#### Lattice-Valued Predicate Logics

#### Petr Cintula

#### (Joint work with Carles Noguera and Libor Běhounek)

Institute of Computer Science Academy of Sciences of the Czech Republic

Congreso Dr. Antonio Monteiro

## Outline



- 2 Lattice-Valued Predicate Logics
- 3 Formal Fuzzy Mathematics

#### 4 What's next?

## Classical first-order logic and its completeness

CFOL: theory of quantification built over classical propositional logic

Formalized (in its present form) by Hilbert and Ackermann (1928)

 $\vdash_{CFOL}$  its Hilbert axiomatization,  $\models_{CFOL}$  the semantical consequence

Its completeness proved by Gödel (1929):

#### Theorem

For every set of first-order formulas  $\Gamma \cup \{\varphi\}$ :

 $\Gamma \vdash_{CFOL} \varphi$  *if, and only if,*  $\Gamma \models_{CFOL} \varphi$ 

## Altering CFOL

Over the years CFOL has been altered in many ways:

## Altering CFOL

Over the years CFOL has been altered in many ways:

- strengthened: higher-order, more expressive languages
- reformulated: e.g. algebraizing using cylindric or polyadic algebras
- weakened: changing the propositional part, e.g. to intuitionistic,

substructural, fuzzy

## Altering CFOL

Over the years CFOL has been altered in many ways:

- strengthened: higher-order, more expressive languages
- reformulated: e.g. algebraizing using cylindric or polyadic algebras
- weakened: changing the propositional part, e.g. to intuitionistic, substructural, fuzzy
- and in arbitrary combinations of the above (and probably in thousands of other ways I have never seen or even imagined)

#### Define: a (natural) first-order variant of arbitrary propositional logic and prove a variant of Gödel completeness theorem

Demonstrate: the power and usefulness of the resulting theory using example from formal fuzzy mathematics

## Outline





3 Formal Fuzzy Mathematics

#### 4 What's next?



What will be our formulas?

- What will be our formulas?
- e How to design their (general/intended) semantics?

- What will be our formulas?
- e How to design their (general/intended) semantics?
- Given a semantic, how to define its consequence relation?

- What will be our formulas?
- I How to design their (general/intended) semantics?
- Given a semantic, how to define its consequence relation?
- And finally, how to axiomatize it?

- What will be our formulas?
- e How to design their (general/intended) semantics?
- Given a semantic, how to define its consequence relation?
- And finally, how to axiomatize it?

Thus in particular obtaining the Gödel completeness theorem ...

- What will be our formulas?
- e How to design their (general/intended) semantics?
- Given a semantic, how to define its consequence relation?
- And finally, how to axiomatize it?

Thus in particular obtaining the Gödel completeness theorem ... The first part of the talk is based on the paper:

PC, C. Noguera: A Henkin-style proof of completeness for first-order algebraizable logics. J. of Symbolic Logic, 2015

but presented from the first principles and semantics-first

#### What will be our formulas?

(DC 1)

A language is a quadruple  $\mathfrak{L} = \langle \mathbf{C}, \mathbf{P}, \mathbf{F}, \mathbf{ar} \rangle$ 

connectives, predicate and function symbols with their arities

And we build sets of  $\mathfrak L$ -terms Term and  $\mathfrak L$ -formulas Form as usual, i.e., as the least sets such that:

- object variables ObjVar are terms
- if  $t_1, \ldots, t_n \in \text{Term}, F \in \mathbf{F}, \mathbf{ar}(F) = n$ , then  $F(t_1, \ldots, t_n) \in \text{Term}$
- if  $t_1, \ldots, t_n \in \text{Term}, P \in \mathbf{P}$ ,  $\mathbf{ar}(P) = n$ , then  $P(t_1, \ldots, t_n) \in \text{Form}$
- if  $\varphi_1, \ldots, \varphi_n \in \text{Form}, c \in \mathbb{C}$ ,  $\operatorname{ar}(c) = n$ , then  $c(\varphi_1, \ldots, \varphi_n) \in \text{Form}$
- if  $\varphi \in$  Form and  $x \in$  ObjVar, then  $(\forall x)\varphi \in$  Form and  $(\exists x)\varphi \in$  Form

#### More on languages

There is a well-known difference between the role of connectives and other syntactical objects.

Let us fix, for this talk, a set of connectives C and their arities

Thus we can speak about predicate languages  $\mathcal{P} = \langle \mathbf{P}, \mathbf{F}, \mathbf{ar} \rangle$ 

#### More on languages

There is a well-known difference between the role of connectives and other syntactical objects.

Let us fix, for this talk, a set of connectives C and their arities

Thus we can speak about predicate languages  $\mathcal{P} = \langle \mathbf{P}, \mathbf{F}, \mathbf{ar} \rangle$ 

We also consider a special language: the propositional one

 $\mathcal{L} = \langle \mathbf{C}, \{p_i \mid i \in \mathsf{N}\}, \emptyset, \mathbf{ar} \rangle, \text{ where } \mathbf{ar}(p_i) = 0$ 

Note that  $\mathcal L$  can be seen as an algebraic type i.e., a classical predicate language  $\langle \emptyset, C, ar \rangle$ 

#### How to design the semantics?

We follow the stream of research:

## How to design the semantics?

We follow the stream of research:

- 1961 Mostowski: interpretation of existential (resp. universal) quantifiers as suprema (resp. infima)
- 1963 Rasiowa and Sikorski: first-order intuitionistic logic
- 1969 Horn: first-order Gödel–Dummett logic
- 1974 Rasiowa: first-order implicative logics
- 1992 Takeuti, Titani: first-order Gödel–Dummett logic with

additional connectives

1998 Hájek: first-order axiomatic extensions of HL

### Ordered algebra based semantics

We want our semantics to assign some 'grades' from a set G to formulas:

 $\|\cdot\|$ : Form  $\to G$ 

Let us also fix the 'interpretation' of connectives, i.e., operations

 $c^{\boldsymbol{G}} \colon \boldsymbol{G}^n \to \boldsymbol{G}$  for each *n*-ary  $c \in \mathbf{C}$ 

Then we simply set

$$\|c(\varphi_1,\ldots,\varphi_n)\| = c^{\boldsymbol{G}}(\|\varphi_1\|,\ldots,\|\varphi_n\|)$$

The classical structure  $G = \langle G, \langle c^G \rangle_{c \in \mathbb{C}} \rangle$  is then an algebra of type  $\mathcal{L}$ 

(DC 2)

(DC 2.3)

## Ordered algebra based semantics

We want our semantics to assign some 'grades' from a set G to formulas:

 $\|\cdot\|$ : Form  $\to G$ 

Let us also fix the 'interpretation' of connectives, i.e., operations

 $c^{\boldsymbol{G}} \colon \boldsymbol{G}^n \to \boldsymbol{G}$  for each *n*-ary  $c \in \mathbf{C}$ 

Then we simply set

 $\|c(\varphi_1,\ldots,\varphi_n)\| = c^{\boldsymbol{G}}(\|\varphi_1\|,\ldots,\|\varphi_n\|)$ 

The classical structure  $G = \langle G, \langle c^G \rangle_{c \in \mathbb{C}} \rangle$  is then an algebra of type  $\mathcal{L}$ 

Finally, let us assume that *G* is partially ordered (DC3) some grades are 'better' than others

(DC 2)

(DC 2.3)

# Generalized semantics (DC 3', 4)

Consider a 'normal' predicate language:  $\mathcal{P} = \langle \mathbf{P}, \mathbf{F}, \mathbf{ar} \rangle$  DC1

Consider an algebra G of type  $\mathcal{L}$  with a partial order  $\leq$  DC2, DC3

*G*-structure  $\mathfrak{M}$  for  $\mathcal{P}$  is tuple  $\mathfrak{M} = \langle M, \langle f_{\mathfrak{M}} \rangle_{f \in \mathbf{F}}, \langle P_{\mathfrak{M}} \rangle_{P \in \mathbf{P}} \rangle$  where

• 
$$f_{\mathfrak{M}}: M^n \to M$$
 for each *n*-ary  $f \in \mathbf{F}$   
•  $P_{\mathfrak{M}}: M^n \to G$  for each *n*-ary  $P \in \mathbf{P}$ 

## Generalized semantics (DC 3', 4)

Consider a 'normal' predicate language:  $\mathcal{P} = \langle \mathbf{P}, \mathbf{F}, \mathbf{ar} \rangle$  DC1

Consider an algebra G of type  $\mathcal{L}$  with a partial order  $\leq$  DC2, DC3

*G*-structure  $\mathfrak{M}$  for  $\mathcal{P}$  is tuple  $\mathfrak{M} = \langle M, \langle f_{\mathfrak{M}} \rangle_{f \in \mathbf{F}}, \langle P_{\mathfrak{M}} \rangle_{P \in \mathbf{P}} \rangle$  where

•  $f_{\mathfrak{M}} \colon M^n \to M$  for each *n*-ary  $f \in \mathbf{F}$ •  $P_{\mathfrak{M}} \colon M^n \to G$  for each *n*-ary  $P \in \mathbf{P}$ 

 $\mathfrak{M}$ -evaluation v: a mapping v: ObjVar  $\rightarrow M$ ; extended to all terms/fle:

$$\begin{split} \|f(t_1,\ldots,t_n)\|_{\mathsf{v}}^{\mathfrak{M}} &= f_{\mathfrak{M}}(\|t_1\|_{\mathsf{v}}^{\mathfrak{M}},\ldots,\|t_n\|_{\mathsf{v}}^{\mathfrak{M}}) & \text{for } f \in \mathbf{F} \\ \|P(t_1,\ldots,t_n)\|_{\mathsf{v}}^{\mathfrak{M}} &= P_{\mathfrak{M}}(\|t_1\|_{\mathsf{v}}^{\mathfrak{M}},\ldots,\|t_n\|_{\mathsf{v}}^{\mathfrak{M}}) & \text{for } P \in \mathbf{P} \\ \|c(\varphi_1,\ldots,\varphi_n)\|_{\mathsf{v}}^{\mathfrak{M}} &= c^G(\|\varphi_1\|_{\mathsf{v}}^{\mathfrak{M}},\ldots,\|\varphi_n\|_{\mathsf{v}}^{\mathfrak{M}}) & \text{for } c \in \mathbf{C} \end{split}$$

## Generalized semantics (DC 3', 4)

Consider a 'normal' predicate language:  $\mathcal{P} = \langle \mathbf{P}, \mathbf{F}, \mathbf{ar} \rangle$  DC1

Consider an algebra G of type  $\mathcal{L}$  with a partial order  $\leq$  DC2, DC3

*G*-structure  $\mathfrak{M}$  for  $\mathcal{P}$  is tuple  $\mathfrak{M} = \langle M, \langle f_{\mathfrak{M}} \rangle_{f \in \mathbf{F}}, \langle P_{\mathfrak{M}} \rangle_{P \in \mathbf{P}} \rangle$  where

•  $f_{\mathfrak{M}} \colon M^n \to M$  for each *n*-ary  $f \in \mathbf{F}$ •  $P_{\mathfrak{M}} \colon M^n \to G$  for each *n*-ary  $P \in \mathbf{P}$ 

 $\mathfrak{M}$ -evaluation v: a mapping v: ObjVar  $\rightarrow M$ ; extended to all terms/fle:

| $\ f(t_1,\ldots,t_n)\ _{\mathrm{v}}^{\mathfrak{M}}$                         | = | $f_{\mathfrak{M}}(  t_1  _{\mathrm{v}}^{\mathfrak{M}}, \ldots,   t_n  _{\mathrm{v}}^{\mathfrak{M}})$             | for $f \in \mathbf{F}$ |
|-----------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------|------------------------|
| $\ P(t_1,\ldots,t_n)\ _{\mathrm{v}}^{\mathfrak{M}}$                         | = | $P_{\mathfrak{M}}(  t_1  _{\mathrm{v}}^{\mathfrak{M}},\ldots,  t_n  _{\mathrm{v}}^{\mathfrak{M}})$               | for $P \in \mathbf{P}$ |
| $\ c(arphi_1,\ldots,arphi_n)\ _{\scriptscriptstyle 	ext{V}}^{\mathfrak{M}}$ | = | $c^{\boldsymbol{G}}(\ \varphi_1\ _{\mathrm{v}}^{\mathfrak{M}},\ldots,\ \varphi_n\ _{\mathrm{v}}^{\mathfrak{M}})$ | for $c \in \mathbf{C}$ |
| $\ (\forall x)\varphi(x)\ _{\mathrm{v}}^{\mathfrak{M}}$                     | = | $\inf_{\leq} \{ \ \varphi(x)\ _{v[x:m]}^{\mathfrak{M}} \mid m \in M \}$                                          | DC4                    |
| $\ (\exists x)\varphi(x)\ _{v}^{\mathfrak{M}}$                              | = | $\sup_{\leq} \{ \ \varphi(x)\ _{v[x;m]}^{\mathfrak{M}} \mid m \in M \}$                                          | DC4                    |

#### Generalized semantics

(DC 3', 4)

Consider a 'normal' predicate language:  $\mathcal{P} = \langle \mathbf{P}, \mathbf{F}, \mathbf{ar} \rangle$  DC1

Consider an algebra G of type  $\mathcal{L}$  with a lattice reduct DC2, DC3'

*G*-structure  $\mathfrak{M}$  for  $\mathcal{P}$  is tuple  $\mathfrak{M} = \langle M, \langle f_{\mathfrak{M}} \rangle_{f \in \mathbf{F}}, \langle P_{\mathfrak{M}} \rangle_{P \in \mathbf{P}} \rangle$  where

•  $f_{\mathfrak{M}} \colon M^n \to M$  for each *n*-ary  $f \in \mathbf{F}$ •  $P_{\mathfrak{M}} \colon M^n \to G$  for each *n*-ary  $P \in \mathbf{P}$ 

 $\mathfrak{M}$ -evaluation v: a mapping v: ObjVar  $\rightarrow M$ ; extended to all terms/fle:

| $\ f(t_1,\ldots,t_n)\ _{\mathrm{v}}^{\mathfrak{M}}$                         | = | $f_{\mathfrak{M}}(  t_1  _{\mathrm{v}}^{\mathfrak{M}}, \ldots,   t_n  _{\mathrm{v}}^{\mathfrak{M}})$             | for $f \in \mathbf{F}$ |
|-----------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------|------------------------|
| $\ P(t_1,\ldots,t_n)\ _{\mathrm{v}}^{\mathfrak{M}}$                         | = | $P_{\mathfrak{M}}(  t_1  _{\mathrm{v}}^{\mathfrak{M}},\ldots,  t_n  _{\mathrm{v}}^{\mathfrak{M}})$               | for $P \in \mathbf{P}$ |
| $\ c(arphi_1,\ldots,arphi_n)\ _{\scriptscriptstyle 	ext{V}}^{\mathfrak{M}}$ | = | $c^{\boldsymbol{G}}(\ \varphi_1\ _{\mathrm{v}}^{\mathfrak{M}},\ldots,\ \varphi_n\ _{\mathrm{v}}^{\mathfrak{M}})$ | for $c \in \mathbf{C}$ |
| $\ (\forall x)\varphi(x)\ _{\mathrm{v}}^{\mathfrak{M}}$                     | = | $\inf_{\leq} \{ \ \varphi(x)\ _{v[x:m]}^{\mathfrak{M}} \mid m \in M \}$                                          | DC4                    |
| $\ (\exists x)\varphi(x)\ _{v}^{\mathfrak{M}}$                              | = | $\sup_{\leq} \{ \ \varphi(x)\ _{v[x;m]}^{\mathfrak{M}} \mid m \in M \}$                                          | DC4                    |

#### Example

Take the standard MV-algebra  $[0, 1]_{L} = \langle [0, 1], \&, \rightarrow, \land, \lor, 0, 1 \rangle$  where

$$x \& y = \max\{x + y - 1, 0\}$$
  $x \to y = \min\{1 - x + y, 1\}$   
 $x \land y = \min\{x, y\}$   $x \lor y = \max\{x, y\}$ 

Consider a  $[0, 1]_{E}$ -structure with domain  $M = \{1, ..., 6\}$  and binary predicate P: 'x likes y':

| $P_{\mathfrak{M}}$ | 1   | 2   | 3   | 4   | 5   | 6   |
|--------------------|-----|-----|-----|-----|-----|-----|
| 1                  | 1.0 | 1.0 | 0.5 | 0.4 | 0.3 | 0.0 |
| 2                  | 0.8 | 1.0 | 0.4 | 0.4 | 0.3 | 0.0 |
| 3                  | 0.7 | 0.9 | 1.0 | 0.8 | 0.7 | 0.4 |
| 4                  | 0.9 | 1.0 | 0.7 | 1.0 | 0.9 | 0.6 |
| 5                  | 0.6 | 0.8 | 0.8 | 0.7 | 1.0 | 0.7 |
| 6                  | 0.3 | 0.5 | 0.6 | 0.4 | 0.7 | 1.0 |

 $\begin{aligned} &\text{Narciss}(R) \equiv_{\text{df}} (\forall x) Rxx & \|| \text{Narciss}(P) \|^{\mathfrak{M}} = 1 \\ &\text{Sym}(R) \equiv_{\text{df}} (\forall x, y) (Rxy \to Ryx) & \|| \text{Sym}(P) \|^{\mathfrak{M}} = 0.4 \\ &\text{Trans}(R) \equiv_{\text{df}} (\forall x, y, z) (Rxy \& Ryz \to Rxz) & \|| \text{Trans}(P) \|^{\mathfrak{M}} = 1 \end{aligned}$ 

#### Example

Take the standard MV-algebra  $[0, 1]_{L} = \langle [0, 1], \&, \rightarrow, \land, \lor, 0, 1 \rangle$  where

$$x \& y = \max\{x + y - 1, 0\}$$
  $x \to y = \min\{1 - x + y, 1\}$   
 $x \land y = \min\{x, y\}$   $x \lor y = \max\{x, y\}$ 

Consider a  $[0, 1]_{\text{E}}$ -structure with domain  $M = \{1, ..., 6\}$  and binary predicates P: 'x likes y' and =: 'x equals y':

|                                                                      | $P_{\mathfrak{M}}$ | 1   | 2   | 3   | 4   | 5     | 6                |   |
|----------------------------------------------------------------------|--------------------|-----|-----|-----|-----|-------|------------------|---|
| ·                                                                    | 1                  | 1.0 | 1.0 | 0.5 | 0.4 | 0.3   | 0.0              |   |
|                                                                      | 2                  | 0.8 | 1.0 | 0.4 | 0.4 | 0.3   | 0.0              |   |
|                                                                      | 3                  | 0.7 | 0.9 | 1.0 | 0.8 | 0.7   | 0.4              |   |
|                                                                      | 4                  | 0.9 | 1.0 | 0.7 | 1.0 | 0.9   | 0.6              |   |
|                                                                      | 5                  | 0.6 | 0.8 | 0.8 | 0.7 | 1.0   | 0.7              |   |
|                                                                      | 6                  | 0.3 | 0.5 | 0.6 | 0.4 | 0.7   | 1.0              |   |
| $\mathbf{ELS}(R) \equiv_{\mathrm{df}} (\forall x) (\exists y) (Rxy)$ |                    |     |     |     | H   | ELS(1 | P)∥ <sup>∭</sup> | = |

 $EILS(R) \equiv_{df} (\forall x)(\exists y)(Ryx)$  $ELSE(R) \equiv_{df} (\forall x)(\exists y)(x \neq y \land Rxy)$ 

$$\|\operatorname{ELS}(P)\|^{\mathfrak{M}} = 1$$
  
$$\|\operatorname{EILS}(P)\|^{\mathfrak{M}} = 1$$
  
$$\|\operatorname{ELSE}(P)\|^{\mathfrak{M}} = 0.7$$

## How to define the consequence?

# (DC5)

Definition ((Sentential) consequence relation)

Let *G* be an  $\mathcal{L}$ -algebra with lattice reduct. Let  $T \cup \{\varphi\}$  be a set of  $\mathcal{P}$ -formulas. Then  $\varphi$  is a semantical consequence of *T* w.r.t. *G*,  $T \models_G \varphi$ , if

each G-model of T is G-model of  $\varphi$ 

## How to define the consequence?

# (DC5)

DC5

Definition ((Sentential) consequence relation) Let *G* be an  $\mathcal{L}$ -algebra with lattice reduct.

Let  $T \cup \{\varphi\}$  be a set of  $\mathcal{P}$ -formulas.

Then  $\varphi$  is a semantical consequence of T w.r.t.  $G, T \models_{G} \varphi$ , if

Assume, from now on, that  $\mathcal{L}$  contains a nullary connective  $\overline{1}$ 

each *G*-model of T is *G*-model of  $\varphi$ 

 $\mathfrak{M}$  is a *G***-model** of *T* if for each  $\mathfrak{M}$ -evaluation v:

- $\|\chi\|_v^{\mathfrak{M}}$  is defined for each formula  $\chi$  and
- $\|\varphi\|_{v}^{\mathfrak{M}} \geq \overline{1}^{G}$  for each formula  $\varphi \in T$

 $\overline{1}^{G}$  is the least 'good' grade

## How to define the consequence?

```
Definition ((Sentential) consequence relation)
Let \mathbb{K} be a class of \mathcal{L}-algebras with lattice reduct.
Let T \cup \{\varphi\} be a set of \mathcal{P}-formulas.
Then \varphi is a semantical consequence of T w.r.t. \mathbb{K}, T \models_{\mathbb{K}} \varphi, if
```

for each  $G \in \mathbb{K}$ , each G-model of T is G-model of  $\varphi$ 

Assume, from now on, that  $\mathcal{L}$  contains a nullary connective  $\overline{1}$  DC5

 $\mathfrak{M}$  is a *G***-model** of *T* if for each  $\mathfrak{M}$ -evaluation v:

- $\|\chi\|_v^{\mathfrak{M}}$  is defined for each formula  $\chi$  and
- $\|\varphi\|_{v}^{\mathfrak{M}} \geq \overline{1}^{G}$  for each formula  $\varphi \in T$

 $\overline{1}^{G}$  is the least 'good' grade

DC5

## Examples

| K                                     | logic                                                                        |
|---------------------------------------|------------------------------------------------------------------------------|
| {2}                                   | classical FOL                                                                |
| (complete) Boolean algebras           | classical FOL                                                                |
| (complete) Heyting algebras           | intuitionistic FOL                                                           |
| (complete) SI Heyting algebras        | intuitionistic FOL + CD                                                      |
| (complete) Heyting chains             | int. FOL + $(\varphi \rightarrow \psi) \lor (\psi \rightarrow \varphi)$ + CD |
| Gödel algebras                        | int. FOL + $(\varphi \rightarrow \psi) \lor (\psi \rightarrow \varphi)$      |
| (complete) FL <sub>ew</sub> -algebras | affine FOL (w/o expon.)                                                      |
| MV-algebras                           | Łukasiewicz FOL                                                              |

• SI Heyting algebras = Heyting algebras with a coatom

• CD: 
$$(\forall x)(\chi \lor \varphi) \to \chi \lor (\forall x)\varphi$$
 (*x* not free in  $\chi$ )

- Gödel algebras = variety generated by Heyting chains
- MV-algebras = variety generated by [0,1]<sub>L</sub>

## How the propositional logics look like?

Recall propositional language  $\mathcal{L} = \langle \mathbf{C}, \{p_i \mid i \in \mathsf{N}\}, \emptyset, \mathbf{ar} \rangle, \mathbf{ar}(p_i) = 0$ 

Then  $\models_{\mathbb{K}}$  is a structural consequence relation à la Tarski

## How the propositional logics look like?

Recall propositional language  $\mathcal{L} = \langle \mathbf{C}, \{p_i \mid i \in \mathsf{N}\}, \emptyset, \mathbf{ar} \rangle, \mathbf{ar}(p_i) = 0$ 

Then  $\models_{\mathbb{K}}$  is a structural consequence relation à la Tarski, i.e.,

- If  $\varphi \in T$ , then  $T \models_{\mathbb{K}} \varphi$  (Reflexivity)
- If  $S \models_{\mathbb{K}} \psi$  for each  $\psi \in T$  and  $T \models_{\mathbb{K}} \varphi$ , then  $S \models_{\mathbb{K}} \varphi$  (Cut)
- If  $T \models_{\mathbb{K}} \varphi$ , then  $\sigma[T] \models_{\mathbb{K}} \sigma(\varphi)$  for all substitutions  $\sigma$  (Structurality)

where substitution is any mapping from  $\{p_i \mid i \in N\}$  to Form

## How the propositional logics look like?

Recall propositional language  $\mathcal{L} = \langle \mathbf{C}, \{p_i \mid i \in \mathsf{N}\}, \emptyset, \mathbf{ar} \rangle, \mathbf{ar}(p_i) = 0$ 

Then  $\models_{\mathbb{K}}$  is a structural consequence relation à la Tarski, i.e.,

- If  $\varphi \in T$ , then  $T \models_{\mathbb{K}} \varphi$  (Reflexivity)
- If  $S \models_{\mathbb{K}} \psi$  for each  $\psi \in T$  and  $T \models_{\mathbb{K}} \varphi$ , then  $S \models_{\mathbb{K}} \varphi$  (Cut)

• If  $T \models_{\mathbb{K}} \varphi$ , then  $\sigma[T] \models_{\mathbb{K}} \sigma(\varphi)$  for all substitutions  $\sigma$  (Structurality)

where substitution is any mapping from  $\{p_i \mid i \in N\}$  to Form

But  $\models_{\mathbb{K}}$  need not be finitary, i.e., we do not have

 $T \vdash \varphi$  implies  $T' \vdash \varphi$  for some finite  $T' \subseteq T$ 

This is the case e.g. for  $\mathbb{K} = \{[0, 1]_{\mathbb{L}}\}.$ 

#### We want propositional logics to be a bit 'better' (DC6)

Assume, from now on, that there is a binary operation  $\rightarrow$  in  $\mathcal{L}$  st: DC6

$$x \to^G y \ge \overline{1}^G$$
 iff  $x \le y$  for each  $G$   
y is 'better' than x IFF  $x \to^G y$  is 'good'

Then ⊨<sub>K</sub> is algebraically implicative à la C and Noguera and, if finitary, algebraizable logic à la Blok and Pigozzi

## We want propositional logics to be a bit 'better' (DC6)

Assume, from now on, that there is a binary operation  $\rightarrow$  in  $\mathcal{L}$  st: DC6

$$x \to^G y \ge \overline{1}^G$$
 iff  $x \le y$  for each  $G$   
y is 'better' than x IFF  $x \to^G y$  is 'good'

Then ⊨<sub>K</sub> is algebraically implicative à la C and Noguera and, if finitary, algebraizable logic à la Blok and Pigozzi, i.e., we will always have:

$$\begin{array}{cccc} \models_{\mathbb{K}} \varphi \rightarrow \varphi & \varphi, \varphi \rightarrow \psi \models_{\mathbb{K}} \psi & \varphi \rightarrow \psi, \psi \rightarrow \chi \models_{\mathbb{K}} \varphi \rightarrow \chi \\ \varphi \models_{\mathbb{K}} \overline{1} \rightarrow \varphi & \overline{1} \rightarrow \varphi \models_{\mathbb{K}} \varphi \\ \models_{\mathbb{K}} \varphi \wedge \psi \rightarrow \varphi & \models_{\mathbb{K}} \varphi \wedge \psi \rightarrow \psi & \chi \rightarrow \varphi, \chi \rightarrow \psi \models_{\mathbb{K}} \chi \rightarrow \varphi \wedge \psi \\ \models_{\mathbb{K}} \varphi \rightarrow \varphi \lor \psi & \models_{\mathbb{K}} \psi \rightarrow \varphi \lor \psi & \varphi \rightarrow \chi, \psi \rightarrow \chi \models_{\mathbb{K}} \varphi \lor \psi \rightarrow \chi \end{array}$$

and for each *n*-ary  $c \in \mathbf{C}$ , formulas  $\varphi, \psi, \chi_1, \dots, \chi_n$ , and each i < n:

$$\varphi \to \psi, \psi \to \varphi \models_{\mathbb{K}} c(\chi_1, \ldots, \chi_i, \varphi, \ldots, \chi_n) \leftrightarrow c(\chi_1, \ldots, \chi_i, \psi, \ldots, \chi_n)$$
## How to axiomatize $\models_{\mathbb{K}}$ ?

Lets us first restrict to propositional languages

# How to axiomatize $\models_{\mathbb{K}}$ ?

Lets us first restrict to propositional languages

A quasivariety is a class of algebras axiomatized by quasiidentities formulas of the form  $(\bigwedge_{i \le n} \alpha_i \approx \beta_i) \rightarrow \varphi \approx \psi$ 

By  $Q(\mathbb{K})$  we denote the quasivariety generated by  $\mathbb{K}$  i.e., the smallest class of algebras satisfying all quasiidentites valid in  $\mathbb{K}$ 

Theorem (For propositional logic only)  $\models_{\mathbb{K}}$  is finitary iff  $\models_{\mathbb{K}} = \models_{Q(\mathbb{K})}$ .

# How to axiomatize $\models_{\mathbb{K}}$ ?

Lets us first restrict to propositional languages

A quasivariety is a class of algebras axiomatized by quasiidentities formulas of the form  $(\bigwedge_{i \le n} \alpha_i \approx \beta_i) \rightarrow \varphi \approx \psi$ 

By  $Q(\mathbb{K})$  we denote the quasivariety generated by  $\mathbb{K}$  i.e., the smallest class of algebras satisfying all quasiidentites valid in  $\mathbb{K}$ 

Theorem (For propositional logic only)  $\models_{\mathbb{K}}$  is finitary iff  $\models_{\mathbb{K}} = \models_{Q(\mathbb{K})}$ .

If  $\models_{\mathbb{K}}$  is finitary logic, than

- $Q(\mathbb{K})$  is its equivalent algebraic semantics
- $\models_{\mathbb{K}}$  is axiomatized 'using' the quasiidentities axiomatizing  $Q(\mathbb{K})$

### 1st axiomatizability result

### Theorem (PC, C. Noguera. JSL 2015)

Let  $\mathbb{K}$  be a quasivariety of *L*-algebras satisfying DC3', DC4, DC5 and  $\mathcal{RX}$  an arbitrary axiomatization of the propositional logic of  $\mathbb{K}$ .

## 1st axiomatizability result

### Theorem (PC, C. Noguera. JSL 2015)

Let  $\mathbb{K}$  be a quasivariety of  $\mathcal{L}$ -algebras satisfying DC3', DC4, DC5 and  $\mathcal{A}X$  an arbitrary axiomatization of the propositional logic of  $\mathbb{K}$ . Then the following are equivalent:

•  $T \models_{\mathbb{K}} \varphi$ 

- there is a proof of  $\varphi$  from *T* in the axiomatic system:
  - (P) first-order substitutions of axioms and rules of  $\mathcal{RX}$
  - $(\forall 1) \quad \vdash (\forall x) \varphi(x, \vec{z}) \rightarrow \varphi(t, \vec{z})$
  - $(\exists 1) \quad \vdash \varphi(t, \vec{z}) \to (\exists x) \varphi(x, \vec{z})$
  - $(\forall 2) \quad \chi \to \varphi \vdash \chi \to (\forall x)\varphi$

 $(\exists 2) \quad \varphi \to \chi \vdash (\exists x) \varphi \to \chi$ 

- t substitutable for x in  $\varphi$
- t substitutable for x in  $\varphi$ 
  - x not free in  $\chi$
  - x not free in  $\chi$

## 1st axiomatizability result

### Theorem (PC, C. Noguera. JSL 2015)

Let L be a finitary algebraically implicative logic with axiomatization  $\mathcal{RX}$  such that its equivalent algebraic semantics  $\mathbb{K}$  satisfies DC3', DC4, DC5. Then the following are equivalent:

•  $T \models_{\mathbb{K}} \varphi$ 

- there is a proof of  $\varphi$  from *T* in the axiomatic system:
  - (P) first-order substitutions of axioms and rules of  $\mathcal{RX}$
  - $(\forall 1) \quad \vdash (\forall x) \varphi(x, \vec{z}) \rightarrow \varphi(t, \vec{z})$
  - $(\exists 1) \quad \vdash \varphi(t, \vec{z}) \to (\exists x) \varphi(x, \vec{z})$
  - $(\forall 2) \quad \chi \to \varphi \vdash \chi \to (\forall x)\varphi$

 $(\exists 2) \quad \varphi \to \chi \vdash (\exists x) \varphi \to \chi$ 

- t substitutable for x in  $\varphi$
- t substitutable for x in  $\varphi$ 
  - x not free in  $\chi$
  - x not free in  $\chi$

### Why only for such big $\mathbb{K}s$ ?

Especially if we know that for finitary  $\models_{\mathbb{K}}$  and propositional languages:

$$\models_{\mathbb{K}} = \models_{Q(\mathbb{K})}$$

### Why only for such big $\mathbb{K}s$ ?

Especially if we know that for finitary  $\models_{\mathbb{K}}$  and propositional languages:

$$\models_{\mathbb{K}} = \models_{Q(\mathbb{K})}$$

Consider  $\ensuremath{\mathbb{K}}$  being the class of Heyting chains:

Then  $\varphi \lor \psi \models_{\mathbb{K}} ((\forall x)\varphi) \lor \psi$  but  $\varphi \lor \psi \not\models_{\mathbf{Q}(\mathbb{K})} ((\forall x)\varphi) \lor \psi$ 

Other example: the set  $\{\varphi \mid \models_{[0,1]_{L}} \varphi\}$  is coNP-complete for propositional languages but  $\Pi_2$ -complete in general while  $\{\varphi \mid \models_{\mathbf{Q}([0,1]_{L})} \varphi\}$  is  $\Sigma_1$ -complete

### Why only for such big $\mathbb{K}s$ ?

Especially if we know that for finitary  $\models_{\mathbb{K}}$  and propositional languages:

$$\models_{\mathbb{K}} = \models_{Q(\mathbb{K})}$$

Consider  $\ensuremath{\mathbb{K}}$  being the class of Heyting chains:

Then  $\varphi \lor \psi \models_{\mathbb{K}} ((\forall x)\varphi) \lor \psi$  but  $\varphi \lor \psi \not\models_{\mathbf{Q}(\mathbb{K})} ((\forall x)\varphi) \lor \psi$ 

Other example: the set  $\{\varphi \mid \models_{[0,1]_{L}} \varphi\}$  is coNP-complete for propositional languages but  $\Pi_2$ -complete in general while  $\{\varphi \mid \models_{\mathbf{Q}([0,1]_{L})} \varphi\}$  is  $\Sigma_1$ -complete

But at least we will have soundness:

$$\models_{\mathbb{K}} \supseteq \models_{Q(\mathbb{K})} = \vdash$$

Petr Cintula (ICS CAS)

When can we axiomatize a logic based on 'smaller' class? (let us restrict to countable predicate languages)

When can we axiomatize a logic based on 'smaller' class? (let us restrict to countable predicate languages)

#### Theorem

Let  $\mathbb{K}$  be a class of  $\mathcal{L}$ -algebras and for each countable  $A \in Q(\mathbb{K})$  there is a  $\sigma$ -embedding of A into some  $B \in \mathbb{K}$ . Then

$$\models_{\mathbb{K}} = \models_{\mathbf{Q}(\mathbb{K})}$$

This condition is not necessary, only sufficient.

When can we axiomatize a logic based on 'smaller' class? (let us restrict to countable predicate languages)

#### Theorem

Let  $\mathbb{K}$  be a class of  $\mathcal{L}$ -algebras and for each countable  $A \in \mathbb{Q}(\mathbb{K})$  there is a  $\sigma$ -embedding of A into some  $B \in \mathbb{K}$ . Then

$$\models_{\mathbb{K}} = \models_{Q(\mathbb{K})}$$

This condition is not necessary, only sufficient.

A function  $f: A \rightarrow B$  is a  $\sigma$ -embedding if:

• *f* is one-one

• 
$$f(c^{A}(a_{1},\ldots,a_{n})) = c^{B}(f(a_{1}),\ldots,f(a_{n}))$$
 for each *n*-ary  $c \in \mathbb{C}$ 

- for each  $X \subseteq A$ , if  $\inf_{\leq^A} X$  exists, then  $f(\inf_{\leq^A} X) = \inf_{\leq^B} f[A]$ .
- for each  $X \subseteq A$ , if  $\sup_{\leq^A} X$  exists, then  $f(\sup_{\leq^A} X) = \sup_{\leq^B} f[A]$ .

### 2nd axiomatizability result

### Theorem (PC, C. Noguera. JSL 2015)

Let  $\mathbb{K}'$  be a quasivariety of  $\mathcal{L}$ -algebras satisfying DC3', DC4, DC5 such that  $\mathbb{K}' = \mathbf{Q}(\mathbb{K})$ , where  $\mathbb{K}$  is the class of all chains in  $\mathbb{K}'$  and  $\mathcal{A}X$  an arbitrary axiomatization of the propositional logic of  $\mathbb{K}$ .

# 2nd axiomatizability result

### Theorem (PC, C. Noguera. JSL 2015)

Let  $\mathbb{K}'$  be a quasivariety of  $\mathcal{L}$ -algebras satisfying DC3', DC4, DC5 such that  $\mathbb{K}' = \mathbf{Q}(\mathbb{K})$ , where  $\mathbb{K}$  is the class of all chains in  $\mathbb{K}'$ and  $\mathcal{R}X$  an arbitrary axiomatization of the propositional logic of  $\mathbb{K}$ . Then the following are equivalent:

- $T \models_{\mathbb{K}} \varphi$
- there is a proof of  $\varphi$  from *T* in the axiomatic system:
  - (P) first-order substitutions of axioms and rules of  $\mathcal{R}X$
  - $(\forall 1) \quad \vdash (\forall x)\varphi(x,\vec{z}) \rightarrow \varphi(t,\vec{z}) \qquad t \text{ substitutable for } x \text{ in } \varphi$
  - $(\exists 1) \quad \vdash \varphi(t, \vec{z}) \to (\exists x)\varphi(x, \vec{z}) \qquad t \text{ substitutable for } x \text{ in } \varphi$
  - $(\forall 2) \quad \chi \to \varphi \vdash \chi \to (\forall x)\varphi \qquad x \text{ not free in } \chi$

$$(\exists 2) \quad \varphi \to \chi \vdash (\exists x) \varphi \to \chi$$

x not free in  $\chi$ 

- $(\forall 2)^{\vee} \quad (\chi \to \varphi) \lor \psi \vdash (\chi \to (\forall x)\varphi) \lor \psi \quad x \text{ not free in } \chi \text{ and } \psi$
- $(\exists 2)^{\vee} \quad (\varphi \to \chi) \lor \psi \vdash ((\exists x)\varphi \to \chi) \lor \psi \quad x \text{ not free in } \chi \text{ and } \psi$

# 2nd axiomatizability result

### Theorem (PC, C. Noguera. JSL 2015)

Let L be a semilinear finitary alg. impl. logic with axiomatization  $\mathcal{RX}$ , such that its equivalent algebraic semantics  $\mathbb{K}'$  satisfies DC3', DC4, DC5 and let  $\mathbb{K}$  be the class of its all chains in  $\mathbb{K}'$ Then the following are equivalent:

- $T \models_{\mathbb{K}} \varphi$
- there is a proof of  $\varphi$  from *T* in the axiomatic system:
  - (P) first-order substitutions of axioms and rules of  $\mathcal{RX}$
  - $(\forall 1) \quad \vdash (\forall x)\varphi(x,\vec{z}) \rightarrow \varphi(t,\vec{z}) \qquad t \text{ substitutable for } x \text{ in } \varphi$
  - $(\exists 1) \quad \vdash \varphi(t, \vec{z}) \to (\exists x)\varphi(x, \vec{z}) \qquad t \text{ substitutable for } x \text{ in } \varphi$
  - $(\forall 2) \quad \chi \to \varphi \vdash \chi \to (\forall x)\varphi \qquad \qquad x \text{ not free in } \chi$
  - $(\exists 2) \quad \varphi \to \chi \vdash (\exists x) \varphi \to \chi$

- x not free in  $\chi$
- $(\forall 2)^{\vee} \quad (\chi \to \varphi) \lor \psi \vdash (\chi \to (\forall x)\varphi) \lor \psi \quad x \text{ not free in } \chi \text{ and } \psi$
- $(\exists 2)^{\vee} \quad (\varphi \to \chi) \lor \psi \vdash ((\exists x)\varphi \to \chi) \lor \psi \quad x \text{ not free in } \chi \text{ and } \psi$

When can we axiomatize a logic based on a 'smaller' class of chains? (let us restrict to countable predicate languages)

#### Theorem

Let  $\mathbb{K}$  be a class of  $\mathcal{L}$ -chains and for each countable chain  $A \in \mathbb{Q}(\mathbb{K})$  there is a  $\sigma$ -embedding of A into some  $B \in \mathbb{K}$ . Then

 $\models_{\mathbb{K}} = \models_{Q(\mathbb{K})}$ 

Again, this condition is not necessary, only sufficient.

We have designed 'lattice-valued predicate logics' based on design choices:

- DC1 the syntax is almost classical; we only consider an arbitrary set  $\mathcal{L}$  of propositional connectives
- DC2 connectives have truth-functional interpretations
- DC3' some grades are better than others and for each two grades there is the best (worst) grade worse (better) than both of them  $\land, \lor \in \mathcal{L}$
- DC4 quantifiers are interpreted using infima and suprema over the set of instances of the formulas quantified
- DC5 some grades are 'good'; the logic/consequence is the transition of 'goodness'; and there is the least 'good' grade  $\overline{1} \in \mathcal{L}$
- DC6 the order of grades and the set of good grades are mutually definable using implication  $\rightarrow \in \mathcal{L}$

We have axiomatized, in some cases, the resulting logics

Petr Cintula (ICS CAS)

We have designed 'lattice-valued predicate logics' based on design choices:

- DC1 the syntax is almost classical; we only consider an arbitrary set  $\mathcal{L}$  of propositional connectives
- DC2 connectives have truth-functional interpretations
- DC3 some grades are better than others
- DC4 quantifiers are interpreted using infima and suprema over the set of instances of the formulas quantified
- DC5 some grades are 'good'; the logic/consequence is the transition of 'goodness'
- DC6 the order of grades and the set of good grades are mutually definable using implication  $\rightarrow \in \mathcal{L}$

We have designed 'lattice-valued predicate logics' based on design choices:

- DC2 connectives have truth-functional interpretations
- DC3 some grades are better than others

- DC5 some grades are 'good'; the logic/consequence is the transition of 'goodness'
- DC6 the order of grades and the set of good grades are mutually definable using implication  $\rightarrow \in \mathcal{L}$

We have designed 'lattice-valued predicate logics' based on design choices:

- DC2 connectives have truth-functional interpretations
- DC3 some grades are better than others

DC5 some grades are 'good'; the logic/consequence is the transition of 'goodness'

We have designed 'lattice-valued predicate logics' based on design choices:

- DC2 connectives have truth-functional interpretations
- DC3 some grades are better than others

We have designed 'lattice-valued predicate logics' based on design choices:

DC3 some grades are better than others

### Outline

### 1 Introduction

2 Lattice-Valued Predicate Logics



### What's next?

### Recall our example

Take the standard MV-algebra  $[0, 1]_{L} = \langle [0, 1], \&, \rightarrow, \land, \lor, 0, 1 \rangle$  where

$$x \& y = \max\{x + y - 1, 0\}$$
  $x \to y = \min\{1 - x + y, 1\}$   
 $x \land y = \min\{x, y\}$   $x \lor y = \max\{x, y\}$ 

Consider a  $[0, 1]_{\text{E}}$ -structure with domain  $M = \{1, ..., 6\}$  and binary predicate P: 'x likes y':

| $P_{\mathfrak{M}}$ | 1   | 2   | 3   | 4   | 5   | 6   |
|--------------------|-----|-----|-----|-----|-----|-----|
| 1                  | 1.0 | 1.0 | 0.5 | 0.4 | 0.3 | 0.0 |
| 2                  | 0.8 | 1.0 | 0.4 | 0.4 | 0.3 | 0.0 |
| 3                  | 0.7 | 0.9 | 1.0 | 0.8 | 0.7 | 0.4 |
| 4                  | 0.9 | 1.0 | 0.7 | 1.0 | 0.9 | 0.6 |
| 5                  | 0.6 | 0.8 | 0.8 | 0.7 | 1.0 | 0.7 |
| 6                  | 0.3 | 0.5 | 0.6 | 0.4 | 0.7 | 1.0 |

 $\begin{array}{ll} \operatorname{Refl}(R) &\equiv_{\operatorname{df}} (\forall x) Rxx & \|\operatorname{Refl}(P)\|^{\mathfrak{M}} = 1 \\ \operatorname{Sym}(R) &\equiv_{\operatorname{df}} (\forall x, y) (Rxy \to Ryx) & \|\operatorname{Sym}(P)\|^{\mathfrak{M}} = 0.4 \\ \operatorname{Trans}(R) &\equiv_{\operatorname{df}} (\forall x, y, z) (Rxy \& Ryz \to Rxz) & \|\operatorname{Trans}(P)\|^{\mathfrak{M}} = 1 \end{array}$ 

### Recall our example

Take the standard MV-algebra  $[0, 1]_{L} = \langle [0, 1], \&, \rightarrow, \land, \lor, 0, 1 \rangle$  where

$$x \& y = \max\{x + y - 1, 0\}$$
  $x \to y = \min\{1 - x + y, 1\}$   
 $x \land y = \min\{x, y\}$   $x \lor y = \max\{x, y\}$ 

Consider a  $[0, 1]_{E}$ -structure with domain  $M = \{1, ..., 6\}$  and binary predicate P: 'x likes y':

|                 | $P_{\mathfrak{M}}$                                                                                   | 1      | 2     | 3           | 4    | 5      | 6                            |   |      |
|-----------------|------------------------------------------------------------------------------------------------------|--------|-------|-------------|------|--------|------------------------------|---|------|
|                 | 1                                                                                                    | 1.00   | 1.00  | 0.56        | 0.40 | 0.30   | 0.00                         | - |      |
|                 | 2                                                                                                    | 0.87   | 1.00  | 0.33        | 0.44 | 0.26   | 0.02                         |   |      |
|                 | 3                                                                                                    | 0.67   | 0.92  | 0.93        | 0.87 | 0.70   | 0.39                         |   |      |
|                 | 4                                                                                                    | 0.93   | 1.00  | 0.64        | 1.00 | 0.97   | 0.67                         |   |      |
|                 | 5                                                                                                    | 0.52   | 0.79  | 0.82        | 0.71 | 1.00   | 0.59                         |   |      |
|                 | 6                                                                                                    | 0.27   | 0.50  | 0.61        | 0.41 | 0.72   | 1.00                         |   |      |
| ≡ <sub>df</sub> | $(\forall x)Rx$                                                                                      | x      |       |             |      | Refl(  | $P)\parallel^{\mathfrak{M}}$ | = | 0.93 |
| ≡ <sub>df</sub> | $\equiv_{\rm df} (\forall x, y)(Rxy \to Ryx) \qquad   \operatorname{Sym}(P)  ^{\mathfrak{M}} = 0.41$ |        |       |             |      |        | 0.41                         |   |      |
| ≡ <sub>df</sub> | $(\forall x, y, $                                                                                    | z)(Rxy | & Ryz | $z \to R z$ | xz)  | Trans( | $P)\parallel^{\mathfrak{M}}$ | = | 0.93 |

 $\operatorname{Refl}(R)$ 

Sym(R)

Trans(*R*)

### What we want to study?

### Fuzzy equivalence relation a.k.a. similarity

 $\begin{array}{ll} \operatorname{Refl}(R) & \equiv_{\operatorname{df}} & (\forall x) Rxx \\ \operatorname{Sym}(R) & \equiv_{\operatorname{df}} & (\forall x, y) (Rxy \to Ryx) \\ \operatorname{Trans}(R) & \equiv_{\operatorname{df}} & (\forall x, y, z) (Rxy \& Ryz \to Rxz) \\ \operatorname{Sim}(R) & \equiv_{\operatorname{df}} & \operatorname{Refl}(R) \& \operatorname{Sym}(R) \& \operatorname{Trans}(R) \end{array}$ 

### What we want to study?

#### Fuzzy equivalence relation a.k.a. similarity

 $\begin{array}{ll} \operatorname{Refl}(R) & \equiv_{\operatorname{df}} & (\forall x) Rxx \\ \operatorname{Sym}(R) & \equiv_{\operatorname{df}} & (\forall x, y) (Rxy \to Ryx) \\ \operatorname{Trans}(R) & \equiv_{\operatorname{df}} & (\forall x, y, z) (Rxy \& Ryz \to Rxz) \\ \operatorname{Sim}(R) & \equiv_{\operatorname{df}} & \operatorname{Refl}(R) \& \operatorname{Sym}(R) \& \operatorname{Trans}(R) \end{array}$ 

We need a unary connective  $\triangle$  interpreted as  $\triangle 1 = 1$  and  $\triangle x = 0$  for x < 1

## What we want to study?

### Fuzzy equivalence relation a.k.a. similarity

 $\begin{array}{ll} \operatorname{Refl}(R) & \equiv_{\operatorname{df}} & (\forall x) Rxx \\ \operatorname{Sym}(R) & \equiv_{\operatorname{df}} & (\forall x, y) (Rxy \to Ryx) \\ \operatorname{Trans}(R) & \equiv_{\operatorname{df}} & (\forall x, y, z) (Rxy \& Ryz \to Rxz) \\ \operatorname{Sim}(R) & \equiv_{\operatorname{df}} & \operatorname{Refl}(R) \& \operatorname{Sym}(R) \& \operatorname{Trans}(R) \end{array}$ 

We need a unary connective  $\triangle$  interpreted as  $\triangle 1 = 1$  and  $\triangle x = 0$  for x < 1

### **Fuzzy partitions**

| $\operatorname{Cover}(\mathcal{A})$ | $\equiv_{df}$   | $(\forall x)(\exists A \in \mathcal{A}) \triangle (x \in A)$                          |
|-------------------------------------|-----------------|---------------------------------------------------------------------------------------|
| Disj(A)                             | ≡ <sub>df</sub> | $(\forall A, B \in \mathcal{A})((\exists x)(x \in A \& x \in B) \to A \subseteq B)$   |
| Crisp(A)                            | ≡ <sub>df</sub> | $(\forall A) \triangle (A \in \mathcal{A} \lor \neg (A \in \mathcal{A}))$             |
| NormM(A)                            | $\equiv_{df}$   | $(\forall A \in \mathcal{A})(\exists x) \triangle (x \in A)$                          |
| $Part(\mathcal{A})$                 | ≡ <sub>df</sub> | $Crisp(\mathcal{A}) \& NormM(\mathcal{A}) \& Cover(\mathcal{A}) \& Disj(\mathcal{A})$ |

This part of the talk is based on: L. Běhounek, U. Bodenhofer, PC: *Relations in Fuzzy Class Theory.* Fuzzy Sets and Systems, 2008

# Setting the stage—language

Consider three-sorted predicate language with sorts for

- O objects
- C classes of objects
- C classes of classes of objects

binary predicates

- $\in \subseteq O \times C$  and  $\in \subseteq C \times C$
- =  $\subseteq O \times O$  and =  $\subseteq C \times C$  and =  $\subseteq C \times C$

and terms:

- $\langle \cdot, \cdot \rangle : O^2 \to O$ , we write Rxy for ' $\langle x, y \rangle \in X$ '
- $\{x \mid \varphi\}$  gives a class and  $\{X \mid \varphi\} \in C$  a class of classes

We shall also use defined binary predicate:

• 
$$A \subseteq B \equiv_{\mathrm{df}} (\forall x) (x \in A \to x \in B)$$

### Setting the stage-models

Intended models:

- Object variables range over a set (universe) U
- Class variables range over [0, 1]<sup>U</sup>
- Class-class variables range over [0, 1]<sup>[0,1]<sup>U</sup></sup>

'General' models for an MV-chain A:

- Object variables range over a set (universe) U
- Class variables range over a subset of A<sup>U</sup>
- Class-class variables range over a subset of A<sup>AU</sup>

### Setting the stage—axiomatization?

W.r.t. intended models: not a nice one (it contains second-order logic)

W.r.t. general models: yes

(due to the completeness theorem)

But even soundness w.r.t. intended models is very usefull

### Setting the stage—axiomatization

First-order axioms: those of  $\models_{\mathbb{K}}$  where  $\mathbb{K}$  is the class all MV-chains with  $\triangle$ 

Equality axioms: as usual plus  $(\forall x, y)(\triangle (x = y) \leftrightarrow x = y)$ 

Additional axioms:

• Comprehension axioms:

 $(\forall y)(y \in \{x \mid \varphi(x)\} \leftrightarrow \varphi(y)) \text{ and } (\forall Y)(Y \in \{X \mid \varphi(X)\} \leftrightarrow \varphi(Y))$ 

• Extensionality:

 $(\forall x) \triangle (x \in A \leftrightarrow x \in B) \rightarrow A = B$ 

 $(\forall X) \triangle (X \in \mathcal{A} \leftrightarrow X \in \mathcal{B}) \rightarrow \mathcal{A} = \mathcal{B}$ 

• Axioms for tuples: tuples equal iff all components equal, etc.

### Definitions

 $[x]_R =_{df} \{y \mid Ryx\}$  $V/R =_{df} \{A \mid (\exists x)(A = [x]_R)\}$ 

#### Results

- Crisp(V/R)
- $\triangle \operatorname{Refl}(R) \rightarrow \operatorname{Cover}(V/R) \& \operatorname{Norm}M(V/R)$

 $\operatorname{Refl}(R) \to (\forall x) (x \in [x]_R)$ 

• Trans<sup>2</sup>(R) & Sym(R)  $\rightarrow$  Disj(V/R)

### Definitions

$$[x]_R =_{df} \{y \mid Ryx\}$$
$$V/R =_{df} \{A \mid (\exists x)(A = [x]_R)\}$$

### Results

- Crisp(V/R)
- $\triangle \operatorname{Refl}(R) \to \operatorname{Cover}(V/R)$  &  $\operatorname{Norm}M(V/R)$   $\operatorname{Refl}(R) \to (\forall x)(x \in [x]_R)$
- Trans<sup>2</sup>(*R*) & Sym(*R*)  $\rightarrow$  Disj(V/*R*) Trans(*R*)  $\rightarrow$  ( $\forall x, y$ )(*Rxy*  $\rightarrow$  [*x*]<sub>*R*</sub>  $\subseteq$  [*y*]<sub>*R*</sub>)
- 1.  $Rzx \& Rxy \rightarrow Rzy$  Trans(R) and ( $\forall$ 1)
  - 1., residuation, MP
  - 2. and comprehension axioms
    - 3. and (∀2)

5. and  $(\forall 2)$ 

5. Trans(R)  $\rightarrow$  ( $Rxy \rightarrow [x]_R \subseteq [y]_R$ )

3.  $Rxy \rightarrow (z \in [x]_R \rightarrow z \in [y]_R)$ 

6. Trans(R)  $\rightarrow$  ( $\forall x, y$ )( $Rxy \rightarrow [x]_R \subseteq [y]_R$ )

2.  $Rxy \rightarrow (Rzx \rightarrow Rzy)$ 

4.  $Rxy \rightarrow [x]_R \subseteq [y]_R$ 

4. and deduction theorem

### Definitions

$$[x]_R =_{df} \{y \mid Ryx\}$$
$$V/R =_{df} \{A \mid (\exists x)(A = [x]_R)\}$$

#### Results

- Crisp(V/R)
- $\triangle \operatorname{Refl}(R) \to \operatorname{Cover}(V/R)$  &  $\operatorname{Norm}M(V/R)$   $\operatorname{Refl}(R) \to (\forall x)(x \in [x]_R)$
- Trans<sup>2</sup>(*R*) & Sym(*R*)  $\rightarrow$  Disj(V/*R*) Trans(*R*)  $\rightarrow$  ( $\forall x, y$ )(*Rxy*  $\rightarrow$  [*x*]<sub>*R*</sub>  $\subseteq$  [*y*]<sub>*R*</sub>)
- 1.  $Rxy \& Rxz \rightarrow Ryz$  Trans(R), Sym(R), and ( $\forall 1$ )
- 2.  $x \in [y]_R \& x \in [z]_R \to Ryz$  1. and comprehension axioms
- 3.  $x \in [y]_R \& x \in [z]_R \rightarrow [y]_R \subseteq [z]_R$  2. and Trans(*R*)
- 4.  $(\exists x)(x \in [y]_R \& x \in [z]_R) \to [y]_R \subseteq [z]_R$  3. and  $(\exists 2)$
- 5. Trans<sup>2</sup>(*R*) & Sym(*R*)  $\rightarrow$  (( $\exists x$ )( $x \in [y]_R$  &  $x \in [z]_R$ )  $\rightarrow$  [ $y]_R \subseteq [z]_R$ ) 4. and DT
- 6. Trans<sup>2</sup>(R) & Sym(R)  $\rightarrow$  Disj(V/R)

5.. (∀2), and ...

Definitions

 $[x]_R =_{df} \{y \mid Ryx\}$  $V/R =_{df} \{A \mid (\exists x)(A = [x]_R)\}$ 

#### Results

- Crisp(V/R)
- $\triangle \operatorname{Refl}(R) \to \operatorname{Cover}(V/R)$  &  $\operatorname{Norm}M(V/R)$   $\operatorname{Refl}(R) \to (\forall x)(x \in [x]_R)$
- Trans<sup>2</sup>(*R*) & Sym(*R*)  $\rightarrow$  Disj(V/*R*) Trans(*R*)  $\rightarrow$  ( $\forall x, y$ )(*Rxy*  $\rightarrow$  [*x*]<sub>*R*</sub>  $\subseteq$  [*y*]<sub>*R*</sub>)

So together we proved:

Trans<sup>2</sup>(R) & Sym(R) &  $\triangle \operatorname{Refl}(R) \to \operatorname{Part}(V/R)$  $\triangle \operatorname{Sim}(R) \to \triangle \operatorname{Part}(V/R)$
#### Semantical content

 $\operatorname{Trans}^2(R) \& \operatorname{Sym}(R) \to \operatorname{Disj}(V/R)$ 

Thus for fuzzy relation  $R: U^2 \rightarrow [0, 1]$  st.  $\|\operatorname{Trans}(R)\| = \|\operatorname{Sym}(R)\| = 0.9$ :

 $0.7 \le \|\operatorname{Disj}(V/R)\|$ 

#### Semantical content

 $\operatorname{Trans}^2(R)$  &  $\operatorname{Sym}(R) \to \operatorname{Disj}(V/R)$ 

Thus for fuzzy relation  $R: U^2 \rightarrow [0, 1]$  st.  $\|\operatorname{Trans}(R)\| = \|\operatorname{Sym}(R)\| = 0.9$ :  $0.7 \le \|\operatorname{Disj}(V/R)\|$ 

This says that:

$$0.7 \leq \inf_{A,B \in \mathbf{V}/R} (\sup_{z \in U} (z \in A \& z \in B) \to \inf_{z \in U} (z \in A \to z \in B))$$

where

$$x \& y = \max\{x + y - 1, 0\}$$
  $x \to y = \min\{1 - x + y, 1\}$ 

### From partitions to similarities

#### Definition

$$R^{\mathcal{A}} =_{\mathrm{df}} \{ \langle x, y \rangle \mid (\exists A \in \mathcal{A}) (x \in A \& y \in A) \}$$

#### Results

- Sym( $\mathbb{R}^{\mathcal{R}}$ )
- $\operatorname{Crisp}(\mathcal{A}) \& \operatorname{Cover}(\mathcal{A}) \to \triangle \operatorname{Refl}(R^{\mathcal{A}})$
- $\text{Disj}(\mathcal{A}) \to \text{Trans}(R^{\mathcal{A}})$

## From partitions to similarities

#### Definition

$$R^{\mathcal{A}} =_{\mathrm{df}} \{ \langle x, y \rangle \mid (\exists A \in \mathcal{A}) (x \in A \& y \in A) \}$$

#### Results

- Sym( $R^{\mathcal{R}}$ )
- $\operatorname{Crisp}(\mathcal{A}) \& \operatorname{Cover}(\mathcal{A}) \to \triangle \operatorname{Refl}(R^{\mathcal{A}})$
- $\text{Disj}(\mathcal{A}) \to \text{Trans}(R^{\mathcal{A}})$
- 1.  $(y \in X \& y \in Y) \rightarrow X \subseteq Y$  Disj(X), ( $\forall$ 1), and ( $\exists$ 1)
- 2.  $(\exists X \in X)(x \in X \& y \in X)$   $R^{X}$
- 3.  $(\exists Y \in X)(y \in Y \& z \in Y)$   $R^X yz$
- 4.  $(\exists X, Y \in X)(x \in X \& y \in X \& y \in Y \& z \in Y)$
- 5.  $(\exists X, Y \in X)(x \in X \& X \subseteq Y \& z \in Y)$
- $6. \ (\exists X, Y \in \mathcal{X})(x \in Y \& z \in Y)$

*R<sup>X</sup>xy R<sup>X</sup>yz* 2., 3., and ... 1., 4., and ... 5. and ...

### From partitions to similarities

#### Definition

$$R^{\mathcal{A}} =_{\mathrm{df}} \{ \langle x, y \rangle \mid (\exists A \in \mathcal{A}) (x \in A \& y \in A) \}$$

#### Results

- Sym( $R^{\mathcal{A}}$ )
- $\operatorname{Crisp}(\mathcal{A}) \& \operatorname{Cover}(\mathcal{A}) \to \triangle \operatorname{Refl}(R^{\mathcal{A}})$
- $\text{Disj}(\mathcal{A}) \to \text{Trans}(R^{\mathcal{A}})$

So together we proved:

$$\operatorname{Part}(\mathcal{A}) \to \bigtriangleup \operatorname{Sym}(\mathbb{R}^{\mathcal{A}}) \And \bigtriangleup \operatorname{Refl}(\mathbb{R}^{\mathcal{A}}) \And \operatorname{Trans}(\mathbb{R}^{\mathcal{A}})$$
$$\operatorname{Part}(\mathcal{A}) \to \operatorname{Sim}(\mathbb{R}^{\mathcal{A}})$$
$$\bigtriangleup \operatorname{Part}(\mathcal{A}) \to \bigtriangleup \operatorname{Sim}(\mathbb{R}^{\mathcal{A}})$$

#### There and back again ...

Results

 $\operatorname{Sim}(R) \to (R^{\mathrm{V}/R} \approx R)$  $\triangle \operatorname{Part}(\mathcal{A}) \to \mathrm{V}/R^{\mathcal{A}} = \mathcal{A}$ 

Proof of  $R \subseteq R^{V/R}$ :

**1**. *Rxy* 

- 2.  $[y]_R = [y]_R \& x \in [y]_R \& y \in [y]_R$
- **3**.  $(\exists z)([z]_R = [z]_R \& x \in [z]_R \& y \in [z]_R)$
- 4.  $(\exists Z)(\exists z)([z]_R = Z \& x \in Z \& y \in Z)$
- 5.  $(\exists Z)((\exists z)([z]_R = Z) \& x \in Z \& y \in Z)$
- 6.  $(\exists Z \in V/R) (x \in Z \& y \in Z)$

7.  $R^{V/R} xy$ 

 $\operatorname{Refl}(R)$ 

### Outline

### 1 Introduction

- 2 Lattice-Valued Predicate Logics
- 3 Formal Fuzzy Mathematics



### Future work: the 'logical' part

- Extending the scope of our results
- Generalizing other usual classical results
  - Developing model-theory of our structures
  - Studying the usual strengthenings of classical FO
- Studying genuinely 'non-classical' aspects of our approach:
  - Safe structures
  - Unusual forms of Skolemization, Herbrand theorem etc.
  - Witnessed structures
  - Generalized quantifiers
- Exploring connections to other approaches to non-classical FOL:
  - Those close in spirit to ours; e.g. Ono's treatment of first-order substructural logics
  - Those based on some kind of Kripke semantics
  - Those based on polyadic and cylindric algebras
  - Categorial approaches
  - Game-theoretic semantics
  - Continuous model theory

Future work: the 'fuzzy mathematics' part

# ?

Future work: the 'fuzzy mathematics' part

# ?

#### http://www.cs.cas.cz/fct

Petr Cintula (ICS CAS)

Lattice-Valued Predicate Logics

Congreso Dr. Antonio Monteiro 38 / 39

# $\infty$

# $\infty$

#### Find a 'market' for all this work

Petr Cintula (ICS CAS)

Lattice-Valued Predicate Logics

Congreso Dr. Antonio Monteiro 39 / 39

# $\infty$

# Find a 'market' for all this work not only in mathematics

Petr Cintula (ICS CAS)

Lattice-Valued Predicate Logics

Congreso Dr. Antonio Monteiro 39 / 39

# $\infty$

## Find a 'market' for all this work not only in mathematics but also in computer science, linguistic, philosophy, etc.