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Preliminaries

A semihoop is an algebra A = (A, ·,→,∧,∨, 1) of type (2, 2, 2, 2, 0)
such that (A,∧,∨) is lattice with 1 as greatest element, (A, ·, 1) is
a commutative monoid and for every x , y , z ∈ A:

(i) xy ≤ z if and
only if x ≤ y → z , and (ii) (x → y) ∨ (y → x) = 1. A semihoop A
is bounded if (A,∧,∨, 1) has a least element 0. A MTL-algebra is a
bounded semihoop.A MTL-algebra A is a MTL chain if its
semihoop reduct is totally ordered. A forest is a poset X such that
for every a ∈ X the set

↓ a = {x ∈ X | x ≤ a}

is a totally ordered subset of X .
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Let I = (I ,≤) be a totally ordered set and F = {Ai}i∈I a family of
semihoops.

Let us assume that the members of F share (up to
isomorphism) the same neutral element; i.e, for every i 6= j ,
Ai ∩ Aj = {1}. The ordinal sum of the family F , is the structure⊕

i∈I Ai whose universe is
⋃

i∈I Ai and whose operations are
defined as:

x · y =

 x ·i y , if x , y ∈ Ai

y , if x ∈ Ai , and y ∈ Aj − {1}, with i > j ,
x , if x ∈ Ai − {1}, and y ∈ Aj , with i < j .

x → y =

 x →i y , if x , y ∈ Ai

y , if x ∈ Ai , and y ∈ Aj , with i > j ,
1, if x ∈ Ai − {1}, and y ∈ Aj , with i < j .

where the subindex i denotes the application of operations in Ai .
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Forest Products
Definition
Let F = (F ,≤) be a forest and let {Mi}i∈F a collection of MTL-chains
such that, up to isomorphism, all they share the same neutral element 1.
If
(⋃

i∈F Mi

)F denotes the set of functions h : F →
⋃

i∈F Mi such that
h(i) ∈Mi for all i ∈ F, the forest product

⊗
i∈F Mi is the algebra M

defined as follows:

(1) The elements of M are the h ∈
(⋃

i∈F Mi

)F such that, for all i ∈ F
if h(i) 6= 0i then for all j < i , h(j) = 1.

(2) The monoid operation and the lattice operations are defined
pointwise.

(3) The residual is defined as follows:

(h→ g)(i) =

 h(i)→i g(i), if for all j < i , h(j) ≤j g(j)

0i otherwise

where de subindex i denotes the application of operations and of
order in Mi .
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Some Structure Results...

Lemma
The forest product of MTL-chains is a MTL-algebra.

Lemma
Let F be a forest and {Mi}i∈F a collection of MTL-chains. There
are equivalent:
1. h ∈

⊗
i∈F Mi ,

2. For every i < j in F, h(j) = 0j or h(i) = 1,
3. For all i ∈ F if h(i) 6= 1 then for all i < j , h(j) = 0j ,
4.
⋃

i∈F h
−1(0j) is an upset of F, h−1(1) is a downset of F and

Ch = {i ∈ F | h(i) /∈ {0i , 1}},

is a (possibly empty) antichain of F.
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Forest Products are Sheaves

In every poset F the collection D(F) of downsets of F defines a
topology over F called the Alexandrov topology on F.

Let
S ,T ∈ D(F) such that S ⊆ T and {Mi}i∈F be a collection of
MTL-chains. Observe that if h ∈

⊗
i∈T Mi then the restriction h|S

is an element of
⊗

i∈S Mi ,so the assigment that sends T ∈ D(F) to⊗
i∈T Mi defines a presheaf P : D(F)op →MT L.

Lemma
Let F be a forest and {Mi}i∈F a collection of MTL-chains. Then,
for every S ∈ D(F)

P(S) ∼= P(F )/XS .
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Forest Products are Sheaves

Let Shv(P) be the category of sheaves over the Alexandrov space
(P,D(P)).

Lemma
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Let F be a forest and {Mi}i∈F a collection of MTL-chains. Then P
is a sheaf of MTL-chains.
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