I,J}})$ and therefore it is the least $\mathcal{V}_{I,J}$ -quasivariety.

- 4 同 ト - 4 三 ト - 4 三

3

(Almost) structural completeness again

For every reduced pair (I, J),

- $\mathcal{Q}({L_1 \times L_n : n \in I} \cup {L_1 \times L_m^1 : m \in J})$ is the least $\mathcal{V}_{I,J}$ -quasivariety.
- Q({L_n : n ∈ I} ∪ {L¹_m : m ∈ J}) is the least V_{I,J}-quasivariety generated by chains.

イロト イポト イヨト イヨト

Łukasiewicz logic

(Almost) structural completeness again

For every reduced pair (I, J),

- $\mathcal{Q}({L_1 \times L_n : n \in I} \cup {L_1 \times L_m^1 : m \in J})$ is the least $\mathcal{V}_{I,J}$ -quasivariety.
- Q({L_n : n ∈ I} ∪ {L¹_m : m ∈ J}) is the least V_{I,J}-quasivariety generated by chains.

Thus,

Theorem

Let (I, J) be a reduced pair. Then $\mathcal{Q}(\{L_n : n \in I\} \cup \{L_m^1 : m \in J\})$ is almost structurally complete.

イロト イポト イヨト イヨト

Axiomatization of admissible rules.

 $\mathbb{MV}\text{-}\mathsf{adm}\mathsf{issible}$ quasiequations.

(Jeřábek)

- An infinite basis of non passive admissible rules in order to axiomatize all admissible Ł_∞-rules. Infinite axiomatization of MV-admissible quasiequations.
- MV-admissible quasiequations are not finitely axiomatizable.
- Let \mathbb{V} be a variety of MV-algebras. Then $\{(x \lor \neg x)^n \approx 0 \Rightarrow 0 \approx 1 : n \in \omega\}$ is a basis for passive \mathbb{V} -admissible quasiequations.

イロト イヨト イヨト イヨト

Axiomatization of admissible rules.

 $\mathbb{MV}\text{-}\mathsf{adm}\mathsf{issible}$ quasiequations.

(Jeřábek)

- An infinite basis of non passive admissible rules in order to axiomatize all admissible Ł_∞-rules. Infinite axiomatization of MV-admissible quasiequations.
- MV-admissible quasiequations are not finitely axiomatizable.
- Let \mathbb{V} be a variety of MV-algebras. Then $\{(x \lor \neg x)^n \approx 0 \Rightarrow 0 \approx 1 : n \in \omega\}$ is a basis for passive \mathbb{V} -admissible quasiequations.

 $Q(Free_{MV}) = Q(\mathcal{M}([0, 1]))$ is the only almost structurally complete MV-quasivariety

Axiomatization of admissible rules.

Admissible quasiequations in locally finite MV-varieties

- Let V be an MV-variety. Then
 V is locally finite iff V is n-contractive for some n ∈ ω.
- Every locally finite MV-variety is almost structurally complete. (Dzik)
- (x ∨ ¬x)ⁿ ≈ 0 ⇒ 0 ≈ 1 is a basis of passive admissible quasiequations for every n-contractive subvariety of MIV. (Jeřábek)

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $\mathcal{V}_{I,J}$ be a proper subvariety of \mathbb{MV} .

of MW

• $Q_{I,J}^1 := \mathcal{Q}(\{L_n : n \in I\} \cup \{L_m^1 : m \in J\})$ is almost structurally complete.

・回 と く ヨ と く ヨ と

Limit UNVERSITATE INACELONA

Let $\mathcal{V}_{I,J}$ be a proper subvariety of \mathbb{MV} .

• $Q_{I,J}^1 := Q(\{L_n : n \in I\} \cup \{L_m^1 : m \in J\})$ is almost structurally complete.

•
$$Q_{I,J}^1$$
 is a $\mathcal{V}_{I,J}$ -quasivariety $(\mathcal{V}(Q_{I,J}^1) = \mathcal{V}_{I,J})$

・回 と く ヨ と く ヨ と

Limit UNVERSITATE INACELONA

Let $\mathcal{V}_{I,J}$ be a proper subvariety of \mathbb{MV} .

- $Q_{I,J}^1 := \mathcal{Q}(\{L_n : n \in I\} \cup \{L_m^1 : m \in J\})$ is almost structurally complete.
- $Q_{I,J}^1$ is a $\mathcal{V}_{I,J}$ -quasivariety $(\mathcal{V}(Q_{I,J}^1) = \mathcal{V}_{I,J})$
- $\mathcal{Q}({L_n : n \in I} \cup {L_m^1 : m \in J})$ is finitely axiomatizable.

イロト イポト イヨト イヨト

Limit UNVERSITATE INACELONA

Let $\mathcal{V}_{I,J}$ be a proper subvariety of \mathbb{MV} .

• $Q_{I,J}^1 := \mathcal{Q}(\{L_n : n \in I\} \cup \{L_m^1 : m \in J\})$ is almost structurally complete.

•
$$Q_{I,J}^1$$
 is a $\mathcal{V}_{I,J}$ -quasivariety $(\mathcal{V}(Q_{I,J}^1) = \mathcal{V}_{I,J})$

- $\mathcal{Q}({L_n : n \in I} \cup {L_m^1 : m \in J})$ is finitely axiomatizable.
- $(x \vee \neg x)^n \approx 0 \Rightarrow 0 \approx 1$ is a basis for passive $\mathcal{V}_{I,J}$ -admissible quasiequations where $n = \max\{I \cup \{\max J + 1\}\}$

イロト イポト イヨト イヨト

Let $\mathcal{V}_{I,J}$ be a proper subvariety of \mathbb{MV} .

• $Q_{I,J}^1 := Q(\{L_n : n \in I\} \cup \{L_m^1 : m \in J\})$ is almost structurally complete.

•
$$Q_{I,J}^1$$
 is a $\mathcal{V}_{I,J}$ -quasivariety $(\mathcal{V}(Q_{I,J}^1) = \mathcal{V}_{I,J})$

- $\mathcal{Q}({L_n : n \in I} \cup {L_m^1 : m \in J})$ is finitely axiomatizable.
- $(x \vee \neg x)^n \approx 0 \Rightarrow 0 \approx 1$ is a basis for passive $\mathcal{V}_{I,J}$ -admissible quasiequations where $n = \max\{I \cup \{\max J + 1\}\}$

Theorem

All $V_{I,J}$ -admissible quasiequatons are finitely axiomatizable.

(4月) イヨト イヨト

INVESTOR ENVELON

Basis for admissible quasiequations for proper subvarieties of \mathbb{MV}

Theorem

Let (I, J) be a reduced pair, then a base for admissible quasiequations of $V_{I,J}$ is given by

- Δ'(Q_m) := [(¬x)^{m-1} ↔ x] ∨ y ≈ 1 ⇒ y ≈ 1 for every m ∈ Div(J) \ Div(I) minimal with respect the divisibility.
- $\Delta'(U_k) := [(\neg x)^{k-1} \leftrightarrow x] \lor y \approx 1 \Rightarrow \alpha_{I_k,\emptyset}(z) \lor y \approx 1$ for every $1 < k \in Div(I)$, where $I_k = \{n \in I : k | n\}$.

•
$$CC_n^1 := (\varphi \lor \neg \varphi)^n \approx 0 \Rightarrow 0 \approx 1$$
 where $n = \max\{I \cup \{\max J + 1\}\}.$

イロト イポト イヨト イヨト

in the states of the section

Conclusions

 Results on admissibility theory allow to characterize and axiomatize the lattice of subquasivarieties (finitary extensions).

通 ト イヨ ト イヨト

in the states of the section

Conclusions

- Results on admissibility theory allow to characterize and axiomatize the lattice of subquasivarieties (finitary extensions).
- Results on certain quasivarieties (locally finite, generated by chains) allow to obtain axiomatization of admissible quasiequations.

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusions

- Results on admissibility theory allow to characterize and axiomatize the lattice of subquasivarieties (finitary extensions).
- Results on certain quasivarieties (locally finite, generated by chains) allow to obtain axiomatization of admissible quasiequations.
- There is a relation among least V-quasivarieties generated by chains and (almost) structural completeness

- 4 同 6 4 日 6 4 日 6

æ

Future Work

• Similar algebraic approach to admissible rules for other many-valued logics: BL, MTL, FL...

(本間) (本語) (本語)

in the sector

Future Work

- Similar algebraic approach to admissible rules for other many-valued logics: BL, MTL, FL...
- Study the relation among almost structural completeness and least *V*-quasivarieties generated by (finite) subdirectly irreducible algebras.

・ 同 ト ・ ヨ ト ・ ヨ ト

in the sector

Future Work

- Similar algebraic approach to admissible rules for other many-valued logics: BL, MTL, FL...
- Study the relation among almost structural completeness and least *V*-quasivarieties generated by (finite) subdirectly irreducible algebras.
- Multiple conclusion admissible rules and universal classes.

(4月) イヨト イヨト

Introduction

THANK YOU FOR YOUR ATTENTION

