STATES OF FREE PRODUCT ALGEBRAS

Sara Ugolini

University of Pisa, Department of Computer Science sara.ugolini@di.unipi.it

(joint work with Tommaso Flaminio and Lluis Godo)

Congreso Monteiro 2017

BACKGROUND

- This work aims to contribute to the study of the theory of states on classes of algebras of many-valued events (a generalization of classical probability theory).
- Our setting is the one of t-norm based fuzzy logics as developed by Hájek.

BACKGROUND

In this setting, BL (Hájek's Basic Logic) plays a fundamental role, as the logic of all continuous t-norms.

Its algebraic semantics, the variety of BL-algebras, is a class of prelinear and divisible residuated lattices generated by the class of BL-algebras on [0, 1], which are defined by a continuous t-norm and its residuum.

Three prominent axiomatic extensions, with corresponding algebraic semantics:

- Łukasiewicz logic (involutive), MV-algebras
- Gödel logic (contractive), Gödel algebras
- Product logic (cancellative), Product algebras

[Mostert-Shields Thm.]: a t-norm is continuous if and only if it can be built from the previous three ones by the construction of ordinal sum.

BACKGROUND

Standard MV-algebra: $[\mathbf{0},\mathbf{1}]_{\boldsymbol{\mathsf{L}}}=([0,1],\odot_{\boldsymbol{\mathsf{L}}},\rightarrow_{\boldsymbol{\mathsf{L}}},\min,\max,0,1)$

$$\begin{array}{rcl} x \odot_{\mathsf{L}} y & = & \max\{0, x+y-1\} \\ x \rightarrow_{\mathsf{L}} y & = & 1 \text{ if } x \leq y, \\ & & 1-x+y \text{ otherwise.} \end{array}$$

Standard Gödel algebra: $[\mathbf{0},\mathbf{1}]_{\mathbf{G}} = ([0,1],\odot_G,\rightarrow_G,\min,\max,0,1)$

$$\begin{array}{rcl} x \odot_G y &=& \min\{x, y\} \\ x \rightarrow_G y &=& 1 \text{ if } x \leq y, \\ && y \text{ otherwise.} \end{array}$$

Standard product algebra: $[\mathbf{0}, \mathbf{1}]_{\mathbf{P}} = ([0, 1], \odot_P, \rightarrow_P, \min, \max, 0, 1)$

$$\begin{array}{rcl} x \odot_P y &=& x \cdot y \\ x \rightarrow_P y &=& 1 \text{ if } x \leq y, \\ && y/x \text{ otherwise.} \end{array}$$

FREE ALGEBRAS

For L any of MV, Gödel and product logics, and \mathbb{L} its algebraic semantics, let $\mathcal{F}_{\mathbb{L}}(n)$ be the free L-algebra over n generators, i.e. the Lindenbaum algebra of L-logic over n variables.

Since $[0,1]_L$ is generic for the variety, $\mathcal{F}_{\mathbb{L}}(n)$ is, up to isomorphisms, the subalgebra of all functions $[0,1]^n \to [0,1]$ generated by the projection maps $\pi_1, \ldots, \pi_n : [0,1]^n \to [0,1]$, with operations defined componentwise by the standard ones.

FREE ALGEBRAS

For L any of MV, Gödel and product logics, and \mathbb{L} its algebraic semantics, let $\mathcal{F}_{\mathbb{L}}(n)$ be the free L-algebra over n generators, i.e. the Lindenbaum algebra of L-logic over n variables.

Since $[0,1]_L$ is generic for the variety, $\mathcal{F}_{\mathbb{L}}(n)$ is, up to isomorphisms, the subalgebra of all functions $[0,1]^n \to [0,1]$ generated by the projection maps $\pi_1, \ldots, \pi_n : [0,1]^n \to [0,1]$, with operations defined componentwise by the standard ones.

Thus, every element of $f \in \mathcal{F}_{\mathbb{L}}(n)$ can be regarded as a function $f:[0,1]^n \to [0,1]$. For example, for product logic:

 $\begin{array}{ll} & \underline{ {\rm product function}} \\ \varphi = p \odot (q \wedge r) & f_{\varphi}(x,y,z) = x \cdot \min(y,z) \end{array}$

STATES OF MV AND GÖDEL ALGEBRAS

[Mundici, 95]: Given any MV-algebra $\mathbf{A} = (A, \odot, \rightarrow, \wedge, \vee, 0, 1)$, a state of \mathbf{A} is a map $s : A \rightarrow [0, 1]$ such that:

(I) s(1) = 1, (II) if $a \odot b = 0$, then $s(a \oplus b) = s(a) + s(b)$, where $a \oplus b = \neg(\neg a \odot \neg b)$).

STATES OF MV AND GÖDEL ALGEBRAS

[Mundici, 95]: Given any MV-algebra $\mathbf{A} = (A, \odot, \rightarrow, \wedge, \vee, 0, 1)$, a state of \mathbf{A} is a map $s : A \rightarrow [0, 1]$ such that:

(I)
$$s(1) = 1$$
,
(II) if $a \odot b = 0$, then $s(a \oplus b) = s(a) + s(b)$,
where $a \oplus b = \neg(\neg a \odot \neg b)$).

[Aguzzoli-Gerla-Marra, 2008]: Let $\mathcal{F}_{\mathbb{G}}(n)$ be the free Gödel algebra on n generators. A state of $\mathcal{F}_{\mathbb{G}}(n)$ is a map $s: \mathcal{F}_{\mathbb{G}}(n) \to [0,1]$ such that:

(I)
$$s(0) = 0$$
 and $s(1) = 1$,
(II) $f \le g$ implies $s(f) \le s(g)$
(III) $s(f \lor g) = s(f) + s(g) - s(f \land g)$
(IV) if f, g, h are either join-irreducible elements or equal to 0, and

satisfy f < g < h, then s(f) = s(g) implies s(g) = s(h).

INTEGRAL REPRESENTATION

Let $\mathcal{F}(n)$ be the free Gödel (or MV) algebra on n generators. Let s be a state on $\mathcal{F}(n)$. Then there exists a (unique) regular Borel probability measure μ on $[0,1]^n$ such that, for any $f \in \mathcal{F}(n)$,

$$s(f) = \int_{[0,1]^n} f \mathrm{d}\mu.$$

For MV-algebras, Kroupa-Panti Theorem ['06 - '09] establishes an integral representation theorem for states of any MV-algebra.

STATES OF PRODUCT LOGIC

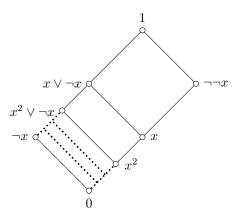
Our aim is to introduce and study states for product logic, the remaining fundamental many-valued logic for which such a notion is still lacking.

In particular, we will study states of $\mathcal{F}_{\mathbb{P}}(n)$, the free product algebra over n generators, i.e. the Lindenbaum algebra of product logic over n variables.

Since every element of $f \in \mathcal{F}_{\mathbb{P}}(n)$ can be regarded as a function $f: [0,1]^n \to [0,1]$ we will refer to them as *product functions*.

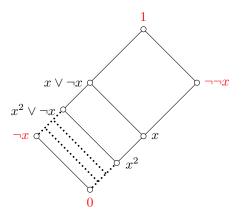
$\mathcal{F}_{\mathbb{P}}(1)$

The lattice of the free Product algebra with one generator $\mathcal{F}_{\mathbb{P}}(1)$:

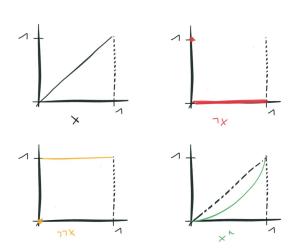


$\mathcal{F}_{\mathbb{P}}(1)$

The lattice of the free Product algebra with one generator $\mathcal{F}_{\mathbb{P}}(1)$:



 $\mathcal{F}_{\mathbb{P}}(1)$



Notice: product functions are not continuous; the Boolean atoms $\neg x$ and $\neg \neg x$ determine a partition of the domain, given by the areas where they assume value 0 or 1.

SARA UGOLINI

FREE PRODUCT ALGEBRAS

In the following, we will denote with:

- p_{ϵ} , with $\epsilon \in \Sigma$, the Boolean atoms of $\mathcal{F}_{\mathbb{P}}(n)$;
- G_{ϵ} the part of the domain where p_{ϵ} has value 1 and 0 outside. The G_{ϵ} 's, with $\epsilon \in \Sigma$, form a partition of $[0,1]^n$.

FREE PRODUCT ALGEBRAS

In the following, we will denote with:

- p_{ϵ} , with $\epsilon \in \Sigma$, the Boolean atoms of $\mathcal{F}_{\mathbb{P}}(n)$;
- G_{ϵ} the part of the domain where p_{ϵ} has value 1 and 0 outside. The G_{ϵ} 's, with $\epsilon \in \Sigma$, form a partition of $[0, 1]^n$.

Product functions are not continuous, like the fuctions of the free MV-algebra, nor in a finite number, as the functions of the free n-generated Gödel algebra.

FREE PRODUCT ALGEBRAS

In the following, we will denote with:

- p_{ϵ} , with $\epsilon \in \Sigma$, the Boolean atoms of $\mathcal{F}_{\mathbb{P}}(n)$;
- G_{ϵ} the part of the domain where p_{ϵ} has value 1 and 0 outside. The G_{ϵ} 's, with $\epsilon \in \Sigma$, form a partition of $[0,1]^n$.

Product functions are not continuous, like the fuctions of the free MV-algebra, nor in a finite number, as the functions of the free *n*-generated Gödel algebra. But:

Fact

Every product function $f: [0,1]^n \to [0,1]$ is such that, for every $\epsilon \in \Sigma$, its restriction f_{ϵ} to G_{ϵ} is continuous.

In fact, f_{ϵ} is either 0 or a piecewise monomial function (i.e. $g(x_1, \ldots x_n) = 1 \wedge x_1^{m_1} \ldots x_n^{m_n}$, with $m_i \in \mathbb{Z}$) [Aguzzoli-Bova-Gerla].

States of $\mathcal{F}_{\mathbb{P}}(n)$

DEFINITION

A state of $\mathcal{F}_{\mathbb{P}}(n)$ is a map $s: \mathcal{F}_{\mathbb{P}}(n) \to [0,1]$ satisfying the following conditions:

S1.
$$s(1) = 1$$
 and $s(0) = 0$,
S2. $s(f \land g) + s(f \lor g) = s(f) + s(g)$,
S3. If $f \le g$, then $s(f) \le s(g)$,
S4. If $f \ne 0$, then $s(f) = 0$ implies $s(\neg \neg f) = 0$.

States of $\mathcal{F}_{\mathbb{P}}(n)$

DEFINITION

A state of $\mathcal{F}_{\mathbb{P}}(n)$ is a map $s : \mathcal{F}_{\mathbb{P}}(n) \to [0,1]$ satisfying the following conditions:

S1.
$$s(1) = 1$$
 and $s(0) = 0$,
S2. $s(f \land g) + s(f \lor g) = s(f) + s(g)$,
S3. If $f \le g$, then $s(f) \le s(g)$,
S4. If $f \ne 0$, then $s(f) = 0$ implies $s(\neg \neg f) = 0$.

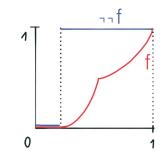
Notice that:

S2: a state is a Birkhoff's lattice valuation

S4: only property (indirectly) involving the monoidal operation

Condition S4

Recall:
$$\neg \neg f(x) = \begin{cases} 1, & \text{if } f(x) > 0\\ 0, & \text{if } f(x) = 0 \end{cases}$$
,



$$s(f) = 0$$
 implies $s(\neg \neg f) = 0$.

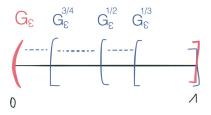
Idea : we will first define the integral over the G_{ϵ} 's.

Idea : we will first define the integral over the G_{ϵ} 's.

Each G_{ϵ} is a Borel subset of $[0,1]^n$, σ -locally compact and Hausdorff. σ -locally compact: it can be approximated by an increasing sequence of compact subsets G_{ϵ}^q , with $q \in Q$.

Idea : we will first define the integral over the G_{ϵ} 's.

Each G_{ϵ} is a Borel subset of $[0,1]^n$, σ -locally compact and Hausdorff. σ -locally compact: it can be approximated by an increasing sequence of compact subsets G_{ϵ}^q , with $q \in Q$.



Idea : we will first define the integral over the G_{ϵ} 's.

Each G_{ϵ} is a Borel subset of $[0,1]^n$, σ -locally compact and Hausdorff. σ -locally compact: it can be approximated by an increasing sequence of compact subsets G_{ϵ}^q , with $q \in Q$.

Tool:

THEOREM (RIESZ REPRESENTATION THEOREM)

Let X be a locally compact Hausdorff space, and let $\sigma : \mathscr{C}(X) \to \mathbb{R}$ be a positive linear functional on the space $\mathscr{C}(X)$ of continuous functions with compact support. Then there is a unique regular Borel measure μ on X such that

$$\sigma(f) = \int_X f \mathrm{d}\mu$$

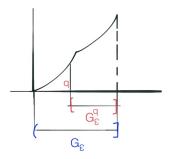
for each $f \in \mathscr{C}(X)$.

Given a state $s:\mathcal{F}_{\mathbb{P}}(n)\to [0,1]$, define $s_{\epsilon}:\mathcal{F}_{\mathbb{P}}(n)_{|G_{\epsilon}}\to [0,1]$ by

$$s_{\epsilon}(g_{\epsilon}) = \frac{s(g \wedge p_{\epsilon})}{s(p_{\epsilon})}$$

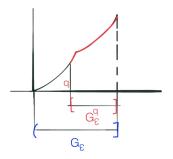
Given a state $s:\mathcal{F}_{\mathbb{P}}(n)\to [0,1]$, define $s_{\epsilon}:\mathcal{F}_{\mathbb{P}}(n)_{|G_{\epsilon}}\to [0,1]$ by

$$s_{\epsilon}(g_{\epsilon}) = \frac{s(g \wedge p_{\epsilon})}{s(p_{\epsilon})}$$



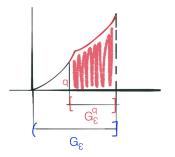
Given a state $s:\mathcal{F}_{\mathbb{P}}(n)\to [0,1]$, define $s_{\epsilon}:\mathcal{F}_{\mathbb{P}}(n)_{|G_{\epsilon}}\to [0,1]$ by

$$s_{\epsilon}(g_{\epsilon}) = \frac{s(g \wedge p_{\epsilon})}{s(p_{\epsilon})}$$



Given a state $s:\mathcal{F}_{\mathbb{P}}(n)\to [0,1]$, define $s_{\epsilon}:\mathcal{F}_{\mathbb{P}}(n)_{|G_{\epsilon}}\to [0,1]$ by

$$s_{\epsilon}(g_{\epsilon}) = \frac{s(g \wedge p_{\epsilon})}{s(p_{\epsilon})}$$



Given a state $s:\mathcal{F}_{\mathbb{P}}(n)\to [0,1]$, define $s_{\epsilon}:\mathcal{F}_{\mathbb{P}}(n)_{|G_{\epsilon}}\to [0,1]$ by

$$s_{\epsilon}(g_{\epsilon}) = \frac{s(g \wedge p_{\epsilon})}{s(p_{\epsilon})}$$

Given a state $s:\mathcal{F}_{\mathbb{P}}(n)\to [0,1]$, define $s_{\epsilon}:\mathcal{F}_{\mathbb{P}}(n)_{|G_{\epsilon}}\to [0,1]$ by

$$s_{\epsilon}(g_{\epsilon}) = \frac{s(g \wedge p_{\epsilon})}{s(p_{\epsilon})}$$

(1) for each $q \in [0,1]_Q$, consider its induced map s_{ϵ}^q 's on product functions restricted to the G_{ϵ}^q 's

Continuous functions on G^q_{ϵ} can be uniformly approximated by linear combinations of the functions of $\mathcal{F}_{\mathbb{P}}(n)$ restricted to such subsets:

Given a state $s:\mathcal{F}_{\mathbb{P}}(n)\to [0,1],$ define $s_{\epsilon}:\mathcal{F}_{\mathbb{P}}(n)_{|G_{\epsilon}}\to [0,1]$ by

$$s_{\epsilon}(g_{\epsilon}) = \frac{s(g \wedge p_{\epsilon})}{s(p_{\epsilon})}$$

(1) for each $q \in [0,1]_Q$, consider its induced map s^q_ϵ 's on product functions restricted to the G^q_ϵ 's

Continuous functions on G^q_{ϵ} can be uniformly approximated by linear combinations of the functions of $\mathcal{F}_{\mathbb{P}}(n)$ restricted to such subsets:

- (2) extend s^q_{ϵ} to a monotone linear functional τ^q_{ϵ} on the linear span Λ^q_{ϵ} of $\mathcal{F}_{\mathbb{P}}(n)$ over G^q_{ϵ} .
- (3) uniformly approximate continuous functions $\mathscr{C}(G^q_\epsilon)$ by sequences in Λ^q_ϵ
- (4) suitably extend τ_{ϵ}^{q} to a linear functional on $\mathscr{C}(G_{\epsilon}^{q})$

Given a state $s:\mathcal{F}_{\mathbb{P}}(n)\to [0,1],$ define $s_{\epsilon}:\mathcal{F}_{\mathbb{P}}(n)_{|G_{\epsilon}}\to [0,1]$ by

$$s_{\epsilon}(g_{\epsilon}) = \frac{s(g \wedge p_{\epsilon})}{s(p_{\epsilon})}$$

(1) for each $q \in [0,1]_Q$, consider its induced map s^q_ϵ 's on product functions restricted to the G^q_ϵ 's

Continuous functions on G^q_ϵ can be uniformly approximated by linear combinations of the functions of $\mathcal{F}_{\mathbb{P}}(n)$ restricted to such subsets:

- (2) extend s^q_{ϵ} to a monotone linear functional τ^q_{ϵ} on the linear span Λ^q_{ϵ} of $\mathcal{F}_{\mathbb{P}}(n)$ over G^q_{ϵ} .
- (3) uniformly approximate continuous functions $\mathscr{C}(G^q_\epsilon)$ by sequences in Λ^q_ϵ
- (4) suitably extend τ_{ϵ}^{q} to a linear functional on $\mathscr{C}(G_{\epsilon}^{q})$
- (5) apply Riesz theorem at the level of G^q_ϵ and get a unique Borel probability measure μ^q_ϵ representing τ^q_ϵ

INTEGRAL REPRESENTATION FOR STATES ON PRODUCT FUNCTIONS

Now:

 as q goes to 0, the μ^q_ε's converge to a unique Borel measure μ_ε representing s_ε, over each G_ε.

INTEGRAL REPRESENTATION FOR STATES ON PRODUCT FUNCTIONS

Now:

- as q goes to 0, the μ^q_ε's converge to a unique Borel measure μ_ε representing s_ε, over each G_ε.
- We suitably glue together the μ_{ϵ} to define μ on $[0,1]^n$.

INTEGRAL REPRESENTATION FOR STATES ON PRODUCT FUNCTIONS

Now:

- as q goes to 0, the μ^q_ϵ's converge to a unique Borel measure μ_ϵ representing s_ϵ, over each G_ϵ.
- We suitably glue together the μ_{ϵ} to define μ on $[0,1]^n$.

Theorem

For every state s of $\mathcal{F}_{\mathbb{P}}(n)$ there is a unique regular Borel probability measure μ on $[0,1]^n$, such that for every $f \in \mathcal{F}_{\mathbb{P}}(n)$:

$$s(f) = \int_{[0,1]^n} f \, \mathrm{d}\mu.$$

STATE SPACE AND ITS EXTREMAL POINTS

 $\mathcal{S}(n)$: set of all states of $\mathcal{F}_{\mathbb{P}}(n)$

 $\mathcal{H}(n)$: set of product logic homomorphisms of $\mathcal{F}_{\mathbb{P}}(n)$ into $[0,1]_P$

 $\mathcal{M}(n):$ set of all regular Borel probability measures on $[0,1]^n$

The state space S(n) results to be a closed convex subset of $[0,1]^{\mathcal{F}_{\mathbb{P}}(n)}$. Moreover, the map $\delta : S(n) \to \mathcal{M}(n)$ such that $\delta(s) = \mu$ is bijective and affine.

Theorem

The following are equivalent for a state $s : \mathcal{F}_{\mathbb{P}}(n) \to [0,1]$:

(I) s is extremal;

(II) $\delta(s)$ is a Dirac measure;

(III) $s \in \mathcal{H}(n)$.

STATE SPACE AND ITS EXTREMAL POINTS

Thus, via Krein-Milman Theorem we obtain the following:

COROLLARY

For every $n \in \mathbb{N}$, the state space S(n) is the convex closure of the set of product homomorphisms from $\mathcal{F}_{\mathbb{P}}(n)$ into $[0,1]_P$.

STATE SPACE AND ITS EXTREMAL POINTS

Thus, via Krein-Milman Theorem we obtain the following:

COROLLARY

For every $n \in \mathbb{N}$, the state space S(n) is the convex closure of the set of product homomorphisms from $\mathcal{F}_{\mathbb{P}}(n)$ into $[0,1]_P$.

Close analogy with MV and Gödel.

MV: The state space of an MV-algebra ${\bf A}$ is a compact convex space generated by its extremal states, that coincide with the homomorphisms of ${\bf A}$ to $[0,1]_{{\bf L}}.$

Gödel: States of $\mathcal{F}_{\mathbb{G}}(n)$ are precisely the convex combinations of finitely many truth value assignments.