# Relation Between BL-Possilistic Logic and Epistemic BL-Algebras

M. Busaniche<sup>1 2</sup> P. Cordero<sup>1</sup> R. Rodríguez <sup>3 4</sup>

<sup>1</sup>IMAL CONICET - UNL

<sup>2</sup>FIQ UNL

<sup>3</sup>FCEyN UBA

<sup>4</sup>ICC CONICET - UBA

Bahía Blanca, May 17th, 2017

## Possibilistic measures of uncertainty: the Boolean case

Possibility and Necessity measures  $\Pi, N : \mathcal{L} \to [0, 1]$ 

$$-\Pi(\bot) = N(\bot) = 0$$

$$-\Pi(\top) = N(\top) = 1$$

- if  $\vdash \varphi \to \psi,$  then  $\Pi(\varphi) \leq \Pi(\psi)$  and  $N(\varphi) \leq N(\psi)$ 

Possibility:  $\Pi(\varphi \lor \psi) = \max(\Pi(\varphi), \Pi(\psi))$ Necessity:  $N(\varphi \land \psi) = \min(N(\varphi), N(\psi))$ 

Dual pairs of measures  $(N, \Pi)$ : when  $\Pi(\varphi) = 1 - N(\neg \varphi)$ 

#### Possibility and Necessity Measures: representation

Let  $\mathcal{L}$  be the language generated by a set of propositional variables Var and let W be its set of Boolean interpretations (possible worlds).

•  $\Pi: \mathcal{L} \to [0,1]$  is a possibility measure iff there is a possibility distribution  $\pi: W \to [0,1]$  such that, for every  $\varphi$ 

$$\Pi(\varphi) = \sup_{w \models \varphi} \pi(w).$$

 $\Pi(\varphi)$  represents the degree to which the event  $\varphi$  is compatible with the available evidence represented by  $\pi.$ 

## Possibility and Necessity Measures: representation

Let  $\mathcal{L}$  be the language generated by a set of propositional variables Var and let W be its set of Boolean interpretations (possible worlds).

•  $\Pi: \mathcal{L} \to [0,1]$  is a possibility measure iff there is a possibility distribution  $\pi: W \to [0,1]$  such that, for every  $\varphi$ 

$$\Pi(\varphi) = \sup_{w \models \varphi} \pi(w).$$

 $\Pi(\varphi)$  represents the degree to which the event  $\varphi$  is compatible with the available evidence represented by  $\pi$ .

•  $N: \mathcal{L} \to [0, 1]$  is a necessity measure iff there is a possibility distribution  $\pi: W \to [0, 1]$  such that, for every  $\varphi$ ,

$$N(\varphi) = \inf_{w \not\models \varphi} 1 - \pi(w) = 1 - \Pi(\neg \varphi)$$

 $N(\varphi)$  represents the degree to which the event  $\varphi$  is entailed by the available evidence, i.e. the certainty of the occurrence of  $\varphi$ .

#### Necessity and Possibility measures on BL-algebras

- $\mathcal{L}$  language of propositional logic (&,  $\rightarrow$ ,  $\neg$ ) + modal operators (N, II).
- W set of C-interpretations, with C is a BL-algebra.
- $\pi: W \mapsto \mathcal{C}$  normalized possibility distribution.

The tuple  $\langle W, \pi \rangle$  is called *Possibilistic Model*. We call its underling logic KD45(C).

We choose the following generalizations (compatible with the natural evaluation of  $\Box$  and  $\diamond$  in many-valued modal logics):

Necessity measure:  $N: \mathcal{L} \to \mathcal{C}$  defined as

 $N(\varphi) = \inf_{w \in W} \{ \pi(w) \Rightarrow w(\varphi) \}$ 

Possibility measure:  $\Pi:\mathcal{L}\to\mathcal{C}$  defined as

```
\Pi(\varphi) = \sup_{w \in W} \{\pi(w) \star w(\varphi)\}
```

## Necessity and Possibility measures on BL-algebras

- $\mathcal{L}$  language of propositional logic (&,  $\rightarrow$ ,  $\neg$ ) + modal operators (N, II).
- W set of C-interpretations, with C is a BL-algebra.
- $\pi: W \mapsto \mathcal{C}$  normalized possibility distribution.

The tuple  $\langle W, \pi \rangle$  is called *Possibilistic Model*. We call its underling logic KD45(C).

We choose the following generalizations (compatible with the natural evaluation of  $\Box$  and  $\diamond$  in many-valued modal logics):

Necessity measure:  $N: \mathcal{L} \to \mathcal{C}$  defined as

 $N(\varphi) = \inf_{w \in W} \{ \pi(w) \Rightarrow w(\varphi) \}$ 

Possibility measure:  $\Pi:\mathcal{L}\rightarrow\mathcal{C}$  defined as

```
\Pi(\varphi) = \sup_{w \in W} \{\pi(w) \star w(\varphi)\}
```

Remark: duality is lost,  $N(\neg \varphi) = \neg \Pi(\varphi)$  but  $N(\varphi) \neq \neg \Pi(\neg \varphi)$ 

## A particular case: S5(C)

If  $\forall w \in W : \pi(w) = 1$  then the previous semantics is called *Universal*. Hájek defined the fuzzy modal logic S5(C) as the underlying logic of this semantics and he presented an axiomatization for this logic. We are able to give a nice translation between KD45(C) and S5(C).

## A particular case: S5(C)

If  $\forall w \in W : \pi(w) = 1$  then the previous semantics is called *Universal*. Hájek defined the fuzzy modal logic S5(C) as the underlying logic of this semantics and he presented an axiomatization for this logic. We are able to give a nice translation between KD45(C) and S5(C). Given a fixed set of propositional variables Var and  $c \notin Var$ , we define inductively a map  $\varphi \mapsto \varphi^*$  from  $\mathcal{L}(Var)$  into  $\mathcal{L}(Var \cup \{c\})$  as follows:

$$\begin{array}{rcl} \varphi^* &:= & \varphi \text{ for } \varphi \in Var \cup \{\top, \bot\} \\ (\varphi \circledast \psi)^* &:= & \varphi^* \circledast \psi^* \text{ for } \circledast \in \{\land, \lor, \&, \rightarrow\} \\ (N\varphi)^* &:= & N(c \to \varphi^*) \\ (\Pi\varphi)^* &:= & \Pi(c\&\varphi^*) \end{array}$$

Thus, using their translation, it is easy to prove the following:

Theorem

Let c be a fixed propositional variable not occurring in  $\varphi \in \mathcal{L}$  then:

$$=_{\mathrm{KD45}(\mathcal{C})} \varphi \quad \text{iff} \quad \Pi c \models_{\mathrm{S5}(\mathcal{C})} \varphi^*$$

Busaniche, Cordero and Rodriguez

# Hájek's Axiomatization of S5(C)

The logic S5(C) was axiomatizated by Hájek taking the axioms for the basic logic BL together with the following modal axioms:

$$\begin{array}{ll} (\Box 1) & \Box \varphi \to \varphi. \\ (\diamond 1) & \varphi \to \diamond \varphi. \\ ( & \Box 2) & \Box (\nu \to \varphi) \to (\nu \to \Box \varphi). \\ (\diamond 2) & \Box (\varphi \to \nu) \to (\diamond \varphi \to \nu). \\ (\Box 3) & \Box (\nu \lor \varphi) \to (\nu \lor \Box \varphi). \\ (\diamond 3) & \diamond (\varphi \star \varphi) \equiv \diamond \varphi \star \diamond \varphi. \end{array}$$

where  $\nu$  is any formula beginning with  $\Box$  or  $\Diamond$ . The inference rules are:

(MP) 
$$\varphi, \varphi \to \psi \vdash \psi$$
.  
(Nec)  $\varphi \vdash \Box \varphi$ .

Hájek proved that this axiomatization is strongly complete with respect to Universal Models.

## Our goal

To give an algebraic characterization of the fuzzy modal logic KD45(BL).

This characterization wants to solve an open problem proposed by Hájek in his book: "find an axiomatization for KD45(BL)"

## Our goal

To give an algebraic characterization of the fuzzy modal logic KD45(BL).

This characterization wants to solve an open problem proposed by Hájek in his book: "find an axiomatization for KD45(BL)"

Currently, the logic KD45(G) is the unique logic with a known axiomatization.

・ロ・・ (日・・ヨ・・ヨ・・ うくる)

# The axiom K: $\Box(p \to q) \to \Box p \to \Box q$ is not valid

We consider a model in  $L_5$ :

$$\{u(p) = \frac{1}{2}, u(q) = \frac{3}{4}\} \left(\pi(u) = 1\right) \qquad \left(\pi(v) = \frac{3}{4}\right) \{v(p) = \frac{1}{4}, v(q) = 0\}$$

$$\begin{split} \Box(p \to q) &= \min\{\pi(u) \to (u(p) \to u(q)), \pi(v) \to (v(p) \to v(q))\} = \\ &= \min\{1 - 1 + 1, 1 - \frac{3}{4} + \min(1, 1 - \frac{1}{4} + 0)\} = 1 \\ \Box p &= \min\{\pi(u) \to u(p), \pi(v) \to v(p)\} = \min\{1 - 1 + \frac{1}{2}, 1 - \frac{3}{4} + \frac{1}{4}\} = \frac{1}{2} \\ \Box q &= \min\{\pi(u) \to u(q), \pi(v) \to v(q)\} = \min\{1 - 1 + \frac{3}{4}, 1 - \frac{3}{4} + 0\} = \frac{1}{4} \\ \Box p \to \Box q = 1 - \frac{1}{2} + \frac{1}{4} = \frac{3}{4} \end{split}$$

Busaniche, Cordero and Rodriguez

## Epistemic BL-Algebras

#### Definition

An algebra  $\mathbf{A} = \langle A, \lor, \land, \star, \rightarrow, \forall, \exists, 0, 1 \rangle$  of type (2, 2, 2, 2, 1, 1, 0, 0) is called a *Epistemic* BL-algebra (an EBL-algebra for short) if  $\langle A, \lor, \land, \star, \rightarrow, 0, 1 \rangle$  is a BL-algebra that also satisfies:

イロト イポト イヨト イヨト

# Hájek's fuzzy modal logic KD45(BL)

#### Definition

Given a complete BL-algebra  $\mathcal{A}$ , a *possibilistic*  $\Pi \mathcal{A}$  *model* is a triple  $\langle W, \pi, e \rangle$  where where W is a non-empty set of worlds,  $\pi : W \to \mathbf{A}$  (i.e.  $\pi \in \mathbf{A}^W$ ) is normalized possibility distribution over W, that is, such that  $\sup_{w \in W} \pi(w) = 1^{\mathcal{A}}$ , and  $e : W \times Var \mapsto \mathbf{A}$  provides an evaluation of variables in each world. For each  $w \in W$ , e(w, -) extends to arbitrary formulas in the usual way for the propositional connectives and for modal operators in the following way:

$$e(w, \Box \varphi) := \inf_{w \in W} \{\pi(w) \Rightarrow e(w, \varphi)\}$$
$$e(w, \Diamond \varphi) := \sup_{w \in W} \{\pi(w) \star e(w, \varphi)\}$$

#### Remark

The map  $e: W \times Var \mapsto \mathbf{A}$  can be turned into a map  $\overline{e}: Var \mapsto \mathbf{A}^W$ and it may be extended to the whole modal language in the usual way  $\widetilde{e}: \mathcal{L} \mapsto \mathbf{A}^W$ .

## Complex Epistemic BL-Algebras (1)

Considering a  $\Pi \mathcal{A}$ -frame  $\mathcal{P} = \langle W, \pi \rangle$  and remembering that  $\pi \in \mathbf{A}^W$ , we can define its associated complex  $\mathcal{A}$ -algebra  $\mathcal{A}^{\mathcal{P}} = \langle \mathbf{A}^W, \forall^{\mathcal{P}}, \exists^{\mathcal{P}} \rangle$ ) where  $\mathbf{A}^W$  is the product algebra, and for each map  $f \in \mathbf{A}^W$ :

$$\begin{aligned} \forall^{\mathcal{P}}(f) &= \inf_{w \in W} \{\pi(w) \Rightarrow f(w)\} \\ \exists^{\mathcal{P}}(f) &= \sup_{w \in W} \{\pi(w) \star f(w)\} \end{aligned}$$

## Complex Epistemic BL-Algebras (1)

Considering a  $\Pi \mathcal{A}$ -frame  $\mathcal{P} = \langle W, \pi \rangle$  and remembering that  $\pi \in \mathbf{A}^W$ , we can define its associated complex  $\mathcal{A}$ -algebra  $\mathcal{A}^{\mathcal{P}} = \langle \mathbf{A}^W, \forall^{\mathcal{P}}, \exists^{\mathcal{P}} \rangle$ ) where  $\mathbf{A}^W$  is the product algebra, and for each map  $f \in \mathbf{A}^W$ :

$$\forall^{\mathcal{P}}(f) = \inf_{w \in W} \{\pi(w) \Rightarrow f(w)\}$$
  
$$\exists^{\mathcal{P}}(f) = \sup_{w \in W} \{\pi(w) \star f(w)\}$$

On the other direction, given an complex  $\mathcal{A}$ -algebra  $\mathcal{A} = \langle \mathbf{A}^W, \forall, \exists \rangle$ , we can define its associated possibilistic frame  $\mathcal{P}' = \langle W, \pi' \rangle$ , where:

$$\pi'(w) = \inf_{f \in \mathbf{A}^W} \{ \min((\forall f)(w) \to f(w), f(w) \to (\exists f)(w)) \}$$

## Complex Epistemic BL-Algebras (2)

#### Theorem

Given a  $\Pi \mathbf{A}$ -framel  $\mathcal{M} = \langle W, \pi \rangle$ , the associated complex  $\mathcal{A}$ -algebra  $\mathcal{A}^{\mathcal{P}} = \langle \mathbf{A}^{W}, \forall^{\mathcal{P}}, \exists^{\mathcal{P}} \rangle$ ) is an Epistemic  $\mathcal{A}$ -algebra.

## Complex Epistemic BL-Algebras (2)

#### Theorem

Given a  $\Pi \mathbf{A}$ -framel  $\mathcal{M} = \langle W, \pi \rangle$ , the associated complex  $\mathcal{A}$ -algebra  $\mathcal{A}^{\mathcal{P}} = \langle \mathbf{A}^{W}, \forall^{\mathcal{P}}, \exists^{\mathcal{P}} \rangle$ ) is an Epistemic  $\mathcal{A}$ -algebra. Furthermore,  $\mathcal{M} = \langle W, \pi \rangle$  is its associated possibilistic frame.

We call an algebra with universe  $\mathbf{A}^W$  a complex Epistemic  $\mathcal{A}$ -algebra.

# Complex Epistemic BL-Algebras (2)

#### Theorem

Given a  $\Pi \mathbf{A}$ -framel  $\mathcal{M} = \langle W, \pi \rangle$ , the associated complex  $\mathcal{A}$ -algebra  $\mathcal{A}^{\mathcal{P}} = \langle \mathbf{A}^{W}, \forall^{\mathcal{P}}, \exists^{\mathcal{P}} \rangle$ ) is an Epistemic  $\mathcal{A}$ -algebra. Furthermore,  $\mathcal{M} = \langle W, \pi \rangle$  is its associated possibilistic frame.

We call an algebra with universe  $\mathbf{A}^W$  a complex Epistemic  $\mathcal{A}$ -algebra. In particular, we can show the following result:

#### Theorem

Let  $\mathcal{P} = \langle W, \pi, e \rangle$  be a  $\Pi \mathcal{A}$ -model. Then the set  $\mathbf{E} = \{\tilde{e}(\varphi) | \varphi \in \mathcal{L}\} \subseteq \mathbf{A}^W$  is the universe of a complex Epistemic BL-algebra.

### **Optimal Possibilistic Models**

#### Definition

Given a  $\Pi\mathbf{A}\text{-model}\ \mathcal{M}=\langle W,\pi,e\rangle,$  define a new accessibility relation as follows:

$$\pi^+(w) = \inf_{\varphi \in Fm_{\Box\diamond}} \{\min(e(\Box\varphi, w) \Rightarrow e(\varphi, w), e(\varphi, w) \Rightarrow e(\Diamond\varphi, w))\}$$

Call  $\mathcal{M}$  optimal whenever  $\pi^+ = \pi$ .

## **Optimal Possibilistic Models**

#### Definition

Given a  $\Pi {\bf A}\text{-model}\ {\cal M}=\langle W,\pi,e\rangle,$  define a new accessibility relation as follows:

$$\pi^+(w) = \inf_{\varphi \in Fm_{\Box\diamond}} \{\min(e(\Box\varphi, w) \Rightarrow e(\varphi, w), e(\varphi, w) \Rightarrow e(\diamondsuit\varphi, w))\}$$

Call  $\mathcal{M}$  optimal whenever  $\pi^+ = \pi$ .

The following lemma shows that any  $\Pi \mathbf{A}\text{-model}$  is equivalent to an optimal one.

#### Lemma

The model  $\mathcal{M}^+ = \langle W, \pi^+, e^+ \rangle$  is optimal. Moreover, if  $e^+$  is the extension of e in  $\mathcal{M}^+$ , then  $e^+(\varphi, w) = e(\varphi, w)$  for any  $\varphi \in Fm_{\Box \Diamond}$  and any  $w \in W$ .

## Conclusions and future works

- We have showed a relation between Possibilistic Models and EBL-algebras.
- However, we have not be able to give an axiomatization for the logic KD45(BL) yet.

- Studying the algebraic characterization of KD45(BL).

Possibilistic mesuares of uncertainty Epistemic BL-algebras Hájek's fuzzy modal logic KD45(BL) Relation between Possibilistic Frames and Epistemic BL-algebras

# Thank you for your attention



・ロン ・回 と ・ヨン ・ヨン

э