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Background

• This work aims to contribute to the study of the theory of states on
classes of algebras of many-valued events (a generalization of
classical probability theory).

• Our setting is the one of t-norm based fuzzy logics as developed by
Hájek.
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Background

In this setting, BL (Hájek’s Basic Logic) plays a fundamental role, as the
logic of all continuous t-norms.

Its algebraic semantics, the variety of BL-algebras, is a class of prelinear
and divisible residuated lattices generated by the class of BL-algebras on
[0, 1], which are defined by a continuous t-norm and its residuum.

Three prominent axiomatic extensions, with corresponding algebraic
semantics:

•  Lukasiewicz logic (involutive), MV-algebras

• Gödel logic (contractive), Gödel algebras

• Product logic (cancellative), Product algebras

[Mostert-Shields Thm.]: a t-norm is continuous if and only if it can be
built from the previous three ones by the construction of ordinal sum.
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Background

Standard MV-algebra: [0,1] L = ([0, 1],� L,→ L,min,max, 0, 1)

x� L y = max{0, x+ y − 1}
x→ L y = 1 if x ≤ y,

1− x+ y otherwise.

Standard Gödel algebra: [0,1]G = ([0, 1],�G,→G,min,max, 0, 1)

x�G y = min{x, y}
x→G y = 1 if x ≤ y,

y otherwise.

Standard product algebra: [0,1]P = ([0, 1],�P ,→P ,min,max, 0, 1)

x�P y = x · y
x→P y = 1 if x ≤ y,

y/x otherwise.
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Free algebras

For L any of MV, Gödel and product logics, and L its algebraic
semantics, let FL(n) be the free L-algebra over n generators, i.e. the
Lindenbaum algebra of L-logic over n variables.

Since [0, 1]L is generic for the variety, FL(n) is, up to isomorphisms, the
subalgebra of all functions [0, 1]n → [0, 1] generated by the projection
maps π1, . . . , πn : [0, 1]n → [0, 1], with operations defined
componentwise by the standard ones.

Thus, every element of f ∈ FL(n) can be regarded as a function
f : [0, 1]n → [0, 1]. For example, for product logic:

formula product function

ϕ = p� (q ∧ r) fϕ(x, y, z) = x ·min(y, z)
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States of MV and Gödel algebras

[Mundici, 95]: Given any MV-algebra A = (A,�,→,∧,∨, 0, 1), a state
of A is a map s : A→ [0, 1] such that:

(i) s(1) = 1,

(ii) if a� b = 0, then s(a⊕ b) = s(a) + s(b),
where a⊕ b = ¬(¬a� ¬b)).

[Aguzzoli-Gerla-Marra, 2008]: Let FG(n) be the free Gödel algebra on n
generators. A state of FG(n) is a map s : FG(n)→ [0, 1] such that:

(i) s(0) = 0 and s(1) = 1,

(ii) f ≤ g implies s(f) ≤ s(g)

(iii) s(f ∨ g) = s(f) + s(g)− s(f ∧ g)

(iv) if f, g, h are either join-irreducible elements or equal to 0, and
satisfy f < g < h, then s(f) = s(g) implies s(g) = s(h).

Sara Ugolini States of free product algebras 6/23



States of MV and Gödel algebras
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Integral representation

Let F(n) be the free Gödel (or MV) algebra on n generators. Let s be a
state on F(n). Then there exists a (unique) regular Borel probability
measure µ on [0, 1]n such that, for any f ∈ F(n),

s(f) =

∫
[0,1]n

fdµ.

For MV-algebras, Kroupa-Panti Theorem [’06 - ’09] establishes an
integral representation theorem for states of any MV-algebra.
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States of product logic

Our aim is to introduce and study states for product logic, the remaining
fundamental many-valued logic for which such a notion is still lacking.

In particular, we will study states of FP(n), the free product algebra over
n generators, i.e. the Lindenbaum algebra of product logic over n
variables.

Since every element of f ∈ FP(n) can be regarded as a function
f : [0, 1]n → [0, 1] we will refer to them as product functions.
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FP(1)

The lattice of the free Product algebra with one generator FP(1):

0

x2

x

¬¬x

1

x ∨ ¬x

x2 ∨ ¬x

¬x
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FP(1)

Notice: product functions are not continuous;
the Boolean atoms ¬x and ¬¬x determine a partition of the domain,
given by the areas where they assume value 0 or 1.
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Free product algebras

In the following, we will denote with:

• pε, with ε ∈ Σ, the Boolean atoms of FP(n);

• Gε the part of the domain where pε has value 1 and 0 outside. The
Gε’s, with ε ∈ Σ, form a partition of [0, 1]n.

Product functions are not continuous, like the fuctions of the free
MV-algebra, nor in a finite number, as the functions of the free
n-generated Gödel algebra. But:

Fact
Every product function f : [0, 1]n → [0, 1] is such that, for every ε ∈ Σ,
its restriction fε to Gε is continuous.

In fact, fε is either 0 or a piecewise monomial function (i.e.
g(x1, . . . xn) = 1 ∧ xm1

1 . . . xmnn , with mi ∈ Z) [Aguzzoli-Bova-Gerla].
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States of FP(n)

Definition
A state of FP(n) is a map s : FP(n)→ [0, 1] satisfying the following
conditions:

S1. s(1) = 1 and s(0) = 0,

S2. s(f ∧ g) + s(f ∨ g) = s(f) + s(g),

S3. If f ≤ g, then s(f) ≤ s(g),

S4. If f 6= 0, then s(f) = 0 implies s(¬¬f) = 0.

Notice that:
S2: a state is a Birkhoff’s lattice valuation
S4: only property (indirectly) involving the monoidal operation
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Condition S4

Recall: ¬¬f(x) =

{
1, if f(x) > 0
0, if f(x) = 0

,

s(f) = 0 implies s(¬¬f) = 0.
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Towards an integral representation

Idea : we will first define the integral over the Gε’s.

Each Gε is a Borel subset of [0, 1]n, σ-locally compact and Hausdorff.
σ-locally compact: it can be approximated by an increasing sequence of
compact subsets Gqε , with q ∈ Q.
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Towards an integral representation

Idea : we will first define the integral over the Gε’s.

Each Gε is a Borel subset of [0, 1]n, σ-locally compact and Hausdorff.
σ-locally compact: it can be approximated by an increasing sequence of
compact subsets Gqε , with q ∈ Q.

Tool:

Theorem (Riesz representation theorem)
Let X be a locally compact Hausdorff space, and let σ : C (X)→ R be a
positive linear functional on the space C (X) of continuous functions with
compact support. Then there is a unique regular Borel measure µ on X
such that

σ(f) =

∫
X

fdµ

for each f ∈ C (X).
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Towards an integral representation
Given a state s : FP(n)→ [0, 1], define sε : FP(n)|Gε → [0, 1] by

sε(gε) =
s(g ∧ pε)
s(pε)

(1) for each q ∈ [0, 1]Q, consider its induced map sqε ’s on product
functions restricted to the Gqε ’s
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Continuous functions on Gqε can be uniformly approximated by linear
combinations of the functions of FP(n) restricted to such subsets:

(2) extend sqε to a monotone linear functional τ qε on the linear span Λqε
of FP(n) over Gqε .

(3) uniformly approximate continuous functions C (Gqε) by sequences in
Λqε

(4) suitably extend τ qε to a linear functional on C (Gqε)

(5) apply Riesz theorem at the level of Gqε and get a unique Borel
probability measure µqε representing τ qε
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Integral representation for states on
product functions

Now:

• as q goes to 0, the µqε ’s converge to a unique Borel measure µε
representing sε, over each Gε.

• We suitably glue together the µε to define µ on [0, 1]n.

Theorem
For every state s of FP(n) there is a unique regular Borel probability
measure µ on [0, 1]n, such that for every f ∈ FP(n):

s(f) =

∫
[0,1]n

f dµ.
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State space and its extremal points

S(n): set of all states of FP(n)
H(n): set of product logic homomorphisms of FP(n) into [0, 1]P
M(n): set of all regular Borel probability measures on [0, 1]n

The state space S(n) results to be a closed convex subset of [0, 1]FP(n).
Moreover, the map δ : S(n)→M(n) such that δ(s) = µ is bijective and
affine.

Theorem
The following are equivalent for a state s : FP(n)→ [0, 1]:

(i) s is extremal;

(ii) δ(s) is a Dirac measure;

(iii) s ∈ H(n).
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State space and its extremal points

Thus, via Krein-Milman Theorem we obtain the following:

Corollary
For every n ∈ N, the state space S(n) is the convex closure of the set of
product homomorphisms from FP(n) into [0, 1]P .

Close analogy with MV and Gödel.

MV: The state space of an MV-algebra A is a compact convex space
generated by its extremal states, that coincide with the homomorphisms
of A to [0, 1] L.

Gödel: States of FG(n) are precisely the convex combinations of finitely
many truth value assignments.
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