NPc-algebras and Gödel hoops

Miguel Andrés Marcos joint work with S. Aguzzoli, M. Busaniche and B. Gerla

Instituto de Matemática Aplicada del Litoral, UNL, CONICET, FIQ Santa Fe, Argentina

XIV Congreso Dr. Antonio Monteiro Bahía Blanca, 31 de Mayo, 1 y 2 de Junio de 2017

æ

< □ > < □ > < □ > < □ > < □ > < □ >

• Nelson Algebras are the algebraic models for constructive logic with strong negation (Nelson's system N3).

- Nelson Algebras are the algebraic models for constructive logic with strong negation (Nelson's system N3).
- Nelson Algebras are termwise equivalent to certain residuated lattices, *Nelson residuated lattices*.

- Nelson Algebras are the algebraic models for constructive logic with strong negation (Nelson's system N3).
- Nelson Algebras are termwise equivalent to certain residuated lattices, *Nelson residuated lattices*.

- Busaniche, M., Cignoli, R.: *Constructive logic with strong negation as a substructural logic.* J. Log. Comput. **20**, 761-793 (2010).
- - Spinks, M., Veroff, R.: *Constructive logic with strong negation is a substructural logic. I*, Stud. Log., **88** (2008), 325–348.
 - Spinks, M., Veroff, R.: Constructive logic with strong negation is a substructural logic. II, Stud. Log., **89** (2008), 401–425.

- Nelson Algebras are the algebraic models for constructive logic with strong negation (Nelson's system N3).
- Nelson Algebras are termwise equivalent to certain residuated lattices, *Nelson residuated lattices*.
- N4-lattices are the algebraic models for paraconsistent Nelson logic (Nelson's system N4).

- Nelson Algebras are the algebraic models for constructive logic with strong negation (Nelson's system N3).
- Nelson Algebras are termwise equivalent to certain residuated lattices, *Nelson residuated lattices.*
- N4-lattices are the algebraic models for paraconsistent Nelson logic (Nelson's system N4).

- Odintsov, S. P.: *Algebraic semantics for paraconsistent Nelson's logic*. J. Log. Comput. **13**, 453-468 (2003).
- Odintsov, S. P.: *On the representation of N4-lattices*. Stud. Log. **76**, 385-405 (2004).

- Nelson Algebras are the algebraic models for constructive logic with strong negation (Nelson's system N3).
- Nelson Algebras are termwise equivalent to certain residuated lattices, *Nelson residuated lattices.*
- N4-lattices are the algebraic models for paraconsistent Nelson logic (Nelson's system N4).
- eN4-lattices are expansions of N4-lattices by a constant *e* fulfilling certain equations.

- Nelson Algebras are the algebraic models for constructive logic with strong negation (Nelson's system N3).
- Nelson Algebras are termwise equivalent to certain residuated lattices, *Nelson residuated lattices*.
- N4-lattices are the algebraic models for paraconsistent Nelson logic (Nelson's system N4).
- eN4-lattices are expansions of N4-lattices by a constant *e* fulfilling certain equations.
- eN4-lattices are termwise equivalent to certain residuated lattices, *NPc-lattices*.

- Nelson Algebras are the algebraic models for constructive logic with strong negation (Nelson's system N3).
- Nelson Algebras are termwise equivalent to certain residuated lattices, *Nelson residuated lattices.*
- N4-lattices are the algebraic models for paraconsistent Nelson logic (Nelson's system N4).
- eN4-lattices are expansions of N4-lattices by a constant *e* fulfilling certain equations.
- eN4-lattices are termwise equivalent to certain residuated lattices, *NPc-lattices*.

Busaniche, M., Cignoli, R.: Residuated lattices as an algebraic semantics for paraconsistent Nelson logic. J. Log. Comput. **19**, 1019-1029 (2009).

Miguel Marcos

3

イロト イ団ト イヨト イヨト

A (commutative) residuated lattice is an algebra $L = (L, \land, \lor, *, \rightarrow, e)$ of type (2, 2, 2, 2, 0) such that

ヨト イヨト

A (commutative) residuated lattice is an algebra $L = (L, \land, \lor, *, \rightarrow, e)$ of type (2,2,2,2,0) such that

• (L, \wedge, \vee) is a lattice

ヨト イヨト

A (commutative) residuated lattice is an algebra $L = (L, \land, \lor, *, \rightarrow, e)$ of type (2,2,2,2,0) such that

- (L, \wedge, \vee) is a lattice
- (L, *, e) is a commutative monoid

A (commutative) residuated lattice is an algebra $L = (L, \land, \lor, *, \rightarrow, e)$ of type (2, 2, 2, 2, 0) such that

- (L, \wedge, \vee) is a lattice
- (L, *, e) is a commutative monoid
- (residuation) $a \rightarrow b \ge c$ if and only if $a * c \le b$.

A (commutative) residuated lattice is an algebra $L = (L, \land, \lor, *, \rightarrow, e)$ of type (2, 2, 2, 2, 2, 0) such that

- (L, \wedge, \vee) is a lattice
- (L, *, e) is a commutative monoid
- (residuation) $a \rightarrow b \ge c$ if and only if $a * c \le b$.

Residuated lattices form a variety, as the residuation quasiequation can be replaced by equations.

A (commutative) residuated lattice is an algebra $L = (L, \land, \lor, *, \rightarrow, e)$ of type (2, 2, 2, 2, 2, 0) such that

- (L, \wedge, \vee) is a lattice
- (L, *, e) is a commutative monoid
- (residuation) $a \rightarrow b \ge c$ if and only if $a * c \le b$.

If the underlying lattice is distributive, we say ${\sf L}$ is a *commutative distributive residuated lattice*.

A (commutative) residuated lattice is an algebra $L = (L, \land, \lor, *, \rightarrow, e)$ of type (2, 2, 2, 2, 0) such that

- (L, \wedge, \vee) is a lattice
- (L, *, e) is a commutative monoid
- (residuation) $a \rightarrow b \ge c$ if and only if $a * c \le b$.

If e is the maximum element, we say L is integral.

A (commutative) residuated lattice is an algebra $L = (L, \land, \lor, *, \rightarrow, e)$ of type (2, 2, 2, 2, 0) such that

- (L, \wedge, \vee) is a lattice
- (L, *, e) is a commutative monoid
- (residuation) $a \rightarrow b \ge c$ if and only if $a * c \le b$.

The negative cone of **L** is the set $L^- = \{a \in L : a \leq e\}$

A (commutative) residuated lattice is an algebra $L = (L, \land, \lor, *, \rightarrow, e)$ of type (2, 2, 2, 2, 2, 0) such that

- (L, \wedge, \vee) is a lattice
- (L, *, e) is a commutative monoid
- (residuation) $a \rightarrow b \ge c$ if and only if $a * c \le b$.

The negative cone of L is the set $L^- = \{a \in L : a \le e\}$ which is closed under $\land, \lor, *$ and

$$a \rightarrow_e b = (a \rightarrow b) \wedge e.$$

A (commutative) residuated lattice is an algebra $L = (L, \land, \lor, *, \rightarrow, e)$ of type (2, 2, 2, 2, 2, 0) such that

- (L, \wedge, \vee) is a lattice
- (L, *, e) is a commutative monoid
- (residuation) $a \rightarrow b \ge c$ if and only if $a * c \le b$.

The negative cone of L is the set $L^- = \{a \in L : a \le e\}$ which is closed under $\land, \lor, *$ and

$$a \rightarrow_e b = (a \rightarrow b) \land e.$$

 $\mathsf{L}^- = (L^-, \wedge, \lor, *,
ightarrow_e, e)$ is an integral commutative residuated lattice.

く 何 とう く ヨ とう

By a $\mathit{full twist-product}$ of an integral commutative residuated lattice L we mean the algebra

$$\mathsf{K}(\mathsf{L}) = (L \times L, \sqcap, \sqcup, \bullet, \Rightarrow, (e, e))$$

with the operations $\sqcup, \sqcap, *, \Rightarrow$ given by

By a $\mathit{full twist-product}$ of an integral commutative residuated lattice L we mean the algebra

$$\mathsf{K}(\mathsf{L}) = (L \times L, \sqcap, \sqcup, \bullet, \Rightarrow, (e, e))$$

with the operations $\sqcup, \sqcap, *, \Rightarrow$ given by

$$(x, y) \sqcap (x', y') = (x \land x', y \lor y')$$

$$(x, y) \sqcup (x', y') = (x \lor x', y \land y')$$

$$(x, y) \bullet (x', y') = (x \ast x', (x \to y') \land (x' \to y))$$

$$(x, y) \Rightarrow (x', y') = ((x \to x') \land (y' \to y), x \ast y')$$

K(L) is a residuated lattice.

æ

< □ > < □ > < □ > < □ > < □ > < □ >

K(L) is a residuated lattice.

The correspondence $(a, e) \mapsto a$ defines an isomorphism from $K(L)^-$ onto L.

ヨト イヨト

K(L) is a residuated lattice.

The correspondence $(a, e) \mapsto a$ defines an isomorphism from $K(L)^-$ onto L.

Every subalgebra A of K(L) containing the set $\{(a, e) : a \in L\}$ is called a *twist-product* obtained from L.

Every twist-product satisfies

Miguel Marcos

3

イロト イ団ト イヨト イヨト

Every twist-product satisfies

• (e-involution) $((x, y) \Rightarrow (e, e)) \Rightarrow (e, e) = (x, y)$ (then we define $\sim (x, y) = (x, y) \Rightarrow (e, e) = (y, x)$)

э

글 에 에 글 어

Image: A matrix and a matrix

Every twist-product satisfies

- (e-involution) $((x, y) \Rightarrow (e, e)) \Rightarrow (e, e) = (x, y)$ (then we define $\sim (x, y) = (x, y) \Rightarrow (e, e) = (y, x)$)
- (distributivity at (e, e))

$$(x,y) \sqcup ((x',y') \sqcap (x'',y'')) = ((x,y) \sqcup (x',y')) \sqcap ((x,y) \sqcup (x'',y'')) (x,y) \sqcap ((x',y') \sqcup (x'',y'')) = ((x,y) \sqcap (x',y')) \sqcup ((x,y) \sqcap (x'',y''))$$

whenever one of the three (x, y), (x', y'), (x'', y'') is replaced with (e, e)

3 K K 3 K

Every twist-product satisfies

- (e-involution) $((x, y) \Rightarrow (e, e)) \Rightarrow (e, e) = (x, y)$ (then we define $\sim (x, y) = (x, y) \Rightarrow (e, e) = (y, x)$)
- (distributivity at (e, e))

$$(x,y) \sqcup ((x',y') \sqcap (x'',y'')) = ((x,y) \sqcup (x',y')) \sqcap ((x,y) \sqcup (x'',y'')) (x,y) \sqcap ((x',y') \sqcup (x'',y'')) = ((x,y) \sqcap (x',y')) \sqcup ((x,y) \sqcap (x'',y''))$$

whenever one of the three (x, y), (x', y'), (x'', y'') is replaced with (e, e)

• $((x, y) \bullet (x', y')) \sqcap (e, e) = ((x, y) \sqcap (e, e)) \bullet ((x', y') \sqcap (e, e))$

ヘロト 人間ト ヘヨト ヘヨト

Every twist-product satisfies

- (e-involution) $((x, y) \Rightarrow (e, e)) \Rightarrow (e, e) = (x, y)$ (then we define $\sim (x, y) = (x, y) \Rightarrow (e, e) = (y, x)$)
- (distributivity at (e, e))

$$(x,y) \sqcup ((x',y') \sqcap (x'',y'')) = ((x,y) \sqcup (x',y')) \sqcap ((x,y) \sqcup (x'',y'')) (x,y) \sqcap ((x',y') \sqcup (x'',y'')) = ((x,y) \sqcap (x',y')) \sqcup ((x,y) \sqcap (x'',y''))$$

whenever one of the three (x, y), (x', y'), (x'', y'') is replaced with (e, e)

•
$$((x,y) \bullet (x',y')) \sqcap (e,e) = ((x,y) \sqcap (e,e)) \bullet ((x',y') \sqcap (e,e))$$

•
$$(((x,y) \sqcap (e,e)) \Rightarrow (x',y')) \sqcap ((\sim (x',y') \sqcap (e,e)) \Rightarrow \sim (x,y)) = (x,y) \Rightarrow (x',y')$$

3 K K 3 K

A K-lattice is a commutative residuated lattice satisfying

- (e-involution) $(a \rightarrow e) \rightarrow e = a$ (then we define $\sim a = a \rightarrow e$)
- (distributivity at e)

$$a \lor (b \land c) = (a \lor b) \land (a \lor c)$$

 $a \land (b \lor c) = (a \land b) \lor (a \land c)$

whenever one of the three a, b, c is replaced with e

•
$$(a * b) \land e = (a \land e) * (b \land e)$$

• $((a \land e) \rightarrow b) \land ((\sim b \land e) \rightarrow \sim a) = a \rightarrow b$

Theorem

Let A be a K-lattice. The map

$$\phi_{\mathsf{A}}: \mathsf{A} o \mathsf{K}(\mathsf{A}^{-})$$

given by

$$a\mapsto (a\wedge e,\sim a\wedge e)$$

is an injective homomorphism.

Busaniche, M., Cignoli, R.: *Commutative residuated lattices represented by twist-products*, Algebra Universalis **71**, 5-22 (2014).

Miguel Marcos

3

イロト イヨト イヨト イヨト

An NPc-lattice is K-lattice $\mathbf{A} = (A, \wedge, \vee, *, \rightarrow, e)$ that additionally satisfies

æ

3)) (S)

An NPc-lattice is K-lattice A = (A, ∧, ∨, *, →, e) that additionally satisfies
the lattice (A, ∧, ∨) is distributive

▶ ∢ ∃ ▶

An NPc-lattice is K-lattice $\mathbf{A} = (A, \wedge, \lor, *, \rightarrow, e)$ that additionally satisfies

- the lattice (A, \land, \lor) is distributive
- $(a \wedge e)^2 = a \wedge e$

э

ヨト イヨト

An NPc-lattice is K-lattice $\mathbf{A} = (A, \wedge, \lor, *, \rightarrow, e)$ that additionally satisfies

• the lattice (A, \land, \lor) is distributive

•
$$(a \wedge e)^2 = a \wedge e$$

The negative cone of an NPc-lattice is a *Brouwerian algebra*: an integral residuated lattice with $a * b = a \land b$ (also called *generalized Heyting algebra* or *implicative lattice*).

Odintsov, S. P.: *Constructive Negations and Paraconsistency*. Trends in Logic-Studia Logica Library 26. Springer. Dordrecht (2008).

L a Brouwerian algebra, Odintsov defines a weak implication over $\mathsf{L}\times\mathsf{L}^\partial$

$$(x,y) \rightarrow (x',y') = (x \rightarrow x', x \land y')$$

.∃ →

∃ ▶ ∢

- ∢ ⊢⊒ →

L a Brouwerian algebra, Odintsov defines a weak implication over $\mathsf{L} \times \mathsf{L}^\partial$

$$(x,y) \rightarrow (x',y') = (x \rightarrow x', x \land y')$$

∆ ideal, ∇ filter containing all elements of the form x ∨ (x → y) (we call them regular filters).

L a Brouwerian algebra, Odintsov defines a weak implication over $\mathsf{L} \times \mathsf{L}^\partial$

$$(x,y) \rightarrow (x',y') = (x \rightarrow x', x \land y')$$

• Δ ideal, ∇ filter containing all elements of the form $x \lor (x \to y)$ (we call them **regular filters**). Then

$$Tw(L, \nabla, \Delta) = \{(x, y) : x \lor y \in \nabla, x \land y \in \Delta\}$$

is the universe of a "twist-product" over L (with this weak implication).

L a Brouwerian algebra, Odintsov defines a weak implication over $\mathsf{L} \times \mathsf{L}^\partial$

$$(x,y)
ightarrow (x',y') = (x
ightarrow x',x \wedge y')$$

• Δ ideal, ∇ filter containing all elements of the form $x \lor (x \to y)$ (we call them **regular filters**). Then

$$Tw(L, \nabla, \Delta) = \{(x, y) : x \lor y \in \nabla, x \land y \in \Delta\}$$

is the universe of a "twist-product" over L (with this weak implication).
B a "twist-product" over L. Define

$$abla = \{\pi_1(b \sqcup \sim b) : b \in B\}, \qquad \Delta = \{\pi_2(b \sqcup \sim b) : b \in B\}.$$

Then ∇ is a regular filter, Δ an ideal and $B = Tw(L, \nabla, \Delta)$.

Let ${\sf L}$ be a Brouwerian algebra and ∇ a regular filter of ${\sf L}.$ Then the subset

$$Tw(L, \nabla) = \{(x, y) \in L \times L : x \lor y \in \nabla\},\$$

of the NPc-lattice K(L) is a twist-product obtained from L.

Let L be a Brouwerian algebra and ∇ a regular filter of L. Then the subset

$$Tw(L,\nabla) = \{(x,y) \in L \times L : x \lor y \in \nabla\},\$$

of the NPc-lattice K(L) is a twist-product obtained from L.

Moreover, if L' is another Brouwerian algebra and ∇' a regular filter in L', for each morphism $f : L \to L'$ satisfying $f(\nabla) \subseteq \nabla'$ we obtain an NPc-lattice morphism

$$\mathsf{f}:\mathsf{Tw}(\mathsf{L},\nabla)\to\mathsf{Tw}(\mathsf{L}',\nabla')$$

given by f((x, y)) = (f(x), f(y)).

Let B be an NPc-lattice. Then the set $\nabla = \{(b \lor \sim b) \land e : b \in B\}$ is a regular filter in B⁻, and

 $\mathbf{B}\cong \mathbf{Tw}(\mathbf{B}^{-},\nabla).$

3 🕨 3

Let B be an NPc-lattice. Then the set $\nabla = \{(b \lor \sim b) \land e : b \in B\}$ is a regular filter in B⁻, and

$$\mathbf{B} \cong \mathbf{Tw}(\mathbf{B}^{-}, \nabla).$$

Moreover, if B' is another NPc-lattice, for each NPc-lattice morphism $f : B \to B'$ we obtain a Brouwerian morphism $f : B^- \to (B')^-$ given by $f = f|_{B^-}$, that satisfies $f(\nabla) \subseteq \nabla'$, where $\nabla' = \{(c \lor c) \land e : c \in B'\}$.

 $\mathsf{Category}\ \mathbb{B}\mathbb{F}$

 objects: pairs (L, ∇), L a Brouwerian algebra and ∇ ⊂ L a regular filter

э

ヨト イヨト

 $\mathsf{Category}\ \mathbb{BF}$

- objects: pairs (L, ∇), L a Brouwerian algebra and ∇ ⊂ L a regular filter
- arrows: $f : (L, \nabla) \to (L', \nabla')$, $f : L \to L'$ a Brouwerian morphism and $f(\nabla) \subset \nabla'$

(人間) トイヨト イヨト

 $\mathsf{Category}\ \mathbb{BF}$

- objects: pairs (L, ∇), L a Brouwerian algebra and ∇ ⊂ L a regular filter
- arrows: $f : (L, \nabla) \to (L', \nabla')$, $f : L \to L'$ a Brouwerian morphism and $f(\nabla) \subset \nabla'$

Category \mathbb{NPC} of NPc-lattices and NPc-lattice morphisms.

 $\mathsf{Category}\ \mathbb{BF}$

- objects: pairs (L, ∇), L a Brouwerian algebra and ∇ ⊂ L a regular filter
- arrows: $f : (L, \nabla) \to (L', \nabla')$, $f : L \to L'$ a Brouwerian morphism and $f(\nabla) \subset \nabla'$

Category \mathbb{NPC} of NPc-lattices and NPc-lattice morphisms.

Theorem

The functor $\mathsf{Tw} : \mathbb{BF} \to \mathbb{NPC}$ that acts on objects as $\mathsf{Tw}(\mathsf{L}, \nabla)$ and on arrows $f : (\mathsf{L}, \nabla) \to (\mathsf{L}', \nabla')$ as $\mathsf{Tw}(f) : \mathsf{Tw}(\mathsf{L}, \nabla) \to \mathsf{Tw}(\mathsf{L}', \nabla')$ given by

$$Tw(f)(x,y) = (f(x), f(y)),$$

gives an equivalence of categories.

・ロト ・何ト ・ヨト ・ヨト

A Gödel NPc-lattice (GNPc-lattice for short) is a NPc-lattice satisfying the equation

$$(((x \land e) \rightarrow y) \lor ((y \land e) \rightarrow x)) \land e = e.$$

э

∃ ► < ∃ ►

< AP

A Gödel NPc-lattice (GNPc-lattice for short) is a NPc-lattice satisfying the equation

$$(((x \land e) \rightarrow y) \lor ((y \land e) \rightarrow x)) \land e = e.$$

Then, as the negative cone of a GNPc-lattice is a Gödel hoop, we have

A Gödel NPc-lattice (GNPc-lattice for short) is a NPc-lattice satisfying the equation

$$(((x \land e) \rightarrow y) \lor ((y \land e) \rightarrow x)) \land e = e.$$

Then, as the negative cone of a GNPc-lattice is a Gödel hoop, we have

Theorem

The restriction of the functor Tw to the category \mathbb{GHF} of pairs consisting of Gödel hoops and regular filters, gives an equivalence of categories between \mathbb{GHF} and the full subcategory \mathbb{GNPC} of \mathbb{NPC} having Gödel NPc-lattices as objects.

Recall that if a variety of algebras is generated by an algebra A, then the free algebra with *n* generators is isomorphic to the subalgebra of functions $f : A^n \to A$ generated by the projection functions (we use this for n = 1).

Recall that if a variety of algebras is generated by an algebra \mathbf{A} , then the free algebra with *n* generators is isomorphic to the subalgebra of functions $f : \mathbf{A}^n \to \mathbf{A}$ generated by the projection functions (we use this for n = 1).

Let $[0, 1]_{G}$ denote the standard Gödel hoop over the real interval [0, 1].

Recall that if a variety of algebras is generated by an algebra \mathbf{A} , then the free algebra with n generators is isomorphic to the subalgebra of functions $f : \mathbf{A}^n \to \mathbf{A}$ generated by the projection functions (we use this for n = 1).

Let $[0, 1]_{\mathbf{G}}$ denote the standard Gödel hoop over the real interval [0, 1]. From the fact that $[0, 1]_{\mathbf{G}}$ generates the variety \mathbb{GH} of Gödel hoops we have Recall that if a variety of algebras is generated by an algebra \mathbf{A} , then the free algebra with n generators is isomorphic to the subalgebra of functions $f : \mathbf{A}^n \to \mathbf{A}$ generated by the projection functions (we use this for n = 1).

Let $[0, 1]_{\mathbf{G}}$ denote the standard Gödel hoop over the real interval [0, 1]. From the fact that $[0, 1]_{\mathbf{G}}$ generates the variety \mathbb{GH} of Gödel hoops we have

Theorem

The variety \mathbb{GNPC} of Gödel NPc-lattices is generated by the full twist product $K([0,1]_G)$.

٠

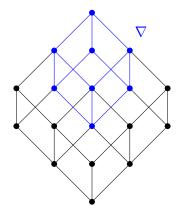
The free algebra with one generator in the variety \mathbb{GNPC} satisfies

$$\begin{aligned} \operatorname{Free}_{\mathbb{GNPC}}(1) &\cong \mathsf{Tw}(\mathsf{G}_3,\mathsf{G}_2) \times \mathsf{K}(\mathsf{G}_2) \times \mathsf{Tw}(\mathsf{G}_3,\mathsf{G}_2) \\ &\cong \mathsf{Tw}(\mathsf{G}_3 \times \mathsf{G}_2 \times \mathsf{G}_3,\mathsf{G}_2 \times \mathsf{G}_2 \times \mathsf{G}_2) \\ &\cong \mathsf{Tw}(\operatorname{Free}_{\mathbb{GH}}(2),\nabla), \end{aligned}$$

where $\nabla=G_2\times G_2\times G_2$ and G_k denotes the Gödel hoop chain of k elements.

3

イロト イポト イヨト イヨト



 $\operatorname{Free}_{\mathbb{GNPC}}(1) = Tw(\operatorname{Free}_{\mathbb{GH}}(2), \nabla)$

Miguel Marcos

NPc-algebras and Gödel hoops

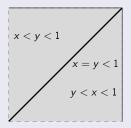
3

(日) (四) (日) (日) (日)

Free(1)

Idea of the proof.

Following the ideas in A note on functions associated with Gödel formulas by B. Gerla, the behaviour of the 2-variable terms φ is independent in the following regions of $[0, 1]^2$:



In our case, in the regions x < y < 1 and x < y = 1 we cannot have different behaviours. The same is true for the regions y < x < 1 and y < x = 1, and the regions x = y < 1 and x = y = 1.

Given a finite tree T, a subtree t of T is an **atomic upward closed** subtree of T if t contains the root of T and whenever an atom a of T belongs to t and $b \in T$ with $b \ge a$, then $b \in t$.

∃ ► < ∃ ►

Given a finite tree T, a subtree t of T is an **atomic upward closed** subtree of T if t contains the root of T and whenever an atom a of T belongs to t and $b \in T$ with $b \ge a$, then $b \in t$. Category $\mathcal{T}_{t,fin}$: objects are pairs (T, t) with T a finite tree and t an atomic upward closed subtree;

Given a finite tree T, a subtree t of T is an **atomic upward closed** subtree of T if t contains the root of T and whenever an atom a of Tbelongs to t and $b \in T$ with $b \ge a$, then $b \in t$. Category $\mathcal{T}_{t,fin}$: objects are pairs (T, t) with T a finite tree and t an atomic upward closed subtree; arrows $\phi : (T, t) \to (T', t')$ open maps $\phi : T \to T'$ with $\phi(t) \subseteq t'$.

Given a finite tree T, a subtree t of T is an **atomic upward closed** subtree of T if t contains the root of T and whenever an atom a of Tbelongs to t and $b \in T$ with $b \ge a$, then $b \in t$. Category $\mathcal{T}_{t,fin}$: objects are pairs (T, t) with T a finite tree and t an atomic upward closed subtree; arrows $\phi : (T, t) \to (T', t')$ open maps $\phi : T \to T'$ with $\phi(t) \subseteq t'$.

Theorem

 $\mathcal{T}_{t,fin}$ is the dual of the category \mathbb{GNPC}_{fin} of finite Gödel NPc-lattices.

Given a finite tree T, a subtree t of T is an **atomic upward closed** subtree of T if t contains the root of T and whenever an atom a of Tbelongs to t and $b \in T$ with $b \ge a$, then $b \in t$. Category $\mathcal{T}_{t,fin}$: objects are pairs (T, t) with T a finite tree and t an atomic upward closed subtree; arrows $\phi : (T, t) \to (T', t')$ open maps $\phi : T \to T'$ with $\phi(t) \subseteq t'$.

Theorem

 $\mathcal{T}_{t,fin}$ is the dual of the category \mathbb{GNPC}_{fin} of finite Gödel NPc-lattices.

The dual of $\operatorname{Free}_{\mathbb{GNPC}}(1)$

 $\operatorname{Free}_{\mathbb{GNPC}}(n)$

As

$$\operatorname{Free}_{\mathbb{GNPC}}(n) = \coprod_{i=1}^{n} \operatorname{Free}_{\mathbb{GNPC}}(1),$$

Ξ.

イロト イヨト イヨト イヨト

$$\operatorname{Free}_{\mathbb{GNPC}}(n) = \prod_{i=1}^{n} \operatorname{Free}_{\mathbb{GNPC}}(1),$$

by duality, characterizing the product in $\mathcal{T}_{t,\textit{fin}}$ we obtain

æ

<口> <問> <問> < 因> < 因> < 因> < 因> < 因> < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < < 因 > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > <

$$\operatorname{Free}_{\mathbb{GNPC}}(n) = \prod_{i=1}^{n} \operatorname{Free}_{\mathbb{GNPC}}(1),$$

by duality, characterizing the product in $\mathcal{T}_{t,\textit{fin}}$ we obtain

$$T_n \cong \bigoplus_{i=0}^{2n-1} \frac{\mathbf{a}_{i,n}((H_i)_{\perp}, \emptyset_{\perp})}{\mathbf{b}_{\perp}} \oplus \bigoplus_{i=n}^{2n-1} \frac{\mathbf{b}_{i,n}((H_i)_{\perp}, (H_i)_{\perp})}{\mathbf{b}_{i,n}((H_i)_{\perp}, (H_i)_{\perp})}$$

æ

<口> <問> <問> < 因> < 因> < 因> < 因> < 因> < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < < 因 > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > <

$$\operatorname{Free}_{\mathbb{GNPC}}(n) = \prod_{i=1}^{n} \operatorname{Free}_{\mathbb{GNPC}}(1),$$

by duality, characterizing the product in $\mathcal{T}_{t,\textit{fin}}$ we obtain

$$T_n \cong \bigoplus_{i=0}^{2n-1} \frac{a_{i,n}((H_i)_{\perp}, \emptyset_{\perp})}{\bigoplus} \bigoplus_{i=n}^{2n-1} \frac{b_{i,n}((H_i)_{\perp}, (H_i)_{\perp})}{\bigoplus}$$

where T_n is the dual of $\operatorname{Free}_{\mathbb{GNPC}}(n)$, H_i is the dual of $\operatorname{Free}_{\mathbb{GH}}(i)$, and

$$\mathbf{a}_{i,n} = \begin{pmatrix} 2n \\ i \end{pmatrix} - c_{i,n} \qquad \mathbf{b}_{i,n} = c_{i,n}$$

where for $i \leq n-1$, $c_{i,n} = 0$ and for $i \geq n$, $c_{i,n} = 2^{2n-i} {n \choose 2n-i}$.

<ロト </2>

$$\operatorname{Free}_{\mathbb{GNPC}}(n) = \prod_{i=1}^{n} \operatorname{Free}_{\mathbb{GNPC}}(1),$$

by duality, characterizing the product in $\mathcal{T}_{t,\textit{fin}}$ we obtain

Theorem

$$\operatorname{Free}_{\mathbb{GNPC}}(n) \cong \prod_{i=0}^{2n-1} \mathsf{K}((\operatorname{Free}_{\mathbb{GH}}(i))_{\perp})^{a_{i,n}} \times \prod_{i=n}^{2n-1} \mathsf{Tw}((\operatorname{Free}_{\mathbb{GH}}(i))_{\perp}, \operatorname{Free}_{\mathbb{GH}}(i))^{b_{i,n}}$$
$$\cong \mathsf{Tw}(\operatorname{Free}_{\mathbb{GH}}(2n), \nabla),$$
where $\nabla = \prod_{i=0}^{2n-1} ((\operatorname{Free}_{\mathbb{GH}}(i))_{\perp})^{a_{i,n}} \times \prod_{i=n}^{2n-1} (\operatorname{Free}_{\mathbb{GH}}(i))^{b_{i,n}}.$

Image: A matrix

∃ → (∃ →

э

Bibliography

- Busaniche, M., Cignoli, R.: Commutative residuated lattices represented by twist-products, Algebra Universalis 71, 5-22 (2014).

- Busaniche, M., Cignoli, R.: Constructive logic with strong negation as a substructural logic. J. Log. Comput. 20, 761-793 (2010).
- Busaniche, M., Cignoli, R.: *Residuated lattices as an algebraic semantics for paraconsistent Nelson logic*. J. Log. Comput. **19**, 1019-1029 (2009).

Gerla, B.: A note on functions associated with Gödel formulas. Soft Computing. December 2000, Volume 4, Issue 4, pp 206-209.

Odintsov, S. P.: Algebraic semantics for paraconsistent Nelson's logic. J. Log. Comput. 13, 453-468 (2003).

Odintsov, S. P.: Constructive Negations and Paraconsistency. Trends in Logic-Studia Logica Library 26. Springer. Dordrecht (2008).

Odintsov, S. P.: On the representation of N4-lattices. Stud. Log. 76, 385-405 (2004).

Spinks, M., Veroff, R.: Constructive logic with strong negation is a substructural logic. I, Stud. Log., **88** (2008), 325–348.

Spinks, M., Veroff, R.: Constructive logic with strong negation is a substructural logic. II, Stud. Log., 89 (2008), 401-425.

Thank you!!!

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?