Forest Products of MTL-chains

W. J. Zuluaga Botero

Universidad Nacional de La Plata

CONICET

XIV Congreso Dr. Antonio Monteiro Bahía Blanca, May 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A semihoop is an algebra $\mathbf{A} = (A, \cdot, \rightarrow, \wedge, \vee, 1)$ of type (2, 2, 2, 2, 0) such that (A, \wedge, \vee) is lattice with 1 as greatest element, $(A, \cdot, 1)$ is a commutative monoid and for every $x, y, z \in A$:

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

A semihoop is an algebra $\mathbf{A} = (A, \cdot, \rightarrow, \wedge, \vee, 1)$ of type (2, 2, 2, 2, 0) such that (A, \wedge, \vee) is lattice with 1 as greatest element, $(A, \cdot, 1)$ is a commutative monoid and for every $x, y, z \in A$: (i) $xy \leq z$ if and only if $x \leq y \rightarrow z$, and

A semihoop is an algebra $\mathbf{A} = (A, \cdot, \rightarrow, \wedge, \vee, 1)$ of type (2, 2, 2, 2, 0) such that (A, \wedge, \vee) is lattice with 1 as greatest element, $(A, \cdot, 1)$ is a commutative monoid and for every $x, y, z \in A$: (i) $xy \leq z$ if and only if $x \leq y \rightarrow z$, and (ii) $(x \rightarrow y) \vee (y \rightarrow x) = 1$.

A semihoop is an algebra $\mathbf{A} = (A, \cdot, \rightarrow, \wedge, \vee, 1)$ of type (2, 2, 2, 2, 0) such that (A, \wedge, \vee) is lattice with 1 as greatest element, $(A, \cdot, 1)$ is a commutative monoid and for every $x, y, z \in A$: (i) $xy \leq z$ if and only if $x \leq y \rightarrow z$, and (ii) $(x \rightarrow y) \vee (y \rightarrow x) = 1$. A semihoop \mathbf{A} is bounded if $(A, \wedge, \vee, 1)$ has a least element 0.

A semihoop is an algebra $\mathbf{A} = (A, \cdot, \rightarrow, \wedge, \vee, 1)$ of type (2, 2, 2, 2, 0) such that (A, \wedge, \vee) is lattice with 1 as greatest element, $(A, \cdot, 1)$ is a commutative monoid and for every $x, y, z \in A$: (i) $xy \leq z$ if and only if $x \leq y \rightarrow z$, and (ii) $(x \rightarrow y) \vee (y \rightarrow x) = 1$. A semihoop \mathbf{A} is bounded if $(A, \wedge, \vee, 1)$ has a least element 0. A *MTL-algebra* is a bounded semihoop.

A semihoop is an algebra $\mathbf{A} = (A, \cdot, \rightarrow, \wedge, \vee, 1)$ of type (2, 2, 2, 2, 0) such that (A, \wedge, \vee) is lattice with 1 as greatest element, $(A, \cdot, 1)$ is a commutative monoid and for every $x, y, z \in A$: (i) $xy \leq z$ if and only if $x \leq y \rightarrow z$, and (ii) $(x \rightarrow y) \vee (y \rightarrow x) = 1$. A semihoop \mathbf{A} is bounded if $(A, \wedge, \vee, 1)$ has a least element 0. A *MTL-algebra* is a bounded semihoop.A MTL-algebra \mathbf{A} is a MTL chain if its semihoop reduct is totally ordered.

A semihoop is an algebra $\mathbf{A} = (A, \cdot, \rightarrow, \wedge, \vee, 1)$ of type (2, 2, 2, 2, 0) such that (A, \wedge, \vee) is lattice with 1 as greatest element, $(A, \cdot, 1)$ is a commutative monoid and for every $x, y, z \in A$: (i) $xy \leq z$ if and only if $x \leq y \rightarrow z$, and (ii) $(x \rightarrow y) \vee (y \rightarrow x) = 1$. A semihoop \mathbf{A} is bounded if $(A, \wedge, \vee, 1)$ has a least element 0. A *MTL-algebra* is a bounded semihoop.A MTL-algebra \mathbf{A} is a MTL chain if its semihoop reduct is totally ordered. A forest is a poset X such that for every $a \in X$ the set

$$\downarrow a = \{x \in X \mid x \le a\}$$

ション ふゆ く 山 マ チャット しょうくしゃ

is a totally ordered subset of X.

A semihoop is an algebra $\mathbf{A} = (A, \cdot, \rightarrow, \wedge, \vee, 1)$ of type (2, 2, 2, 2, 0) such that (A, \wedge, \vee) is lattice with 1 as greatest element, $(A, \cdot, 1)$ is a commutative monoid and for every $x, y, z \in A$: (i) $xy \leq z$ if and only if $x \leq y \rightarrow z$, and (ii) $(x \rightarrow y) \vee (y \rightarrow x) = 1$. A semihoop \mathbf{A} is bounded if $(A, \wedge, \vee, 1)$ has a least element 0. A *MTL-algebra* is a bounded semihoop.A MTL-algebra \mathbf{A} is a MTL chain if its semihoop reduct is totally ordered. A forest is a poset X such that for every $a \in X$ the set

$$\downarrow a = \{x \in X \mid x \le a\}$$

ション ふゆ く 山 マ チャット しょうくしゃ

is a totally ordered subset of X.

Let $I = (I, \leq)$ be a totally ordered set and $\mathcal{F} = {\{A_i\}_{i \in I} \text{ a family of semihoops.}}$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Let $I = (I, \leq)$ be a totally ordered set and $\mathcal{F} = \{A_i\}_{i \in I}$ a family of semihoops. Let us assume that the members of \mathcal{F} share (up to isomorphism) the same neutral element; i.e, for every $i \neq j$, $A_i \cap A_j = \{1\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $I = (I, \leq)$ be a totally ordered set and $\mathcal{F} = \{A_i\}_{i \in I}$ a family of semihoops. Let us assume that the members of \mathcal{F} share (up to isomorphism) the same neutral element; i.e., for every $i \neq j$, $A_i \cap A_j = \{1\}$. The ordinal sum of the family \mathcal{F} , is the structure $\bigoplus_{i \in I} A_i$ whose universe is $\bigcup_{i \in I} A_i$ and whose operations are defined as:

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Let $\mathbf{I} = (I, \leq)$ be a totally ordered set and $\mathcal{F} = {\mathbf{A}_i}_{i \in I}$ a family of semihoops. Let us assume that the members of \mathcal{F} share (up to isomorphism) the same neutral element; i.e., for every $i \neq j$, $A_i \cap A_j = \{1\}$. The ordinal sum of the family \mathcal{F} , is the structure $\bigoplus_{i \in I} A_i$ whose universe is $\bigcup_{i \in I} A_i$ and whose operations are defined as:

$$x \cdot y = \begin{cases} x \cdot_i y, & \text{if } x, y \in A_i \\ y, & \text{if } x \in A_i, \text{ and } y \in A_j - \{1\}, \text{ with } i > j, \\ x, & \text{if } x \in A_i - \{1\}, \text{ and } y \in A_j, \text{ with } i < j. \end{cases}$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Let $I = (I, \leq)$ be a totally ordered set and $\mathcal{F} = \{A_i\}_{i \in I}$ a family of semihoops. Let us assume that the members of \mathcal{F} share (up to isomorphism) the same neutral element; i.e., for every $i \neq j$, $A_i \cap A_j = \{1\}$. The ordinal sum of the family \mathcal{F} , is the structure $\bigoplus_{i \in I} A_i$ whose universe is $\bigcup_{i \in I} A_i$ and whose operations are defined as:

$$\begin{aligned} x \cdot y &= \begin{cases} x \cdot_i y, & \text{if } x, y \in A_i \\ y, & \text{if } x \in A_i, \text{ and } y \in A_j - \{1\}, \text{ with } i > j, \\ x, & \text{if } x \in A_i - \{1\}, \text{ and } y \in A_j, \text{ with } i < j. \end{cases} \\ x \to y &= \begin{cases} x \to_i y, & \text{if } x, y \in A_i \\ y, & \text{if } x \in A_i, \text{ and } y \in A_j, \text{ with } i > j, \\ 1, & \text{if } x \in A_i - \{1\}, \text{ and } y \in A_j, \text{ with } i < j. \end{cases} \end{aligned}$$

Let $\mathbf{I} = (I, \leq)$ be a totally ordered set and $\mathcal{F} = {\mathbf{A}_i}_{i \in I}$ a family of semihoops. Let us assume that the members of \mathcal{F} share (up to isomorphism) the same neutral element; i.e., for every $i \neq j$, $A_i \cap A_j = \{1\}$. The ordinal sum of the family \mathcal{F} , is the structure $\bigoplus_{i \in I} A_i$ whose universe is $\bigcup_{i \in I} A_i$ and whose operations are defined as:

$$\begin{aligned} x \cdot y &= \begin{cases} x \cdot_i y, & \text{if } x, y \in A_i \\ y, & \text{if } x \in A_i, \text{ and } y \in A_j - \{1\}, \text{ with } i > j, \\ x, & \text{if } x \in A_i - \{1\}, \text{ and } y \in A_j, \text{ with } i < j. \end{cases} \\ x \rightarrow y &= \begin{cases} x \rightarrow_i y, & \text{if } x, y \in A_i \\ y, & \text{if } x \in A_i, \text{ and } y \in A_j, \text{ with } i > j, \\ 1, & \text{if } x \in A_i - \{1\}, \text{ and } y \in A_j, \text{ with } i < j. \end{cases}$$

where the subindex *i* denotes the application of operations in A_i .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Definition

Let $\mathbf{F} = (F, \leq)$ be a forest and let $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ a collection of MTL-chains such that, up to isomorphism, all they share the same neutral element 1. If $(\bigcup_{i \in \mathbf{F}} \mathbf{M}_i)^F$ denotes the set of functions $h : F \to \bigcup_{i \in \mathbf{F}} \mathbf{M}_i$ such that $h(i) \in \mathbf{M}_i$ for all $i \in \mathbf{F}$, the forest product $\bigotimes_{i \in \mathbf{F}} \mathbf{M}_i$ is the algebra **M** defined as follows:

(日) (伊) (日) (日) (日) (0) (0)

Definition

Let $\mathbf{F} = (F, \leq)$ be a forest and let $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ a collection of MTL-chains such that, up to isomorphism, all they share the same neutral element 1. If $(\bigcup_{i \in \mathbf{F}} \mathbf{M}_i)^F$ denotes the set of functions $h : F \to \bigcup_{i \in \mathbf{F}} \mathbf{M}_i$ such that $h(i) \in \mathbf{M}_i$ for all $i \in \mathbf{F}$, the forest product $\bigotimes_{i \in \mathbf{F}} \mathbf{M}_i$ is the algebra **M** defined as follows:

(1) The elements of **M** are the $h \in (\bigcup_{i \in \mathbf{F}} \mathbf{M}_i)^F$ such that, for all $i \in \mathbf{F}$ if $h(i) \neq 0_i$ then for all j < i, h(j) = 1.

Definition

Let $\mathbf{F} = (F, \leq)$ be a forest and let $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ a collection of MTL-chains such that, up to isomorphism, all they share the same neutral element 1. If $(\bigcup_{i \in \mathbf{F}} \mathbf{M}_i)^F$ denotes the set of functions $h : F \to \bigcup_{i \in \mathbf{F}} \mathbf{M}_i$ such that $h(i) \in \mathbf{M}_i$ for all $i \in \mathbf{F}$, the forest product $\bigotimes_{i \in \mathbf{F}} \mathbf{M}_i$ is the algebra **M** defined as follows:

(1) The elements of **M** are the $h \in (\bigcup_{i \in \mathbf{F}} \mathbf{M}_i)^F$ such that, for all $i \in \mathbf{F}$ if $h(i) \neq 0_i$ then for all j < i, h(j) = 1.

ション ふゆ く 山 マ チャット しょうくしゃ

(2) The monoid operation and the lattice operations are defined pointwise.

Definition

Let $\mathbf{F} = (F, \leq)$ be a forest and let $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ a collection of MTL-chains such that, up to isomorphism, all they share the same neutral element 1. If $(\bigcup_{i \in \mathbf{F}} \mathbf{M}_i)^F$ denotes the set of functions $h : F \to \bigcup_{i \in \mathbf{F}} \mathbf{M}_i$ such that $h(i) \in \mathbf{M}_i$ for all $i \in \mathbf{F}$, the forest product $\bigotimes_{i \in \mathbf{F}} \mathbf{M}_i$ is the algebra **M** defined as follows:

(1) The elements of **M** are the $h \in (\bigcup_{i \in \mathbf{F}} \mathbf{M}_i)^F$ such that, for all $i \in \mathbf{F}$ if $h(i) \neq 0_i$ then for all j < i, h(j) = 1.

- (2) The monoid operation and the lattice operations are defined pointwise.
- (3) The residual is defined as follows:

Definition

Let $\mathbf{F} = (F, \leq)$ be a forest and let $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ a collection of MTL-chains such that, up to isomorphism, all they share the same neutral element 1. If $(\bigcup_{i \in \mathbf{F}} \mathbf{M}_i)^F$ denotes the set of functions $h : F \to \bigcup_{i \in \mathbf{F}} \mathbf{M}_i$ such that $h(i) \in \mathbf{M}_i$ for all $i \in \mathbf{F}$, the forest product $\bigotimes_{i \in \mathbf{F}} \mathbf{M}_i$ is the algebra **M** defined as follows:

- (1) The elements of **M** are the $h \in (\bigcup_{i \in \mathbf{F}} \mathbf{M}_i)^F$ such that, for all $i \in \mathbf{F}$ if $h(i) \neq 0_i$ then for all j < i, h(j) = 1.
- (2) The monoid operation and the lattice operations are defined pointwise.
- (3) The residual is defined as follows:

$$(h
ightarrow g)(i) = \left\{ egin{array}{ll} h(i)
ightarrow_i g(i), & ext{if for all } j < i, \ h(j) \leq_j g(j) \\ 0_i & ext{otherwise} \end{array}
ight.$$

Definition

Let $\mathbf{F} = (F, \leq)$ be a forest and let $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ a collection of MTL-chains such that, up to isomorphism, all they share the same neutral element 1. If $(\bigcup_{i \in \mathbf{F}} \mathbf{M}_i)^F$ denotes the set of functions $h : F \to \bigcup_{i \in \mathbf{F}} \mathbf{M}_i$ such that $h(i) \in \mathbf{M}_i$ for all $i \in \mathbf{F}$, the forest product $\bigotimes_{i \in \mathbf{F}} \mathbf{M}_i$ is the algebra **M** defined as follows:

- (1) The elements of **M** are the $h \in (\bigcup_{i \in \mathbf{F}} \mathbf{M}_i)^F$ such that, for all $i \in \mathbf{F}$ if $h(i) \neq 0_i$ then for all j < i, h(j) = 1.
- (2) The monoid operation and the lattice operations are defined pointwise.
- (3) The residual is defined as follows:

$$(h
ightarrow g)(i) = \left\{ egin{array}{ll} h(i)
ightarrow_i g(i), & ext{if for all } j < i, \ h(j) \leq_j g(j) \\ 0_i & ext{otherwise} \end{array}
ight.$$

where de subindex *i* denotes the application of operations and of order in M_i .

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Lemma

The forest product of MTL-chains is a MTL-algebra.

Lemma

The forest product of MTL-chains is a MTL-algebra.

Lemma

Let **F** be a forest and $\{M_i\}_{i \in F}$ a collection of MTL-chains. There are equivalent:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

1. $h \in \bigotimes_{i \in F} M_i$,

Lemma

The forest product of MTL-chains is a MTL-algebra.

Lemma

Let **F** be a forest and $\{M_i\}_{i \in F}$ a collection of MTL-chains. There are equivalent:

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- 1. $h \in \bigotimes_{i \in \mathbf{F}} \mathbf{M}_i$,
- 2. For every i < j in **F**, $h(j) = 0_j$ or h(i) = 1,

Lemma

The forest product of MTL-chains is a MTL-algebra.

Lemma

Let **F** be a forest and $\{M_i\}_{i \in F}$ a collection of MTL-chains. There are equivalent:

- 1. $h \in \bigotimes_{i \in \mathbf{F}} \mathbf{M}_i$,
- 2. For every i < j in **F**, $h(j) = 0_j$ or h(i) = 1,
- 3. For all $i \in \mathbf{F}$ if $h(i) \neq 1$ then for all i < j, $h(j) = 0_j$,

Lemma

The forest product of MTL-chains is a MTL-algebra.

Lemma

Let **F** be a forest and $\{M_i\}_{i \in F}$ a collection of MTL-chains. There are equivalent:

1.
$$h \in \bigotimes_{i \in \mathbf{F}} \mathbf{M}_i$$
,
2. For every $i < j$ in \mathbf{F} , $h(j) = 0_j$ or $h(i) = 1$,
3. For all $i \in \mathbf{F}$ if $h(i) \neq 1$ then for all $i < j$, $h(j) = 0_j$,
4. $\bigcup_{i \in \mathbf{F}} h^{-1}(0_j)$ is an upset of \mathbf{F} , $h^{-1}(1)$ is a downset of \mathbf{F} and
 $C_h = \{i \in \mathbf{F} \mid h(i) \notin \{0_i, 1\}\},$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

is a (possibly empty) antichain of **F**.

Lemma

Let **F** be a forest and $\{M_i\}_{i \in F}$ a collection of MTL-chains. Then **F** is a totally ordered set if and only if $\bigotimes_{i \in F} M_i$ is a MTL-chain.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Lemma

Let **F** be a forest and $\{M_i\}_{i \in F}$ a collection of MTL-chains. Then **F** is a totally ordered set if and only if $\bigotimes_{i \in F} M_i$ is a MTL-chain. Let **F** be a forest and $\{M_i\}_{i \in F}$ a collection of MTL-chains. We write $\mathbb{D}(F)$ for the collection of downsets of **F**. Let *S* be a proper downset of **F** and consider

$$X_{\mathcal{S}} := \{h \in \bigotimes_{i \in \mathbf{F}} \mathbf{M}_i \mid h|_{\mathcal{S}} = 1\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Lemma

Let **F** be a forest and $\{M_i\}_{i \in F}$ a collection of MTL-chains. Then **F** is a totally ordered set if and only if $\bigotimes_{i \in F} M_i$ is a MTL-chain. Let **F** be a forest and $\{M_i\}_{i \in F}$ a collection of MTL-chains. We write $\mathbb{D}(F)$ for the collection of downsets of **F**. Let *S* be a proper downset of **F** and consider

$$X_{\mathcal{S}} := \{h \in \bigotimes_{i \in \mathbf{F}} \mathbf{M}_i \mid h|_{\mathcal{S}} = 1\}$$

Lemma

Let **F** be a forest and $\{M_i\}_{i \in F}$ a collection of MTL-chains and $S \in \mathbb{D}(F)$. Then X_S and $\bigotimes_{i \in S^c} M_i$ are isomorphic semihoops.

In every poset F the collection $\mathbb{D}(F)$ of downsets of F defines a topology over F called the *Alexandrov topology* on F.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

In every poset F the collection $\mathbb{D}(F)$ of downsets of F defines a topology over F called the *Alexandrov topology* on F. Let $S, T \in \mathbb{D}(F)$ such that $S \subseteq T$ and $\{M_i\}_{i \in F}$ be a collection of MTL-chains.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

In every poset **F** the collection $\mathbb{D}(\mathbf{F})$ of downsets of **F** defines a topology over *F* called the *Alexandrov topology* on **F**. Let $S, T \in \mathbb{D}(\mathbf{F})$ such that $S \subseteq T$ and $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ be a collection of MTL-chains. Observe that if $h \in \bigotimes_{i \in \mathbf{T}} \mathbf{M}_i$ then the restriction $h|_S$ is an element of $\bigotimes_{i \in \mathbf{S}} \mathbf{M}_i$,

In every poset **F** the collection $\mathbb{D}(\mathbf{F})$ of downsets of **F** defines a topology over *F* called the *Alexandrov topology* on **F**. Let $S, T \in \mathbb{D}(\mathbf{F})$ such that $S \subseteq T$ and $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ be a collection of MTL-chains. Observe that if $h \in \bigotimes_{i \in \mathbf{T}} \mathbf{M}_i$ then the restriction $h|_S$ is an element of $\bigotimes_{i \in \mathbf{S}} \mathbf{M}_i$, so the assignment that sends $T \in \mathbb{D}(\mathbf{F})$ to $\bigotimes_{i \in \mathbf{T}} \mathbf{M}_i$ defines a presheaf $\mathcal{P} : \mathbb{D}(\mathbf{F})^{op} \to \mathcal{MTL}$.

In every poset **F** the collection $\mathbb{D}(\mathbf{F})$ of downsets of **F** defines a topology over *F* called the *Alexandrov topology* on **F**. Let $S, T \in \mathbb{D}(\mathbf{F})$ such that $S \subseteq T$ and $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ be a collection of MTL-chains. Observe that if $h \in \bigotimes_{i \in \mathbf{T}} \mathbf{M}_i$ then the restriction $h|_S$ is an element of $\bigotimes_{i \in \mathbf{S}} \mathbf{M}_i$, so the assignment that sends $T \in \mathbb{D}(\mathbf{F})$ to $\bigotimes_{i \in \mathbf{T}} \mathbf{M}_i$ defines a presheaf $\mathcal{P} : \mathbb{D}(\mathbf{F})^{op} \to \mathcal{MTL}$.

Lemma

Let **F** be a forest and $\{M_i\}_{i \in F}$ a collection of MTL-chains. Then, for every $S \in \mathbb{D}(F)$

 $\mathcal{P}(S) \cong \mathcal{P}(F)/X_S.$

Let $\mathbf{Shv}(\mathbf{P})$ be the category of sheaves over the Alexandrov space $(P, \mathbb{D}(\mathbf{P}))$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Let Shv(P) be the category of sheaves over the Alexandrov space $(P, \mathbb{D}(P))$.

Lemma

Let **F** be a forest and $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ a collection of MTL-chains. Then, the presheaf $\mathcal{P} : \mathbb{D}(\mathbf{P})^{op} \to \mathcal{MTL}, \mathcal{P}(T) = \bigotimes_{i \in \mathbf{T}} \mathbf{M}_i$ is a MTL-algebra in Shv(\mathbf{P}).

うして ふゆう ふほう ふほう うらつ

Let Shv(P) be the category of sheaves over the Alexandrov space $(P, \mathbb{D}(P))$.

Lemma

Let **F** be a forest and $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ a collection of MTL-chains. Then, the presheaf $\mathcal{P} : \mathbb{D}(\mathbf{P})^{op} \to \mathcal{MTL}, \mathcal{P}(T) = \bigotimes_{i \in \mathbf{T}} \mathbf{M}_i$ is a MTL-algebra in Shv(\mathbf{P}).

Lemma

Let **F** be a forest and $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ a collection of MTL-chains. For every $i \in F$, $\mathcal{P}_i \cong \mathcal{P}(\downarrow i) \cong \bigoplus_{j \leq i} \mathbf{M}_j$ in \mathcal{MTL} .

うして ふゆう ふほう ふほう うらつ

Let Shv(P) be the category of sheaves over the Alexandrov space $(P, \mathbb{D}(P))$.

Lemma

Let **F** be a forest and $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ a collection of MTL-chains. Then, the presheaf $\mathcal{P} : \mathbb{D}(\mathbf{P})^{op} \to \mathcal{MTL}, \mathcal{P}(T) = \bigotimes_{i \in \mathbf{T}} \mathbf{M}_i$ is a MTL-algebra in Shv(\mathbf{P}).

Lemma

Let **F** be a forest and $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ a collection of MTL-chains. For every $i \in F$, $\mathcal{P}_i \cong \mathcal{P}(\downarrow i) \cong \bigoplus_{j \leq i} \mathbf{M}_j$ in \mathcal{MTL} .

Corollary

Let **F** be a forest and $\{M_i\}_{i \in F}$ a collection of MTL-chains. Then \mathcal{P} is a sheaf of MTL-chains.

Bibliografía I

- M. Busaniche, and F. Montagna. Chapter VII: Basic Fuzzy Logic and BL-algebras, *Handbook of Mathematical Fuzzy Logic*. Vol I. Studies in Logic. College Publications. 2011.
- [2] J. L. Castiglioni, M. Menni and W. J. Zuluaga Botero. A representation theorem for integral rigs and its applications to residuated lattices, *Journal of Pure and Applied Algebra*, 220 (10) (2016) 3533–3566.
- [3] P. Jipsen. Generalizations of Boolean products for lattice-ordered algebras, *Annals of Pure and Applied Logic*. Vol 161. Issue 2. Elsevier. 2011. 228–234.
- [4] S. MacLane and I. Moerdijk. Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Universitext, Springer Verlag (1992).