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Admissibility Theory

Given a logic L, an L-unifier of a formula ϕ is a substitution σ
such that `L σϕ.

A rule Γ/ϕ is L-admissible in L iff every common L-unifier of Γ is
also an L-unifier of ϕ.

Γ/ϕ is passive L-admissible in L iff Γ has no common L-unifier.

A logic is structurally complete iff every admissible rule is a
derivable rule.

A logic is almost structurally complete iff every admissible rule
is either derivable rule or a passive admissible.
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CPC is structurally complete.

IPC is not structurally complete.

Gödel logic is (hereditarily) structurally complete.

Infinite valued  Lukasiewicz logic is not structurally complete.

n-valued  Lukasiewicz logic is not structurally complete but
almost structurally complete.

Any n-contractive extension of Basic logic is almost
structurally complete.
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Algebraizable logics

Deductive Systems ←→ Quasivarieties

L ←→ K

〈Prop(X ),`L〉 ←→ 〈Eq(X ), |=K〉

τ : Prop(X )→ P(Eq(X )) σ : Eq(X )→ P(Prop(X ))

Γ ∪ {ϕ} ⊆ Prop(X ) Σ ∪ {p ≈ q} ⊆ Eq(X )

Γ `L ϕ iff τ [Γ] |=K τ(ϕ) Σ |=K p ≈ q iff σ[Σ] `L σ(p ≈ q)

ϕ a`L σ(τ(ϕ)) p ≈ q =|=K τ(σ(p ≈ q))
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Algebraizable logics and Algebraic logic

Finitary Extensions of L ←→ Quasivarieties of K

Axiomatic Extensions ←→ (Relative) Varieties

(Finite) Axiomatization ←→ (Finite) Axiomatization

Deduction Theorem ←→ EDPCR

Local Deduction Theorem ←→ RCEP

Interpolation Theorem ←→ Amalgamation Property
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Algebraic Admissibility Theory

Given a quasivariety K, we say that a quasiequation

α1 ≈ γ1& · · ·&αn ≈ γn ⇒ ε ≈ η

is K-admissible iff for every term substitution σ if
K |= σ(αi ) ≈ σ(γi ) for i = 1÷ n, then K |= σ(ε) ≈ σ(η).

is passive in K iff there is no term substitution σ such that
K |= σ(αi ) ≈ σ(γi ) for i = 1÷ n.

K is structurally complete iff every K-admissible quasiequation is
valid in K.

K is almost structurally complete iff every admissible
quasiequation is either valid in K or passive in K.
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Algebraic logic

Theorem (Rybakov 1997, Olson et al. 2008 )

Let L be an algebraizable logic and K its quasivariety semantics,
then L is (almost) structurally complete iff K is (almost)
structurally complete.
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Structural completeness and free algebras

Theorem (Bergman 1991)

Let K be a quasivariety, then the following properties are
equivalent.

1 K is structurally complete.

2 Each proper subquasivariety of K generates a proper
subvariety of V(K).

3 K is the least V(K)-quasivariety.

4 K = Q(FreeK(ω)) = Q(FreeV(K)(ω)).
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Introduction Gödel logic NM-logic  Lukasiewicz logic Conclusions

Almost Structural completeness and free algebras

Theorem (Dzik-Stronkowski 2016)

Let K be a quasivariety. The following are equivalent

1 K is almost structurally complete.

2 For every A ∈ K, A× FreeK(ω) ∈ Q(FreeK(ω)).

3 For every A ∈ K, if there is an homomorphism from A into
FreeK(ω) then A ∈ Q(FreeK(ω)).
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Almost Structural completeness and free algebras

Theorem (Dzik-Stronkowski 2016)

Let K be a quasivariety. If B2 is a subalgebra of FreeK(ω), then
the following are equivalent

1 K is almost structurally complete.

2 For every S ∈ KSI , S× B2 ∈ Q(FreeK(ω)).

3 For every P ∈ KFP , if there is an homomorphism from A into
FreeK(ω) then A ∈ ISP(FreeK(ω)).
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Goal

To algebraically study (almost) structural completeness of some
algebraizable many-valued logics in order to characterize and
axiomatize (all) finitary extensions.
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Goal

To study (almost) structural completeness of some varieties and
quasivarieties of (many-valued) algebras in order to characterize
and axiomatize (all) subquasivarieties.
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Gödel logics.

Nilpotent minimum logics.

 Lukasiewicz logics
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Gödel-Dummett Logic

Gödel-Dummett Logic (G) is the axiomatic extension of the
Intuitionistic logic (IPC) given by the axiom

LIN (ϕ→ ψ) ∨ (ψ → ϕ)

Standard semantics:
Let [0, 1]G = 〈{a ∈ R : 0 ≤ a ≤ 1};∧,∨,→,¬, 0, 1〉. For every
a, b ∈ [0, 1], a ∧ b = min{a, b} and a ∨ b = max{a, b}

a→ b =

{
1, if a ≤ b;
b otherwise.

and ¬a := a→ 0 =

{
1, if a = 0;
0 otherwise.

Γ |=[0,1]G ϕ iff for every h : Prop(x)→ [0, 1],
h(ϕ) = 1 whenever hΓ = {1}
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Completeness Theorem

Theorem (Dummett 1959)

Σ `G ϕ iff Σ |=[0,1]G ϕ

Algebraic logic

The Gödel-Dummett logic is algebraizable with G the class of all
Gödel-algebras as its equivalent quasivariety semantics.
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Introduction Gödel logic NM-logic  Lukasiewicz logic Conclusions

Completeness Theorem

Theorem (Dummett 1959)

Σ `G ϕ iff Σ |=[0,1]G ϕ

Algebraic logic
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Gödel-algebra

A Gödel-algebra is an algebra 〈A,∧,∨,→,¬, 0̄, 1̄〉 such that

〈A,∧,∨, 0̄, 1̄〉 is a bounded distributive lattice.

For every a, b ∈ A, a→ b is the pseudocomplent of a relative
to b,
i.e. a→ b = max{c ∈ A : a ∧ c ≤ b}.
¬a = a→ 0̄.

(L) For every a, b ∈ A (a→ b) ∨ (b → a) = 1̄.

A Gödel algebra is a Heyting algebra satisfying (L).

J.Gispert Structural Completeness for many-valued logics
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Gödel-chains

We say that a Gödel-algebra is a Gödel-chain, provided that it is
totally ordered.

Let 〈A,≤, 0̄, 1̄〉 be a totally ordered bounded set, if we define for
every a, b ∈ A,

a ∧ b = min{a, b}, a ∨ b = max{a, b},

a→ b =

{
1̄, if a ≤ b;
b, otherwise.

, ¬a = a→ 0̄ =

{
1̄, if a = 0;
0, if a 6= 0.

,

then A = 〈A,∧,∨,→,¬, 0̄, 1̄〉 is a Gödel-chain.

Every Gödel-chain is of this form.
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Introduction Gödel logic NM-logic  Lukasiewicz logic Conclusions
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Every Gödel-chain is of this form.

J.Gispert Structural Completeness for many-valued logics
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Finite Gödel-chains

Therefore up to isomorphism for each natural number n, there is
only one Gödel-chain Gn with exactly n elements.

Gn = 〈{0, 1, 2, . . . , n − 1},∧,∨,→,¬, 0, n − 1〉.

Notice that G1 is the trivial algebra and G2 is the 2-element
Boolean algebra.

Gn ↪→ Gm iff n ≤ m
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G-varieties

G is a locally finite variety.

G = V([0, 1]G ) = V({Gn : n > 1})

A variety V of Gödel-algebras is proper subvariety of G iff
V = Gn = V(Gn) for some n > 0.

Gn is axiomatizable by
∨
i<n

((xi ↔ xi+1) ≈ 1̄

G1 ( G2 ( G3 ( · · · ( Gn ( · · ·G

G = Q([0, 1]G ) = Q({Gn : n > 1}).

Gn = Q(Gn) for every n > 0.
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Introduction Gödel logic NM-logic  Lukasiewicz logic Conclusions

G-varieties

G is a locally finite variety.

G = V([0, 1]G ) = V({Gn : n > 1})
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Structural completeness of G

Theorem (Dzik-Wronski 1973)

Gödel logic is structurally complete.

For every n > 1, Gn is embeddable into FreeG(ω).
Q(FreeG(ω)) = Q({Gn : n > 1}) = G.

Let n > 1. For every 2 ≤ k ≤ n, Gk is embeddable into FreeGn(ω).

Theorem

Gödel logic is hereditarily structurally complete.
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Quasivarieties of Gödel algebras

Every quasivariety of Gödel algebras is a variety.

LV(G) = LQ(G)
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Nilpotent Minimum Logic

Nilpotent Minimum Logic (NML) is the axiomatic extension of
the Monoidal t-norm logic (MTL) given by the axioms

Inv ¬¬ϕ→ ϕ

WNM (ψ ∗ ϕ→ ⊥) ∨ (ψ ∧ ϕ→ ψ ∗ ϕ)

Standard Semantics: (|=[0,1]NM )
[0, 1]NM = 〈[0, 1]; ∗,→,∧,∨,¬, 0, 1〉 where for every a, b ∈ [0, 1],
a ∧ b = min{a, b}, a ∨ b = max{a, b}, ¬a = 1− a,

a ∗ b =

{
min{a, b}, if b > 1− a;
0, otherwise.

and

a→ b =

{
1, if a ≤ b;
max{1− a, b} otherwise.
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Completeness Theorem

Theorem (Esteva Godo 2001, Noguera et al 2008)

Σ `NML ϕ iff Σ |=[0,1]NM ϕ

Algebraic logic

The Nilpotent Minimum Logic NML is algebraizable with NM the
class of all NM-algebras as its equivalent quasivariety semantics.

J.Gispert Structural Completeness for many-valued logics
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The Nilpotent Minimum Logic NML is algebraizable with NM the
class of all NM-algebras as its equivalent quasivariety semantics.
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NM-algebras

A NM-algebra is a bounded integral residuated lattice satisfying
the following equations:

(x → y) ∨ (y → x) ≈ 1̄ (L)

¬¬x ≈ x (I)

¬(x ∗ y) ∨ (x ∧ y → x ∗ y) ≈ 1̄ (WNM)

Example: [0, 1]NM is a NM-algebra.
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NM-chains

We say that a NM-algebra is a NM-chain, provided that it is
totally ordered.

Let 〈A,≤, 0̄, 1̄〉 a totally ordered bounded set equipped with an
involutive negation ¬,if we define for every a, b ∈ A,

a∗b =

{
0̄, if b ≤ ¬a;
a ∧ b, otherwise.

a→ b =

{
1̄, if a ≤ b;
¬a ∨ b, otherwise.

,

a ∧ b = min{a, b} a ∨ b = max{a, b},

then A = 〈A, ∗,→,∧,∨, 0̄, 1̄〉 is a NM-chain.

Every NM-chain is of this form.
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Finite NM-chains

Therefore up to isomorphism for each finite n ∈ N, there is only
one NM-chain An with exactly n elements.

A2n+1 = 〈[−n, n] ∩ Z, ∗,→,∧,∨,−n, n〉.

A2n = 〈A2n+1 r {0}, ∗,→,∧,∨,−n, n〉.

For every n, k > 0,

A2n ↪→ A2k+1 iff A2n ↪→ A2k iff A2n+1 ↪→ A2k+1 iff n ≤ k.

A2n+1 6↪→ A2k .
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Negation fixpoint

Let A be an NM-algebra,
a ∈ A is a negation fixpoint (or just fixpoint, for short) iff
¬a = a.

Let C be an NM-chain. Then C r {c} is the universe of a
subalgebra of C which we denote by C−.

A2n = A2n+1
−
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NM-varieties

Let

Sn(x0, . . . , xn) =
∧
i<n

((xi → xi+1)→ xi+1)→
∨

i<n+1

xi

∇(x) = ¬(¬x2)2 ∆(x) = (¬(¬x)2)2

where x2 is an abbreviation of x ∗ x .

Lemma

Let A be an NM-chain. Then we have

1 A does not have a fixpoint iff ∇(x) ≈ ∆(x) holds in A.

2 A has less than 2n + 2 elements if and only if
Sn(x0, . . . , xn) ≈ 1̄ holds in A.
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NM-varieties

NM is a locally finite variety.

NM = V([0, 1]NM) = V({An : n > 1})

NM− = NM +∇(x) ≈ ∆(x)

NM− = V({A2n : n > 0})
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NM-varieties

Theorem (Gispert 03)

Every nontrivial variety of NM-algebras is of one of the following
types:

1 NM = V([0, 1]) = V({An : n > 1})
2 NM− = V([0, 1]−) = V({A2n : n > 0})
3 NM2m+1 = V(A2m+1) for some m > 0

4 NM2n = V(A2n) for some n > 0

5 NM2n2m+1 = V({A2n,A2m+1}) for some n > m > 0

6 NM−2m+1 = V({[0, 1]−,A2m+1}) = V({A2n : n >
0} ∪ {A2m+1})
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NM-varieties as quasivarieties

Theorem (Noguera et al. 08)

Every nontrivial variety of NM-algebras is of one of the following
types:

1 NM = Q([0, 1]) = Q({An : n > 1})
2 NM− = Q([0, 1]−) = Q({A2n : n > 0})
3 NM2m+1 = Q(A2m+1) for some m > 0

4 NM2n = Q(A2n) for some n > 0

5 NM2n2m+1 = Q({A2n,A2m+1}) for some n > m > 0

6 NM−2m+1 = Q({[0, 1]−,A2m+1}) = Q({A2n : n >
0} ∪ {A2m+1})
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Lattice of NM-varieties

B=NM2

NM3

NM4
NM6

NM2mNM4,3

NM5

NM7

NM6,3

NM6,5

NM8

NM8,7

NM8,3

NM8,5

NM9

NM2m,2n+1
NM2n+1

NM2m+1

NM-

NM7, NM-

NM3, NM-

NM5, NM-

NM9, NM-

NM2n+1, NM-

NM

Subvarieties

of NM
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Structural completeness of NM

Proposition

NM is not structurally complete.

Proof:
¬x ≈ x ⇒ 0̄ ≈ 1̄ is NM-admissible (passive) but not valid in NM.
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Structural completeness of NM-

Theorem

NM− is hereditarily structurally complete.

Proposition

For every n > 0, A2n is embeddable into FreeNM−(ω).

Q(FreeNM−(ω)) = Q({A2n : n > 0}) = NM−

For every n > 0, Q(FreeNM2n(ω)) = Q(A2n) = NM2n
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Almost structural completeness of NM

If M 6⊆ NM−, then

Proposition

For every k > 1,
A2 × Ak is embeddable into FreeM(ω) if and only if Ak ∈M

Q(FreeM(ω)) = Q({A2 × Ak : Ak ∈M})

Theorem

M is almost structurally complete

J.Gispert Structural Completeness for many-valued logics
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Almost structural completeness of NM

Theorem

NM is almost structurally complete and all their subvarieties are
almost structurally complete.
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Axiomatization of admissible quasiequations

Theorem

For every variety of NM-algebras the quasiequation
¬x ≈ x ⇒ 0̄ ≈ 1̄ axiomatizes all passive admissible quasiequations.

Proof:

(Jĕrábek 2010)

The rule ¬(p ∨ ¬p)n/⊥ axiomatizes all passive rules for every
n-contractive axiomatic extension of MTL.

NM is 2 contractive (x2 ≈ x3)

¬p ↔ p a`NML ¬(p ∨ ¬p)2
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NM-quasivarieties

Proposition

Let M be a non trivial variety of NM-algebras and K be an
M-quasivariety. Then K is a proper M-quasivariety iff there is
A2n+1 ∈MrK for some n > 1.
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NM-quasivarieties

Theorem

Let M be a non trivial NM-variety. If K is proper M-quasivariety
and k = max {n ∈ N : A2n+1 ∈ K}, then

K = Q({A2n : A2n ∈M}∪{A2×A2m+1 : A2m+1 ∈M}∪{A2k+1})

Moreover, K is axiomatized relative to M by the quasiequation

x ≈ ¬x ⇒ Sk(x0, . . . , xk) ≈ 1̄ if k > 0

or
x ≈ ¬x ⇒ 0̄ ≈ 1̄ if k = 0.
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Quasivarieties of NM

Theorem

LQ(NM) ∼= 〈{(n,m, k) ∈
(
ω+
)3

: n ≥ m ≥ k},≤3〉

where
(n1,m1, k1) ≤3 (n2,m2, k2) iff n1 ≤ n2, m1 ≤ m2 and k1 ≤ k2
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Quasivarieties of NM
NM

(w,w,w)

NM3=MV3
(1,1,1)

NM2=B NM4 

(2,0,0)(0,0,0)

NM5
(2,2,2)

NM-

(w,0,0)

(w,w,0)

NM12,9

(6,4,4)

(6,4,2)

(1,0,0)

NM7

NM9

(w,w,1)

(w,w,2)

NM6 NM8 NM10 NM12

NM11

LQ(NM)
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 Lukasiewicz logics

The Infinite valued  Lukasiewicz Calculus,  L∞

Axioms:

 L1. ϕ→ (ψ → ϕ)

 L2. (ϕ→ ψ)→ ((ψ → ν)→ (ϕ→ ν))

 L3. ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ)

 L4. (¬ψ → ¬ϕ)→ (ϕ→ ψ)

Rules:

Modus Ponens. {ϕ,ϕ→ ψ}/ψ.
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Original logic semantics

[0, 1] L = 〈{a ∈ R : 0 ≤ a ≤ 1};→,¬〉

For all a, b ∈ [0, 1],

a→ b =

{
1, if a ≤ b;
1− a + b, otherwise.

, ¬a = 1− a.

Let Γ ∪ {ϕ} ⊆ Prop(X ), then

Γ |=[0,1] L
ϕ iff

for every h : Prop(x)→ [0, 1], h(ϕ) = 1 whenever hΓ = {1}
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Completeness Theorems

Weak Completeness Theorem

Theorem (Rose-Rosser 1958, Chang 1959)

` L∞
ϕ iff |=[0,1] L

ϕ

Strong Finite Completeness Theorem

Theorem (Hay 1963)

ϕ1, . . . , ϕn ` L∞
ϕ iff ϕ1, . . . , ϕn |=[0,1] L

ϕ
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Algebraic logic

The infinite valued  Lukasiewicz calculus  L∞ is algebraizable with
MV the class of all MV-algebras as its equivalent quasivariety
semantics.
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MV-algebras

An MV-algebra is an algebra 〈A,⊕,¬, 0〉 satisfying the following
equations:

MV1 (x ⊕ y)⊕ z ≈ x ⊕ (y ⊕ z)

MV2 x ⊕ y ≈ y ⊕ x

MV3 x ⊕ 0 ≈ x

MV4 ¬(¬x) ≈ x

MV5 x ⊕ ¬0 ≈ ¬0

MV6 ¬(¬x ⊕ y)⊕ y ≈ ¬(¬y ⊕ x)⊕ x .
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1 =def ¬0.

x → y =def ¬x ⊕ y .

x ∨ y =def (x → y)→ y .

x ∧ y =def ¬(¬x ∨ ¬y).

x � y =def ¬(¬x ⊕ ¬y).

For any MV-algebra A, a ≤ b iff a→ b = 1 endows A with a
distributive lattice-order 〈A,∨,∧〉, called the natural order of A.

An MV-algebra whose natural order is total is said to be an
MV-chain.
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MV-chains and totally ordered abelian groups

Let 〈G , ,+,−, 0,≤〉 be a totally ordered abelian group and an
element 0 < u ∈ G , if we define Γ(G , u) = 〈[0, u],⊕,¬, 0〉 by

[0, u] = {a ∈ G | 0 ≤ a ≤ u}, a⊕ b = u ∧ (a + b), ¬a = u − a,

then 〈[0, u],⊕,¬, 0〉 is an MV-chain.

Moreover every MV-chain is of this form.
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Examples

[0, 1] L = Γ(R, 1),

[0, 1] L ∩Q = Γ(Q, 1),

For every 0 < n < ω

Ln = Γ(Z, n) = 〈{0, 1, . . . , n},⊕,¬, 0〉,

Lω
n = Γ(Z×lex Z, (n, 0)) =
〈{(k , i) : (0, 0) ≤ (k , i) ≤ (n, 0)},⊕,¬, 0〉.

Ls
n = Γ(Z×lex Z, (n, s)) =
〈{(k , i) : (0, 0) ≤ (k , i) ≤ (n, s)},⊕,¬, 0〉, where 0 ≤ s < n.

Sn = Γ(T , n) where T is a totally ordered dense subgroup of
R such that T ∩Q = Z.
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Finite MV-chains

For every 0 < n < ω, every n + 1 element MV-chain is isomorphic
to Ln = Γ(Z, n) = 〈{0, 1, . . . , n},⊕,¬, 0〉

Let 0 < n, k < ω. Ln ↪→ Lk if and only if n|k.
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MV-varieties

The class MV of all MV-algebras is a (not locally finite) variety.

(Chang’s completeness thorem)

MV = V([0, 1]) = V({Ln : n > 0}).

For every n > 0, MVn = V(Ln) is a locally finite variety.
MVn is the equivalent quasivariety semantics of  Ln+1 the
n + 1-valued  Lukasiewicz logic.

Moreover if V is a variety of MV-algebras,
V is locally finite iff V ⊆MVn for some n > 0
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MV-varieties

Theorem (Komori, 1981)

V is a proper subvariety of MV iff there exist two finite sets I and
J (in a reduced form) of integers ≥ 1, not both empty, such that

V = VI ,J := V({Lm | m ∈ I} ∪ {Lω
n | n ∈ J}).

Every proper subvariety of MV is finitely axiomatizable.

The lattice of all varieties of MV-algebras is a Pseudo-Boolean
algebra.
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MV-varieties as quasivarieties

MV = Q([0, 1] ∩Q) = Q([0, 1]) = Q({Ln : n > 0}).

VI ,J := Q({Lm | m ∈ I} ∪ {Lω
n | n ∈ J}).
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Structural completeness of  Lukasiewicz logics

Theorem (Pogorzelski, Torzak, Wojtylak 1970’s, Dzik 2008,
Jerabek 2010)

 L∞ (MV) is not structurally complete.

 L∞ (MV) is not almost structurally complete.

 Ln+1 (MVn) is not structurally complete.

 Ln+1 (MVn) is hereditarily almost structurally complete.
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Structural completeness of  Lukasiewicz logics

Theorem

V∅,{1} = V(Lω
1 ) is structurally complete.

V∅,{1} and B are the only structurally complete varieties of
MV-algebras.

V is almost structurally complete iff V is locally finite or
V = VI ,{1} for some reduced pair (I , {1}).

For every reduced pair (I , J),
Q(FreeVI ,J ) = Q({L1 × Ln : n ∈ I} ∪ {L1 × L1

m : m ∈ J}).
Q(FreeV∅,{1}) = Q(L1 × L1

1) = Q(L1
1) = Q(Lω

1 ) = V(Lω
1 ).

Q(FreeVI ,{1}) = Q({L1 × Ln : n ∈ I} ∪ {L1 × L1
1}).

VI ,{1} = Q({Ln : n ∈ I} ∪ {L1
1}).
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MV-quasivarieties

Theorem (Adams-Dziobiak)

The class MV is Q-universal, in the sense that, for every
quasivariety K of algebras of finite type (not necessarily
MV-algebras), the lattice of all quasivarieties of K is the
homomorphic image of a sublattice of the lattice of all
quasivarieties of MV.

LQ(K) ∈ HS(LQ(MV))
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Locally finite MV-quasivarieties

In the case of MV-algebras:

The following conditions are equivalent:

K is a locally finite quasivariety.

K j MVn for some n ∈ N.

K is subquasivariety contained in a discriminator variety.

Vaggione et al: ”The subquasivariety lattice of a discriminator
variety”
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Introduction Gödel logic NM-logic  Lukasiewicz logic Conclusions

Locally finite MV-quasivarieties

Every locally finite quasivariety of MV-algebras is generated by a
finite set of critical algebras.

A critical algebra is a finite algebra not belonging to the
quasivariety generated by all its proper subalgebras. From the
characterization of critical MV-algebras (Gispert-Torrens)

Let V be a locally finite MV-variety.Then

LQ(V) is finite

Every member of LQ(V) is finitely based.

Moreover for any K ∈ LQ(V),
K is a variety iff K is generated by MV-chains.
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Quasivarieties generated by MV-chains

Theorem

Two MV-chains generate the same quasivariety iff they generate
the same variety and they contain the same rational elements.

Given A = Γ(G , b), a is a rational element of A iff there exist
m, n ∈ ω, 0 ≤ n ≤ m 6= 0 and c ∈ G such that b = mc and
a = nc . In that case, we say that a = n

m .
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Quasivarieties generated by MV-chains

Theorem

K is a quasivariety generated by MV -chains if and only if there are
α, γ, κ subsets of positive integers, not all of them empty, and for
every i ∈ γ, a nonempty subset γ(i) ⊆ Div(i) such that

K = Q({Ln : n ∈ α}∪{Ldi
i : i ∈ γ, di ∈ γ(i)}∪{Sk : k ∈ κ}).

Every quasivariety generated by MV-chains contained in a
proper subvariety of MV is finitely axiomatizable.

The lattice of all quasivarieties generated by MV-chains is a
bounded distributive lattice
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From the characterization of quasivarieties generated by MV-chains
it can be deduced:

Q(L1
n) is the least V(Lω

n )-quasivariety generated by chains.

Q(Ln) is the least V(Ln)-quasivariety generated by chains.

For every reduced pair (I , J),
Q({Ln : n ∈ I} ∪ {L1

m : m ∈ J}) is the least
VI ,J -quasivariety generated by chains.
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Introduction Gödel logic NM-logic  Lukasiewicz logic Conclusions

Structurally complete quasivarieties and least
V-quasivarieties.

Theorem

For every reduced pair (I , J),
Q({L1 × Ln : n ∈ I} ∪ {L1 × L1

m : m ∈ J}) = Q(FreeVI ,J ) and
therefore it is the least VI ,J -quasivariety.
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(Almost) structural completeness again

For every reduced pair (I , J),

Q({L1 × Ln : n ∈ I} ∪ {L1 × L1
m : m ∈ J}) is the least

VI ,J -quasivariety.

Q({Ln : n ∈ I} ∪ {L1
m : m ∈ J}) is the least VI ,J -quasivariety

generated by chains.

Thus,

Theorem

Let (I , J) be a reduced pair. Then Q({Ln : n ∈ I} ∪ {L1
m : m ∈ J})

is almost structurally complete.
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Axiomatization of admissible rules.

MV-admissible quasiequations.

(Jĕrábek)

An infinite basis of non passive admissible rules in order to
axiomatize all admissible  L∞-rules. Infinite axiomatization of
MV-admissible quasiequations.

MV-admissible quasiequations are not finitely axiomatizable.

Let V be a variety of MV-algebras. Then
{(x ∨ ¬x)n ≈ 0⇒ 0 ≈ 1 : n ∈ ω} is a basis for passive
V-admissible quasiequations.

Q(FreeMV) = Q(M([0, 1])) is the only almost structurally
complete MV-quasivariety
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Axiomatization of admissible rules.

Admissible quasiequations in locally finite MV-varieties

Let V be an MV-variety. Then
V is locally finite iff V is n-contractive for some n ∈ ω.

Every locally finite MV-variety is almost structurally complete.
(Dzik)

(x ∨ ¬x)n ≈ 0⇒ 0 ≈ 1 is a basis of passive admissible
quasiequations for every n-contractive subvariety of MV.
(Jĕrábek)
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Basis for admissible quasiequations for proper subvarieties
of MV

Let VI ,J be a proper subvariety of MV.

Q1
I ,J := Q({Ln : n ∈ I} ∪ {L1

m : m ∈ J}) is almost structurally
complete.

Q1
I ,J is a VI ,J -quasivariety (V(Q1

I ,J) = VI ,J)

Q({Ln : n ∈ I} ∪ {L1
m : m ∈ J}) is finitely axiomatizable.

(x ∨ ¬x)n ≈ 0⇒ 0 ≈ 1 is a basis for passive VI ,J -admissible
quasiequations where n = max{I ∪ {max J + 1}}

Theorem

All VI ,J -admissible quasiequatons are finitely axiomatizable.
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Basis for admissible quasiequations for proper subvarieties
of MV

Theorem

Let (I , J) be a reduced pair, then a base for admissible
quasiequations of VI ,J is given by

∆′(Qm) := [(¬x)m−1 ↔ x ] ∨ y ≈ 1⇒ y ≈ 1 for every
m ∈ Div(J) r Div(I ) minimal with respect the divisibility.

∆′(Uk) := [(¬x)k−1 ↔ x ] ∨ y ≈ 1⇒ αIk ,∅(z) ∨ y ≈ 1 for
every 1 < k ∈ Div(I ), where Ik = {n ∈ I : k |n}.
CC 1

n := (ϕ ∨ ¬ϕ)n ≈ 0⇒ 0 ≈ 1 where
n = max{I ∪ {max J + 1}}.

J.Gispert Structural Completeness for many-valued logics
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Conclusions

Results on admissibilty theory allow to characterize and
axiomatize the lattice of subquasivarieties (finitary extensions).

Results on certain quasivarieties (locally finite, generated by
chains) allow to obtain axiomatization of admissible
quasiequations.

There is a relation among least V-quasivarieties generated by
chains and (almost) structural completeness

J.Gispert Structural Completeness for many-valued logics
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Future Work

Similar algebraic approach to admissible rules for other
many-valued logics: BL, MTL, FL...

Study the relation among almost structural completeness and
least V -quasivarieties generated by (finite) subdirectly
irreducible algebras.

Multiple conclusion admissible rules and universal classes.
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Thank you for your attention
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