Interpolation and Robinson's lemma for Łukasiewicz predicate logic Xavier Caicedo Universidad de los Andes, Bogotá

XIV Congreso Dr. Antonio Monteiro Universidad Nacional del Sur

Bahía Blanca May 31 - June 2, 2017

PROPOSITIONAL Ł

 \pounds stands for [0,1]-valued \pounds ukasiewicz propositional logic over \neg, \rightarrow . X, Y, Z, ... (finite) sets of propositional variables (*languages*) \pounds_X set of formulas built from the variables in X $[0, 1]^X$ set of valuations on X (identifiable with $[0, 1]^n$, n = |X|) For $\varphi \in \pounds_X$, $v \in [0, 1]^X$: $v(\varphi) :=$ value of φ according to \pounds ukasiewicz interpretation of $\neg \rightarrow$

 $\mathsf{v}(\varphi):=\mathsf{value}$ of φ according to Łukasiewicz interpretation of $\neg,$ \rightarrow .

$$\mathit{Mod}(\varphi):=\{\mathit{v}\in[\mathsf{0},\mathsf{1}]^X:\mathit{v}(\varphi)=\mathsf{1}\}$$

Define similarly Mod(T) for a *theory* $T \subseteq L_X$ with possibly infinite X.

Fact

 $f_{\varphi}: [0,1]^X \to [0,1], f_{\varphi}(v) = v(\varphi)$, is continuous for any φ ; hence, $Mod(T) = \bigcap_{\varphi \in T} f_{\varphi}^{-1}(1)$ is closed in $[0,1]^X$.

Corollary

(Compactness) if each finite part of a theory T is satisfiable, T is satisfiable.

X.C. ()

Proof. $Mod(T) = \bigcap_{F \subseteq_{fin} T} Mod(F)$. \Box

▲ロショク理 と▲ヨン × ヨレー ヨー のんの

If $X \subseteq Y$ the projection $\pi : [0, 1]^Y \to [0, 1]^X$, $\pi(v) = v \upharpoonright X$ is continuous.

If $\varphi \in \ell_X \subseteq \ell_Y$, ℓ_Z we may speak about $Mod_Y(\varphi)$, $Mod_Z(\varphi)$. The following notions are independent of Y:

$$\begin{array}{ll} \models \varphi & \text{iff} & \textit{Mod}_Y(\varphi) = [0, 1]^Y \\ \varphi \models \psi & \text{iff} & \textit{Mod}_Y(\varphi) \subseteq \textit{Mod}_Y(\psi) \end{array}$$

For a theory $T \subseteq \ell_X \subseteq \ell_Y$:

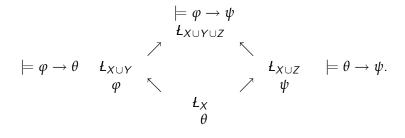
$$T \models \psi$$
 iff $Mod_Y(T) \subseteq Mod_Y(\psi)$

The completeness theorem says that we may replace above \models with \vdash for a suitable deductive system $\vdash .(T \text{ finite in the last case})$

▲ロショ(部)と▲ミン ◆語 とう 差 …の久()

Craig interpolation

X, Y, Z mutually disjoint languages, $\varphi \in \pounds_{X \cup Y}$, $\psi \in \pounds_{X \cup Z}$. If $\models \varphi \rightarrow \psi$ then there is $\theta \in \pounds_X$ such that $\models \varphi \rightarrow \theta$ and $\models \theta \rightarrow \psi$.



It fails in *L*:

$$\models (p \land \neg p) \to (q \lor \neg q),$$

the only interpolant is the constant $\frac{1}{2}$, not expressible by a formula of *L*.

X.C. ()

▲ロショ(調)と▲型と ▲国と 二星 二の文(で

Deductive interpolation

 $\begin{array}{c} \varphi \models \psi \text{ instead of } \models \varphi \rightarrow \psi : \\ & \varphi \models \psi \\ & \mathcal{L}_{X \cup Y \cup Z} \\ \varphi \models \theta \quad \mathcal{L}_{X \cup Y} \\ & \varphi \\ & \varphi \\ & \varphi \\ & \mathcal{L}_{X} \\ & \theta \end{array} \qquad \begin{array}{c} \varphi \models \psi \\ & \mathcal{L}_{X \cup Z} \\ & \mathcal{L}_{X \cup Z} \\ & \psi \end{array} \qquad \theta \models \psi \\ & \mathcal{L}_{X} \\ & \theta \end{array}$

holds in *Ł*.

The lack of a classical deduction theorem prevents recovering Craig.

Shown by algebraic means by several people, geometrically by D. Mundici.

▲ロショ 御 と ▲ ヨ と ▲ ヨ と 一 君 … つんゆ

The geometric proof

Lemma

The sets $Mod(\varphi)$, $\varphi \in \ell_X$, are exactly the rational polyhedra in $[0, 1]^X$.

Lemma

Projections of rational polyhedra are rational polyhedra.

$$\begin{aligned} \mathsf{Mod}_{X\cup Y\cup Z}(\varphi) \subseteq \mathsf{Mod}_{X\cup Y\cup Z}(\psi) \\ & [0,1]^{X\cup Y\cup Z} \\ & \swarrow & [0,1]^{X\cup Y} \\ \mathsf{Mod}_{X\cup Y}(\varphi) & \swarrow & [0,1]^{X\cup Z} \\ \mathsf{Mod}_{X\cup Y}(\varphi) & \swarrow & \mathsf{Mod}_{X\cup Z}(\psi) \\ & [0,1]^{X} \\ & \pi \mathsf{Mod}_{X\cup Y}(\varphi) = \mathsf{Mod}_{X}(\theta) \end{aligned}$$

$$\begin{aligned} \mathbf{Proof.} \ \mathsf{Mod}_{X\cup Y}(\varphi) \subseteq \pi^{-1}\pi \mathsf{Mod}_{X\cup Y}(\varphi) = \pi^{-1}\mathsf{Mod}(\theta) = \mathsf{Mod}_{X\cup Y}(\theta). \\ \mathsf{Mod}_{X\cup Z}(\theta) \subseteq \mathsf{Mod}_{X\cup Z}(\psi), \text{ using the disjointedness of } X, Y, Z_{\mathbb{R}}, \mathbb{R} = 0 \end{aligned}$$

X.C. ()

Uniform interpolation

This proof yields left *uniform* (deductive) interpolation: θ does not depend on ψ , it is a *left uniform interpolant*. Similarly there is a *right* uniform interpolation not depending on φ because:

Fact

Cylindrifications of rational polyhedra are rational polyhedra.

The cylindrification of $R \subseteq [0, 1]^{X \cup Z}$ in X is the largest subset C of $[0, 1]^X$ such that $C \times [0, 1]^Z \subseteq R$.

Thus the cylindrification of $Mod_{X\cup Z}(\psi)$ is the model class of a sentence $\theta \in \mathcal{L}_X$, which interpolates.

Theorem

For each $\varphi \in t_{X \cup Y}$ there is $\varphi_* \in t_X$ such that $\varphi \models \varphi_*$ and $\varphi_* \models \psi$ for any $\psi \in t_{X \cup Z}$ such that $\varphi \models \psi$. Dually, for each $\psi \in t_{X \cup Z}$ there is $\psi^* \in t_X$ such that $\psi^* \models \psi$ and $\varphi \models \psi^*$ whenever $\varphi \models \psi$.

Some propositional extensions

Rational Pavelka \pounds : add a constant connective $\frac{1}{n}$ for each $n \in \omega$. Divisible \pounds : add a unary connective $\frac{1}{n}x$ for each $n \in \omega$ (Gerla). Riesz \pounds : add a unary connective αx for each $\alpha \in [0, 1]$ (Di Nola, Leustean).

Continuous L: add all continuous connectives.

The model classes of these logics:

Ł

Rational Pavelka Ł Divisible Ł Riesz Ł

. . . .

 $Mod(\varphi)$ rational polyhedra rational polyhedra rational polyhedra polyhedra

Continuous Ł closed sets Closed under projections and cylindrification.All satisfy uniform deductive interpolation.

X.C. ()

Craig again

Divisible \underline{k} satisfies Craig Interpolation and it is the smallest extension doing so (Baaz and Veith 1999). This hinges on:

Lemma

The family $\{f_{\varphi} : \varphi \in Divisible \ L\}$ is closed under propositional quantification (sup and inf with respect to a variable).

	$Mod(\varphi)$	$\{f_{\varphi}\}_{\varphi}$	Craig
Ł	rational polyhedra	$McN_{\mathbb{Z}}$	_
Rational Pavelka Ł	rational polyhedra		—
Divisible Ł	rational polyhedra	$McN_{\mathbb{Q}}$	+
Riesz Ł	polyhedra	$McN_{\mathbb{R}}$	+
			÷
Continuous Ł	closed sets	$\mathcal{C}([\prime,\infty]^X)$	+
A similar fact holds for F	Riesz Ł and Continuous Ł		
	4	- SAREARS A	E 1 0

Robinson's joint consistency

 $T \subseteq T'$ theories in \pounds_X and \pounds_Y , respectively, with $X \subseteq Y$.

Definition

T' is *conservative* over *T* if for any $\varphi \in \ell_X : T' \models \varphi$ implies $T \models \varphi$.

Theorem

If $T_i \subseteq L_{X_i}$, i = 1, 2, are satisfiable extensions of $T \subseteq L_{X_1 \cap X_2}$ with T_1 (or T_2) conservative over T then $T_1 \cup T_2$ is satisfiable.

If $T \subseteq L_X$ is X-complete (maximally satisfiable among theories in L_X) then any satisfiable extension of T is conservative. Hence, the usual statement of the Robinson's property.

Lemma

Deductive interpolation implies Robinson's property.

Both properties are equivalent in any extension of *t* satifying compactness and closed under tukasiewicz connectives. Classical proofs depend heavily / 25

Expressing rational approximations in Ł

For each rational $r \in (0, 1)$ there are unary connectives \Box_r^+ and \Box_r^- definable in \pounds such that

$$\Box_r^+(x) = 1 \text{ iff } x \ge r \qquad \qquad \Box_r^-(x) = 1 \text{ iff } x \le r$$

This follows from McNaughton's theorem.

More elegantly, [r, 1] and [0, r] are rational polyhedra and thus model sets. We will write, suggestively,

$$\varphi_{\geq \frac{n}{m}} \qquad \varphi_{\leq \frac{n}{m}}$$

for $\Box_r^+(\varphi)$ and $\Box_r^-(\varphi)$.

◆□》 → 部 ▶ ◆臣 ▶ ◆臣 ▶ → 臣

FIRST ORDER ŁUKASIEWICZ $t \forall$

The failure of Craig's property lifts to $\mathcal{L}\forall$ with essentially the same counterexample:

$$\models \exists x (Px \land \neg Px) \to \forall x (Qx \lor \neg Qx).$$

Warning: the interpolant does not need to be a constant sentence, it may contain the identity symbol.

Situation for deductive interpolation and Robinson's property?

- We prove an approximate form of deductive interpolation
- Full Robinson's property.

This extends to any logic between $L\forall$ and continuous logic $CL\forall$ (the approximate interpolant may be chosen in $L\forall$)

イロン うぼす イヨト イヨトー

First order Łukasiewicz logic

- First order languages: $au = \{R, ...; f, ..., c, ...\},$
- [0, 1]-valued structures: $\mathfrak{A} = (A, R^{\mathfrak{A}}, ...; f^{\mathfrak{A}}...; c^{\mathfrak{A}}, ...)$

$$R^{\mathfrak{A}}: A^n \to [0,1], \quad f^{\mathfrak{A}}: A^n \to A, \quad c^{\mathfrak{A}} \in A.$$

Łukasiewicz connectives \rightarrow , \neg ; *quantifiers* \exists , \forall interpreted as suprema and infima:

$$\begin{split} & [\exists x \varphi(x)]^{\mathfrak{A}}(\mathbf{b}) & := \quad \sup_{\mathbf{a} \in \mathcal{A}} \varphi^{\mathfrak{A}}(\mathbf{a}, \mathbf{b}) \\ & [\forall x \varphi(x)]^{\mathfrak{A}}(\mathbf{b}) & := \quad \inf_{\mathbf{a} \in \mathcal{A}} \varphi^{\mathfrak{A}}(\mathbf{a}, \mathbf{b}). \end{split}$$

Terms, evaluated as in classical logic, give rise to functions $t^A : A^n \to A$. Formulas $\varphi(x_1, ..., x_n)$ give rise to maps $\varphi^{\mathfrak{A}} : A^n \to [0, 1]$. Sentences give rise to values $\varphi^{\mathfrak{A}} \in [0, 1]$.

Identity

A distinguished binary predicate $\approx^{\mathfrak{A}} : A^2 \to [0, 1]$ satisfying: $x \approx x$ $x \approx x$ $x \approx y \to y \approx x$ d(x, x) = 0d(x, y) = d(y, x)

- $\begin{array}{ll} x \approx y \rightarrow y \approx x & d(x,y) = d(y,x) \\ (x \approx y \rightarrow (y \approx z \rightarrow x \approx z) & d(x,z) \leq d(x,y) \oplus d(y,z) \\ x \approx y \rightarrow (R(x,..) \leftrightarrow R(y,..)) & |R(x,..) R(y,..)| \leq d(x,y) \\ x \approx y \rightarrow f(x,..) \approx f(y,..) & d(f(x,..), f(y,..)) \leq d(x,y) \end{array}$
 - d(x, y) := ¬x ≈ y defines a *pseudo-metric* for which R and f are 1-Lipschitz continuous.
 - If we assume that the maximum degree of identity of two elements imply their true identity, the pseudometric *d* becomes a metric. We will assume this is always the case.

▲口》 《課 》 ▲ 말 》 《 图 》 二 聖

• The schema $x\approx y\to (\varphi(x,..)\leftrightarrow \varphi(y,..))$ is not inherited by all formulas

 $x \approx y \rightarrow (R(x) \leftrightarrow R(y))$ does not imply

$$x \approx y \rightarrow (R(x) \oplus R(x) \leftrightarrow R(y) \oplus R(y))$$

but

$$(x \approx y)^2 \rightarrow (R(x) \oplus R(x) \leftrightarrow R(y) \oplus R(y)).$$

the congruence axioms for basic predicates and operations imply that for any formula φ or term t of $L\forall$ there is a constant k such that

$$\begin{array}{ll} (x \approx y)^k \to (\varphi(x, ..) \leftrightarrow \varphi(y, ..)) & |R(x, ..) - R(y, ..)| \leq kd(x, y) \\ (x \approx y)^k \to (t(x, ..) \leftrightarrow t(y, ..)) & d(f(x, ..), f(y, ..)) \leq kd(x, y). \end{array}$$

 Their interpretations become uniformly continuous with a Lipschitz constant depending on the formula only.

▲ロショ(調) ● ▲ヨ > ▲ ヨ > 「 ヨ = つんび

Ultraproducts

• $\{A_i\}_{i \in I}$ a family of [0, 1]-valued structures of type τ , U and ultrafilter over I.

- $\prod_i A_i / U$ ordinary ultraproduct for the algebraic part of the A_i .
- For each predicate symbol $R \in \tau$, including d, the ultraproduct of $\{A_i^n \xrightarrow{R^{A_i}} [0, 1]\}_i$

$$(\Pi_i A_i / U)^n \xrightarrow{R^*} [0, 1]^I / U$$

Compose with $st : [0, 1]^{I} / U \rightarrow [0, 1] :$

$$(\Pi_i A_i / U)^n \stackrel{R^{**}}{\to} [0, 1]$$

 $(\Pi_i A_i / _U)^2 \xrightarrow{d^{**}} [0,1]$ becomes a pseudometric. Divide out by infinitesimals:

Definition. $\prod_{i=1}^{*} A_i / U := (\prod_i A_i / U) / \sim$, where $f_{/U} \sim g_{/U}$ if and only if $d^{**}(f_{/U}, g_{/U}) = 0$ iff $\{i \in I : d_i(f(i), g(i)) < \varepsilon\} \in U$ for all positive $\varepsilon_{i_i \cup i_i \in \mathbb{Z}} \in \mathbb{Z}$ and $\varepsilon_{i_i \in \mathbb{Z}} \in \mathbb{Z}$.

X.C. ()

Ultraproduct theorem

Theorem

For
$$\varphi \in \mathcal{L}$$
 and $f_{,..} \in \Pi_i A_i$
$$\overset{*}{\Pi_i} A_i / U \models \varphi[f_{/U},...] \quad iff \quad \{i \in I : A_i \models \varphi_{\geq r}[f(i),...]\} \in U \text{ for any rational } i$$

Hence,

$$\{i \in I : A_i \models \varphi[f(i), ...]\} \in U \quad \text{implies} \stackrel{*}{\Pi_i} A_i / U \models \varphi[f_{/U}, ...]$$

- Model classes are closed under ultraproducts
- Projections of model classes are closed under ultraproducts:

 $A_i \in K$ implies $(A_i, R_i) \in Mod(T)$ then $\stackrel{*}{\Pi}_i(A_i, R_i)/U = (\stackrel{*}{\Pi}_iA_i/U, R^*) \in Mod(T)$, thus $\stackrel{*}{\Pi}_iA_i/U$

Keisler-Shelah

Definition

$$A \equiv_{L^{orall}} B$$
 if and only if $arphi^A = arphi^B$ for any sentence $arphi$

If
$$A_i = A$$
 for all $i \in I$, then $A^{*I}/_U := \prod_{i=1}^{*} A_i/_U$ is called a (metric) ultrapower of A .

Theorem

 $k \forall$ -equivalent models have isomorphic ultrapowers

▲曰》 《卽》 ▲팔》 《蜀》 -

The *Ł*∀-topology

Let Γ_{τ} the topology on $St_{\tau}(\mathcal{L}\forall)$ obtained by taking the classes $Mod(\theta)$, $\theta \in L_{\tau}$, as a sub-basis of closed classes. This topology

- Is invariant under isomorphism
- If $\tau \subseteq \mu$, the reduct map $St_{\mu}(\mathcal{L}\forall) \rightarrow St_{\tau}(\mathcal{L}\forall)$ is continuous.
- It is a *regular* topology (separation of closed clases and points)
- $(St_{\tau}(L\forall), \Gamma_{\tau})$ is compact.

Regularity follows from the fact that rational approximations are expressible. Assume $A \notin Mod(T)$ then $A \not\models \varphi$ for some $\varphi \in T$, hence $A \models \varphi_{\leq r}$ for some r < 1. If r < s < 1 then $Mod(\varphi_{\leq s})^c$ and $Mod(\varphi_{\geq s})^c$ are disjoint open classes containing, respectively, Mod(T) and $\{A\}$.

▲ロショ(調) ● ▲ヨ > ▲ ヨ > 「 ヨ = つんび

Compactness

Given a topological space, X, $\{x_i\}_{i \in I} \subseteq X$, $x \in X$, and an ultrafilter U over I

Definition

$${x_i}_{i \in I} \rightarrow_F x$$
 iff ${i \in I : x_i \in V} \in U$, for any open neinghborhood V of x.

Theorem

X is compact if and only if all ultrafilter limits exist for all families in X.

Fact

In $X_{\tau} = (St_{\tau}(\mathbf{k} \forall), \Gamma_{\tau})$

$$\{A_i\}_{i\in I} \to_F \prod_i A_i / U$$

Proof. $\Pi_i A_i / F \in Mod(\varphi)^c = V$ implies $\{i : A_i \models \varphi_{\geq r}\} \notin U$ for r < 1 then $\{i : A_i \models \varphi_{\leq r}\} \in U$ then $\{i : A_i \not\models \varphi\} \in U$, that is $\{i : A_i \in V\} \in U$.

A topological disgression

Define in any space X,

$$x \equiv y \Leftrightarrow \overline{\{x\}} = \overline{\{y\}}.$$

x and y belong to the same closed (open) subsets of X. We may form the quotient space X / \equiv

Lemma

If X is regular, the quotient space $X_{/\equiv}$ is Hausdorff (excercise).

Lemma

If K_1 and K_2 are disjoint compact subsets of a regular topological space X which can not be separated by a finite intersection of basic closed sets, then there exist $x_i \in K_i$, i = 1, 2, such that $x_1 \equiv x_2$.

Clearly, \equiv is $\mathcal{L} \forall_{\tau}$ -equivalence in the space $(St_{\tau}(\mathcal{L} \forall), \Gamma_{\tau})$,

A separation lemma

Lemma

Any pair of disjoint PC_{Δ} -classes K_1 , K_2 of the same signature τ are separable by a sentence $\theta \in L \forall_{\tau}$, that is,

 $K_1 \subseteq Mod(\theta), K_2 \cap Mod(\theta) = \emptyset.$

Proof. The K_i are compact (being continuous images of compact classes). If separation is not possible, we obtain by the topological lemma above

$$A \equiv_{t \forall} B$$
 with $A \in K_1$, $B \in K_2$.

Utilizing the Keisler-Shelah theorem for $L \forall$ we obtain:

$$A \approx B$$
 with $A \in K_1$, $B \in K_2$.

yielding a contradiction.

X.C. ()

▲口》 不翻 医米型医米菌医生理

Approximate deductive interpolation

Theorem

If
$$\varphi \models \psi$$
 then for any $r < 1$ there is $heta_r$ such that $\varphi \models heta_r \models \psi_{< r}$

Proof. If $\varphi \models \psi$ then φ and $\psi_{\leq r}$ are jointly unsatisfiable. Therefore $K_1 = Mod(\varphi) \upharpoonright X$ and $K_2 = Mod(\psi_{\leq r}) \upharpoonright X$ are disjoint and thus there is $\theta_r \in \mathcal{L} \forall (\tau \cap \mu)$ such that $\varphi \models \theta_r$ and $Mod(\theta_r) \cap K_2 = \emptyset$, thus $\theta_r \models \psi_{\geq r}$ \Box

Taking
$$\Theta = \{ heta_r\}_r$$

Corollary

If $\varphi \models \psi$ there is a countable theory $\Theta \subseteq \mathcal{L} \forall (\tau(\varphi) \cap \tau(\psi))$ such that $\varphi \models \Theta \models \psi$.

Both versions are equivalent.

X.C. ()

▲ロショ(課を)▲登を(4)割とし 理

Robinson

Approximate interpolation implies Robinson:

Theorem

If $T_i \subseteq k \forall_{\tau_i}$, i = 1, 2, are conservative extensions of a theory $T \subseteq k \forall_{\tau_1 \cap \tau_2}$ then $T_1 \cup T_2$ is satisfiable.

Proof. $T_1 \cup T_2$ is unsatisfiable so is $\{\delta_1, \delta_2\}$ where δ_i is the conjunction of a finite subset of T_i . Then $\{\delta_1, \delta_{2 \ge r}\}_{r < 1}$ is unsatisfiable and by compactness again $\delta_1 \models (\delta_2)_{\le r}$ for some r < 1. By approximate interpolation there is $\Theta \subseteq \mathcal{L} \forall_{\tau_1 \cap \tau_2}$ such that $\delta_1 \models \Theta \models_S \delta_{2 \le r}$. Then, $T_1 \models_S \Theta$ and $T \models \Theta$ by conservativity; hence, $T_2 \models \Theta \models \delta_{2 \le r}$ which yields unsatisfiability of T_2 . \Box

In fact, both propeties are equivalent in any compact extension of ${\it k}\forall$ closed under Lukasiewicz connectives.

For the other direction, notice that $\varphi \models \psi$ implies $K_1 = Mod(\varphi) \upharpoonright X$ and $K_2 = Mod(\psi_{\leq r}) \upharpoonright X$ are disjoin for any r < 1. If these classe where not separable, then we would have $A \equiv_{L^{\forall}} B$ with $A \in K_1, B \in K_2$. Then,

Questions

- Does sharp deductive interpolation holds in $t \forall$? or in continuous logic? Do proof-theoretical methods could shed any light?
- Does $Div \mathcal{E} \forall$ enjoys Craig interpolation
- Does $CL \forall$ (continuous logic) enjoys Craig interpolation

(Ben Yaacov has shown that it holds in CL_{ω_1} , and infinitary version of CL)

▲曰 > → (理 > ▲ 말 > → (臣 >) -

THANKS!

ヨーのへで

▲目を→御を→型を→表す。