A canonical representation for free left-dioids

M. Jaskelioff, E. Postan, E. Rivas

Universidad Nacional de Rosario

CIFASIS - CONICET

XIV Congreso Dr. Antonio Monteiro 2017, Bahía Blanca.

Computational effects ——> Monads ——> Monoids

Free structures give syntactic programs modulo expected laws of behavior: we want implementations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Free structures give syntactic programs modulo expected laws of behavior: we want implementations.

Left-dioid

A *(left-)dioid* is a set tuple $(D, \otimes, \oplus, 1_D, 0_D)$, where

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

- D is a set,
- $\otimes, \oplus : D \times D \rightarrow D$ are binary operations,
- $1_D, 0_D \in D$ are constants,

such that the following is satisfied:

- $(D, \otimes, 1_D)$ is a monoid,
- $(D, \oplus, 0_D)$ is a monoid,
- $0_D \otimes x = 0_D$ for all $x \in D$,
- $1_D \oplus x = 1_D$ for all $x \in D$.

Bounded lattices

Every bounded lattice $\langle L, \lor, \land, 0, 1 \rangle$ is a dioid.

Bounded lattices

Every bounded lattice $\langle L, \lor, \land, 0, 1 \rangle$ is a dioid.

Binary operations

Let S be any set. Then $(S \times S \to S, \diamond, *, \pi_1, \pi_2)$ is a dioid, where $(f \diamond g)(x, y) = f(g(x, y), y)$ and (f * g)(x, y) = f(x, g(x, y)).

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Bounded lattices

Every bounded lattice $\langle L, \lor, \land, 0, 1 \rangle$ is a dioid.

Binary operations

Let S be any set. Then $(S \times S \to S, \diamond, *, \pi_1, \pi_2)$ is a dioid, where $(f \diamond g)(x, y) = f(g(x, y), y)$ and (f * g)(x, y) = f(x, g(x, y)).

Real unit interval

The real interval [0,1] has a dioid structure $\langle [0,1], *, \cdot, 0, 1 \rangle$ where $x \cdot y$ is the usual multiplication and x * y = x + y - xy.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Considering the forgetful functor U: Did \rightarrow Set, the free construction is given by the left adjoint F to U.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Considering the forgetful functor U: Did \rightarrow Set, the free construction is given by the left adjoint F to U.

Explicitly, the free dioid over X is a dioid F(X) and a function $i: X \to F(X)$ which are universal.

Considering the forgetful functor U: Did \rightarrow Set, the free construction is given by the left adjoint F to U.

Explicitly, the free dioid over X is a dioid F(X) and a function $i: X \to F(X)$ which are universal.

Universality: for any dioid D and function $f : X \to D$, there exists a unique dioid homomorphism $\overline{f} : F(X) \to D$ which make

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

commute.

Mathematically, we can construct F as:

$$F(X) = T(X)/\theta_0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Note that elements of F(X) are actually sets.

Mathematically, we can construct F as:

$$F(X) = T(X)/\theta_0$$

Note that elements of F(X) are actually sets.

But it cannot be implemented in most programming languages! They lack of quotients!

- ロ ト - 4 回 ト - 4 □

Mathematically, we can construct F as:

$$F(X) = T(X)/\theta_0$$

Note that elements of F(X) are actually sets.

But it cannot be implemented in most programming languages! They lack of quotients!

Alternative plan

We try to find canonical elements for each set, in an uniform manner, obtaining a concrete representation.

A concrete representation the free monoid over X is given by the least solution to the following recursive equation of sets:

 $F(X) \cong \{*\} \sqcup X \times F(X)$

・ロト・日本・モート モー うへぐ

A concrete representation the free monoid over X is given by the least solution to the following recursive equation of sets:

$$F(X) \cong \{*\} \sqcup X \times F(X)$$

A uniform choice: we choose the fully-right-associated term with the unit at the end.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A concrete representation the free monoid over X is given by the least solution to the following recursive equation of sets:

$$F(X) \cong \{*\} \sqcup X \times F(X)$$

A uniform choice: we choose the fully-right-associated term with the unit at the end.

$$\{(xy)z, (xe)(yz), e(x(y(ze))), x(yz), \ldots\} \mapsto x(y(ze))$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

This construction can be generalised to obtain free monoids in monoidal categories.

It is not trivial to find normal forms for dioid expressions.

It is not trivial to find normal forms for dioid expressions.

Ezequiel found a representation of the free dioid over X, it is the least solution to the following recursive equations of sets:

$$F(X) \cong \{*\} \sqcup \{*\} \sqcup T \tag{1}$$

$$T \cong X \sqcup (S \times \{*\}) \sqcup (S \times T) \sqcup (M \times \{*\}) \sqcup (M \times T)$$
 (2)

$$S \cong X \sqcup (M \times \{*\}) \sqcup (M \times T)$$
(3)

$$M \cong X \sqcup (S \times \{*\}) \sqcup (S \times T) \tag{4}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

It is not trivial to find normal forms for dioid expressions.

Ezequiel found a representation of the free dioid over X, it is the least solution to the following recursive equations of sets:

$$F(X) \cong \{*\} \sqcup \{*\} \sqcup T \tag{1}$$

$$T \cong X \sqcup (S \times \{*\}) \sqcup (S \times T) \sqcup (M \times \{*\}) \sqcup (M \times T)$$
(2)

$$S \cong X \sqcup (M \times \{*\}) \sqcup (M \times T) \tag{3}$$

$$M \cong X \sqcup (S \times \{*\}) \sqcup (S \times T) \tag{4}$$

Don't worry, we have a proof in the proof assistant Agda!

Main conclusion: we have an explicit construction for free dioids which can be generalised to other categories.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

We are now mainly interested in finding:

- Another representation for free dioids.
- A Cayley-like representation for dioids.

Main conclusion: we have an explicit construction for free dioids which can be generalised to other categories.

We are now mainly interested in finding:

- Another representation for free dioids.
- A Cayley-like representation for dioids.

Thank you!