Demiquantifiers on MV-algebras

Alejandro Petrovich

1

Let X be a nonvoid set and let $A = [0, 1]^X$ be the MV-algebra of all functions from X to the unit real interval [0, 1]. Let \exists be the classical functional existential quantifier defined on A given by $\exists f = \bigvee_{x \in X} f(x)$. Then the operator \exists satisfies the following condition:

 $\exists f = 1$ if and only if $f^{-1}(1 - \varepsilon, 1] \neq \emptyset$ for every $\varepsilon > 0$. Analogously the universal quantifier \forall defined by $\exists f = \bigwedge_{x \in X} f(x)$ satisfies

 $\forall f = 0 \text{ if and only if } f^{-1}[0, \varepsilon) \neq \emptyset \text{ for every } \varepsilon > 0.$ Notation: we write $\exists_1 = \exists \text{ and } \exists_0 = \forall.$ General Problem: for each constant $c \in [0, 1]$ find an operator \exists_c defined on A satisfying the analog conditions for the operators \exists_0 and \exists_1 , i.e.

(P) $\exists_c f = c$ if and only if $f^{-1}(c - \varepsilon, c + \varepsilon) \neq \emptyset$ for every $\varepsilon > 0$, or equivalently, the inverse image of every neighborhood of c is non-empty.

expressed by means of the infinite connectives \bigvee,\bigwedge and the usual connectives of MV-algebras.

In this talk we give a positive answer provided $c = \frac{1}{2}$.

Definition

Given $f: X \to [0,1]$ we define the operator $\exists_{\frac{1}{2}}$ on A given by the formula:

$$\exists_{\frac{1}{2}}f = \left[\bigvee_{x \in X} f(x)\right] \land \left[\bigwedge_{x \in X} (f(x) \lor \neg f(x))\right]$$

Then the operator satisfies condition (*P*) when $c = \frac{1}{2}$. The proof is immediate consequence of the identity: $a \lor \neg a = |a - \frac{1}{2}| + \frac{1}{2}$ for all $a \in [0, 1]$.

Definition

Let $\langle A, \oplus, \neg, 0, \rangle$ be an MV-algebra. An operator $\exists_{\frac{1}{2}} : A \to A$ is said to be a *demiquantifier* provided it satisfies the following conditions:

$$\begin{array}{ll} (\mathrm{DM1}) & \exists_{\frac{1}{2}} 0 = 0 \\ (\mathrm{DM2}) & x \wedge \neg x \leq \exists_{\frac{1}{2}} (x \wedge \neg x)) \\ (\mathrm{DM3}) & \exists_{\frac{1}{2}} (x \wedge \exists_{\frac{1}{2}} y) = \exists_{\frac{1}{2}} x \wedge \exists_{\frac{1}{2}} y \\ (\mathrm{DM4}) & \exists_{\frac{1}{2}} 2x = 2 \exists_{\frac{1}{2}} x \wedge \neg \exists_{\frac{1}{2}} (2x \wedge \neg 2x) \\ (\mathrm{DM5}) & \exists_{\frac{1}{2}} x \leq x \vee \neg x \\ (\mathrm{DM6}) & \exists_{\frac{1}{2}} (\exists_{\frac{1}{2}} x \oplus \exists_{\frac{1}{2}} y) = \exists_{\frac{1}{2}} x \oplus \exists_{\frac{1}{2}} y \\ (\mathrm{DM7}) & \exists_{\frac{1}{2}} (\neg \exists_{\frac{1}{2}} x) = \neg \exists_{\frac{1}{2}} x \\ (\mathrm{DM8}) & x \wedge \neg \exists_{\frac{1}{2}} (x \wedge \neg x) \leq \exists_{\frac{1}{2}} x \\ (\mathrm{DM9}) & \exists_{\frac{1}{2}} (2x \odot \exists_{\frac{1}{2}} (y \wedge \neg y)) = 2 \exists_{\frac{1}{2}} x \odot \exists_{\frac{1}{2}} (y \wedge \neg y) \end{array}$$

It is plain that the class of MV-algebras endowed with a demiquantifier determines a variety which is denoted by \mathcal{D} . Note that axioms (DM1), (DM6) and (DM7) imply the image of the operator $\exists_{\frac{1}{2}}$ is a subalgebra of *A*; while axioms (DM1) and (DM7) imply $\exists_{\frac{1}{2}} 1 = 1$. Recall that a *monadic MV-algebra* is an algebra $\mathbf{A} = \langle A, \oplus, \neg, \exists, 0, \rangle$ of type (2,1,1,0) where $\langle A, \oplus, \neg, 0, \rangle$ is an MV-algebra and \exists satisfies the following equations:

$$(\mathsf{MV1}) \ x = x \land \exists x,$$

$$(\mathsf{MV2}) \ \exists (x \lor y) = \exists x \lor \exists y,$$

$$(\mathsf{MV3}) \ \exists (\exists x \oplus \exists y) = \exists x \oplus \exists y,$$

$$(\mathsf{MV4}) \ \exists (\neg \exists x) = (\neg \exists x,$$

$$(\mathsf{MV5}) \ \exists (x \oplus x) = \exists x \oplus \exists x,$$

$$(\mathsf{MV6}) \ \exists (x \odot x) = \exists x \odot \exists x.$$

The variety of monadic MV-algebras will be denoted by \mathcal{M} .

Theorem

Let $\mathbf{A} = \langle A, \oplus, \neg, \exists, 0, \rangle$ be an algebra in \mathcal{M} . Then the operator $\exists_{\frac{1}{2}}$ defined by:

$$\exists_{\frac{1}{2}}x = \exists x \land \neg \exists (x \land \neg x)$$

for all $x \in A$ is a demiquantifier. Moreover, $\exists_{\frac{1}{2}} x = \exists x$ for all $x \in A^-$ and $\exists_{\frac{1}{2}} x = \neg \exists \neg x = \forall x$ for all $x \in A^+$.

Given an MV-algebra A, a *fixed point* of A is an element c of A (necessarily unique) such that $\neg c = c$.

Lemma

Let A be an MV-algebra having a fixed point. Then the following conditions hold for every $x \in A$.

(i)
$$x = (x \land c) \oplus (x \odot c)$$
.
(ii) $x^2 = 2(x \odot c)$.

Proposition

Let $(A, \exists_{\frac{1}{2}})$ be an algebra in \mathcal{D} and assume that c is a fixed point of A. Then the operator $\exists_{\frac{1}{2}}$ satisfies the following identities: (a) $\exists_{\frac{1}{2}}c = c$. (b) $c \odot \exists_{\frac{1}{2}}x = \exists_{\frac{1}{2}}(c \odot x) \land (c \odot \neg \exists_{\frac{1}{2}}(x \land \neg x))$. (c) $\exists_{\frac{1}{2}}(x \land \neg x) = \exists_{\frac{1}{2}}x \land \neg \exists_{\frac{1}{2}}x$. (d) $\exists_{\frac{1}{2}}((x \land \neg x) \odot \exists_{\frac{1}{2}}y) = \exists_{\frac{1}{2}}(x \land \neg x) \odot \exists_{\frac{1}{2}}y$ Let $\langle A, \oplus, \neg, 0, \rangle$ be an MV-algebra. Recall that an MV-ideal of A is a lattice ideal of A closed under the sum \oplus . It is well known that the correspondence $\equiv \mapsto \{x \in A : x \equiv 0\}$ is a bijection between Con(A) and the MV-ideals of A. Our next result will be to extend this result to the algebras in \mathcal{D} provided the underlying MV-algebra has a fixed point.

Theorem

Let $(A, \exists_{\frac{1}{2}})$ be an algebra in \mathcal{D} and let c be a fixed point of A. Then the correspondence $\equiv \mapsto \{x \in A : x \equiv 0\}$ establishes a bijection between $Con(A, \exists_{\frac{1}{2}})$ and the MV-ideals of A which are closed under the operator $\exists_{\frac{1}{2}}$. Moreover, if $(A, \exists_{\frac{1}{2}})$ is subdirectly irreducible then $\exists_{\frac{1}{2}}(A)$ is a subdirectly irreducible MV-algebra. In particular it is an MV-chain. We know that every algebra in \mathcal{M} induces an algebra in \mathcal{D} . Our next task will be to prove that the converse holds provided the underlying MV-algebras have a fixed point.

Theorem

Let $\mathbf{A} = \langle A, \oplus, \neg, \exists_{\frac{1}{2}}, 0, \rangle$ be an algebra in \mathcal{D} . The the operator $\exists : A \to A$ defined by:

$$\hat{\exists} x = \exists_{\frac{1}{2}} (x \wedge c) \oplus \exists_{\frac{1}{2}} (x \odot c)$$

for all $x \in A$, is an existential quantifier where c is a fixed point of A.

THE INTERDEFINABILITY THEOREM

Theorem

Let A be an MV-algebra having a fixed point c. Then the following conditions hold:

(a) If $\exists : A \to A$ is an existential quantifier then $\widehat{\exists}_{\frac{1}{2}} = \exists$. (b) If $\exists_{\frac{1}{2}} : A \to A$ is a demiquantifier, then $(\widehat{\exists}_{\frac{1}{2}})_{\frac{1}{2}} = \exists_{\frac{1}{2}}$.