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where the subindex i denotes the application of operations in A;.
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The elements of M are the h € ((U;cr M;)" such that, for all j € F
if h(i) # 0; then for all j < i, h(j) = 1.

The monoid operation and the lattice operations are defined
pointwise.

The residual is defined as follows:
h(i) —i g(i), if forallj <i, h(j) <;g())
(h—g)(i) =

0; otherwise

where de subindex i denotes the application of operations and of
order in M.



Some Structure Results...

Lemma
The forest product of MTL-chains is a MTL-algebra.



Some Structure Results...

Lemma
The forest product of MTL-chains is a MTL-algebra.

Lemma
Let F be a forest and {M;}cf a collection of MTL-chains. There

are equivalent:



Some Structure Results...

Lemma
The forest product of MTL-chains is a MTL-algebra.

Lemma
Let F be a forest and {M;}cf a collection of MTL-chains. There

are equivalent:
2. Forevery i <jinF, h(j)=0jor h(i) =1,



Some Structure Results...

Lemma
The forest product of MTL-chains is a MTL-algebra.

Lemma
Let F be a forest and {M;}cf a collection of MTL-chains. There

are equivalent:
1. he QceMi,
2. Forevery i <jinF, h(j)=0jor h(i) =1,
3. Forall i € Fif h(i) # 1 then for all i < j, h(j) = 0;,



Some Structure Results...

Lemma
The forest product of MTL-chains is a MTL-algebra.

Lemma
Let F be a forest and {M;}cf a collection of MTL-chains. There
are equivalent:

1. he QceMi,

2. Forevery i <jinF, h(j)=0jor h(i) =1,

3. Forall i € Fif h(i) # 1 then for all i < j, h(j) = 0;,

4. Uicph™(0y) is an upset of F, h=1(1) is a downset of F and

Ch = {i € F| h(i) ¢ {0;,1}},

is a (possibly empty) antichain of F.
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Lemma
Let F be a forest and {M,}cF a collection of MTL-chains and
S € D(F). Then Xs and ;g M are isomorphic semihoops.
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In every poset F the collection D(F) of downsets of F defines a
topology over F called the Alexandrov topology on F. Let

S, T € D(F) such that S C T and {M;};cf be a collection of
MTL-chains. Observe that if h € ;.1 M; then the restriction h|s
is an element of @);.g M;,s0 the assigment that sends T € D(F) to
X ict M; defines a presheaf P : D(F)? — MTL.

Lemma
Let F be a forest and {M;};cf a collection of MTL-chains. Then,
for every S € D(F)

P(S) = P(F)/Xs.
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Forest Products are Sheaves

Let Shv(P) be the category of sheaves over the Alexandrov space
(P, D(P)).

Lemma

Let F be a forest and {M}c a collection of MTL-chains. Then,
the presheaf P : D(P)P — MTL, P(T) = Q;ctMi is a
MTL-algebra in Shv(P).

Lemma
Let F be a forest and {M;}cr a collection of MTL-chains. For
every i € F, Py = P(l i) = P;<; Mj in MTL.

Corollary

Let F be a forest and {M;};cf a collection of MTL-chains. Then P
is a sheaf of MTL-chains.
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