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Residuated lattices

A (commutative) residuated lattice is an algebra L = (L,∧,∨, ∗,→, e)
of type (2, 2, 2, 2, 0) such that

(L,∧,∨) is a lattice

(L, ∗, e) is a commutative monoid

(residuation) a→ b ≥ c if and only if a ∗ c ≤ b.

Residuated lattices form a variety, as the residuation quasiequation can be

replaced by equations.
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Residuated lattices

A (commutative) residuated lattice is an algebra L = (L,∧,∨, ∗,→, e)
of type (2, 2, 2, 2, 0) such that

(L,∧,∨) is a lattice

(L, ∗, e) is a commutative monoid

(residuation) a→ b ≥ c if and only if a ∗ c ≤ b.

If the underlying lattice is distributive, we say L is a commutative

distributive residuated lattice.
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Residuated lattices

A (commutative) residuated lattice is an algebra L = (L,∧,∨, ∗,→, e)
of type (2, 2, 2, 2, 0) such that

(L,∧,∨) is a lattice

(L, ∗, e) is a commutative monoid

(residuation) a→ b ≥ c if and only if a ∗ c ≤ b.

If e is the maximum element, we say L is integral.
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(L, ∗, e) is a commutative monoid

(residuation) a→ b ≥ c if and only if a ∗ c ≤ b.

The negative cone of L is the set L− = {a ∈ L : a ≤ e} which is closed

under ∧,∨, ∗ and

a→e b = (a→ b) ∧ e.
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Residuated lattices

A (commutative) residuated lattice is an algebra L = (L,∧,∨, ∗,→, e)
of type (2, 2, 2, 2, 0) such that

(L,∧,∨) is a lattice

(L, ∗, e) is a commutative monoid

(residuation) a→ b ≥ c if and only if a ∗ c ≤ b.

The negative cone of L is the set L− = {a ∈ L : a ≤ e} which is closed

under ∧,∨, ∗ and

a→e b = (a→ b) ∧ e.

L− = (L−,∧,∨, ∗,→e , e) is an integral commutative residuated lattice.
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Twist structures

By a full twist-product of an integral commutative residuated lattice L we

mean the algebra

K(L) = (L× L,u,t, •,⇒, (e, e))

with the operations t,u, ∗,⇒ given by
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By a full twist-product of an integral commutative residuated lattice L we

mean the algebra

K(L) = (L× L,u,t, •,⇒, (e, e))

with the operations t,u, ∗,⇒ given by

(x , y) u (x ′, y ′) = (x ∧ x ′, y ∨ y ′)

(x , y) t (x ′, y ′) = (x ∨ x ′, y ∧ y ′)

(x , y) • (x ′, y ′) = (x ∗ x ′, (x → y ′) ∧ (x ′ → y))

(x , y)⇒ (x ′, y ′) = ((x → x ′) ∧ (y ′ → y), x ∗ y ′)
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Twist structures

K(L) is a residuated lattice.

The correspondence (a, e) 7→ a de�nes an isomorphism from K(L)− onto L.

Every subalgebra A of K(L) containing the set {(a, e) : a ∈ L} is called a

twist-product obtained from L.
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(e-involution) ((x , y)⇒ (e, e))⇒ (e, e) = (x , y)
(then we de�ne ∼ (x , y) = (x , y)⇒ (e, e) = (y , x))

(distributivity at (e, e))

(x , y) t
(
(x ′, y ′) u (x ′′, y ′′)

)
=
(
(x , y) t (x ′, y ′)

)
u
(
(x , y) t (x ′′, y ′′)

)
(x , y) u

(
(x ′, y ′) t (x ′′, y ′′)

)
=
(
(x , y) u (x ′, y ′)

)
t
(
(x , y) u (x ′′, y ′′)

)
whenever one of the three (x , y), (x ′, y ′), (x ′′, y ′′) is replaced with

(e, e)
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whenever one of the three (x , y), (x ′, y ′), (x ′′, y ′′) is replaced with

(e, e)

((x , y) • (x ′, y ′)) u (e, e) = ((x , y) u (e, e)) • ((x ′, y ′) u (e, e))

(((x , y) u (e, e))⇒ (x ′, y ′)) u ((∼ (x ′, y ′) u (e, e))⇒∼ (x , y)) =
(x , y)⇒ (x ′, y ′)
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K-lattices

A K-lattice is a commutative residuated lattice satisfying

(e-involution) (a→ e)→ e = a
(then we de�ne ∼ a = a→ e)

(distributivity at e)

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

whenever one of the three a, b, c is replaced with e

(a ∗ b) ∧ e = (a ∧ e) ∗ (b ∧ e)

((a ∧ e)→ b) ∧ ((∼ b ∧ e)→∼ a) = a→ b
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K-lattices

Theorem

Let A be a K-lattice. The map

φA : A→ K(A−)

given by

a 7→ (a ∧ e,∼ a ∧ e)

is an injective homomorphism.

Busaniche, M., Cignoli, R.: Commutative residuated lattices represented by

twist-products, Algebra Universalis 71, 5-22 (2014).
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NPc-lattices

An NPc-lattice is K-lattice A = (A,∧,∨, ∗,→, e) that additionally satis�es

the lattice (A,∧,∨) is distributive

(a ∧ e)2 = a ∧ e

The negative cone of an NPc-lattice is a Brouwerian algebra: an integral

residuated lattice with a ∗ b = a ∧ b (also called generalized Heyting

algebra or implicative lattice).
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Odintsov's approach

Odintsov, S. P.: Constructive Negations and Paraconsistency. Trends in
Logic-Studia Logica Library 26. Springer. Dordrecht (2008).
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Odintsov's approach

L a Brouwerian algebra, Odintsov de�nes a weak implication over L× L∂
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L a Brouwerian algebra, Odintsov de�nes a weak implication over L× L∂

(x , y)→ (x ′, y ′) = (x → x ′, x ∧ y ′)

∆ ideal, ∇ �lter containing all elements of the form x ∨ (x → y) (we

call them regular �lters). Then

Tw(L,∇,∆) = {(x , y) : x ∨ y ∈ ∇, x ∧ y ∈ ∆}

is the universe of a �twist-product� over L (with this weak implication).

B a �twist-product� over L. De�ne

∇ = {π1(bt ∼ b) : b ∈ B}, ∆ = {π2(bt ∼ b) : b ∈ B}.

Then ∇ is a regular �lter, ∆ an ideal and B = Tw(L,∇,∆).
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Our approach

Theorem

Let L be a Brouwerian algebra and ∇ a regular �lter of L. Then the subset

Tw(L,∇) = {(x , y) ∈ L× L : x ∨ y ∈ ∇},

of the NPc-lattice K(L) is a twist-product obtained from L.
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Our approach

Theorem

Let L be a Brouwerian algebra and ∇ a regular �lter of L. Then the subset

Tw(L,∇) = {(x , y) ∈ L× L : x ∨ y ∈ ∇},

of the NPc-lattice K(L) is a twist-product obtained from L.

Moreover, if L′ is another Brouwerian algebra and ∇′ a regular �lter in L′,
for each morphism f : L→ L′ satisfying f (∇) ⊆ ∇′ we obtain an

NPc-lattice morphism

f : Tw(L,∇)→ Tw(L′,∇′)

given by f((x , y)) = (f (x), f (y)).
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Our approach

Theorem

Let B be an NPc-lattice. Then the set ∇ = {(b∨ ∼ b) ∧ e : b ∈ B} is a
regular �lter in B−, and

B ∼= Tw(B−,∇).
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Our approach

Theorem

Let B be an NPc-lattice. Then the set ∇ = {(b∨ ∼ b) ∧ e : b ∈ B} is a
regular �lter in B−, and

B ∼= Tw(B−,∇).

Moreover, if B′ is another NPc-lattice, for each NPc-lattice morphism

f : B→ B′ we obtain a Brouwerian morphism f : B− → (B′)− given by

f = f|B− , that satis�es f (∇) ⊆ ∇′, where ∇′ = {(c∨ ∼ c) ∧ e : c ∈ B ′}.
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Categorical equivalence

Category BF
objects: pairs (L,∇), L a Brouwerian algebra and ∇ ⊂ L a regular

�lter

arrows: f : (L,∇)→ (L′,∇′), f : L→ L′ a Brouwerian morphism and

f (∇) ⊂ ∇′

Category NPC of NPc-lattices and NPc-lattice morphisms.

Theorem

The functor Tw : BF→ NPC that acts on objects as Tw(L,∇) and on

arrows f : (L,∇)→ (L′,∇′) as Tw(f ) : Tw(L,∇)→ Tw(L′,∇′) given by

Tw(f )(x , y) = (f (x), f (y)),

gives an equivalence of categories.
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GNPc-lattices

A Gödel NPc-lattice (GNPc-lattice for short) is a NPc-lattice satisfying the

equation

(((x ∧ e)→ y) ∨ ((y ∧ e)→ x)) ∧ e = e.

Then, as the negative cone of a GNPc-lattice is a Gödel hoop, we have

Theorem

The restriction of the functor Tw to the category GHF of pairs consisting

of Gödel hoops and regular �lters, gives an equivalence of categories

between GHF and the full subcategory GNPC of NPC having Gödel

NPc-lattices as objects.
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Free algebras

Recall that if a variety of algebras is generated by an algebra A, then the

free algebra with n generators is isomorphic to the subalgebra of functions

f : An → A generated by the projection functions (we use this for n = 1).

Let [0, 1]G denote the standard Gödel hoop over the real interval [0, 1].
From the fact that [0, 1]G generates the variety GH of Gödel hoops we have

Theorem

The variety GNPC of Gödel NPc-lattices is generated by the full twist

product K([0, 1]G).
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Free(1)

Theorem

The free algebra with one generator in the variety GNPC satis�es

FreeGNPC(1) ∼= Tw(G3,G2)×K(G2)×Tw(G3,G2)
∼= Tw(G3 × G2 × G3,G2 × G2 × G2)
∼= Tw(FreeGH(2),∇),

where ∇ = G2 × G2 × G2 and Gk denotes the Gödel hoop chain of k
elements.

.
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Free(1)

FreeGNPC(1) = Tw (FreeGH(2),∇)

∇
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Free(1)

Idea of the proof .

Following the ideas in A note on functions associated with Gödel formulas

by B. Gerla, the behaviour of the 2-variable terms ϕ is independent in the

following regions of [0, 1]2:

y < x < 1

x < y < 1

x = y < 1

In our case, in the regions x < y < 1 and x < y = 1 we cannot have

di�erent behaviours. The same is true for the regions y < x < 1 and

y < x = 1, and the regions x = y < 1 and x = y = 1.
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A duality result

Given a �nite tree T , a subtree t of T is an atomic upward closed
subtree of T if t contains the root of T and whenever an atom a of T
belongs to t and b ∈ T with b ≥ a, then b ∈ t.

Category Tt,fin: objects are pairs (T , t) with T a �nite tree and t an

atomic upward closed subtree; arrows φ : (T , t)→ (T ′, t ′) open maps

φ : T → T ′ with φ(t) ⊆ t ′.

Theorem

Tt,fin is the dual of the category GNPCfin of �nite Gödel NPc-lattices.

The dual of FreeGNPC(1)
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FreeGNPC(n)

As

FreeGNPC(n) =
n∐

i=1

FreeGNPC(1),
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FreeGNPC(n)

As

FreeGNPC(n) =
n∐

i=1

FreeGNPC(1),

by duality, characterizing the product in Tt,fin we obtain

Tn
∼=

2n−1⊕
i=0

ai ,n((Hi )⊥, ∅⊥)⊕
2n−1⊕
i=n

bi ,n((Hi )⊥, (Hi )⊥)
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by duality, characterizing the product in Tt,fin we obtain

Tn
∼=

2n−1⊕
i=0

ai ,n((Hi )⊥, ∅⊥)⊕
2n−1⊕
i=n

bi ,n((Hi )⊥, (Hi )⊥)

where Tn is the dual of FreeGNPC(n), Hi is the dual of FreeGH(i), and

ai ,n =

(
2n

i

)
− ci ,n bi ,n = ci ,n

where for i ≤ n − 1, ci ,n = 0 and for i ≥ n, ci ,n = 22n−i
( n
2n−i

)
.
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FreeGNPC(n)

As

FreeGNPC(n) =
n∐

i=1

FreeGNPC(1),

by duality, characterizing the product in Tt,fin we obtain

Theorem

FreeGNPC(n) ∼=
2n−1∏
i=0

K((FreeGH(i))⊥)ai,n ×
2n−1∏
i=n

Tw ((FreeGH(i))⊥,FreeGH(i))bi,n

∼= Tw (FreeGH(2n),∇) ,

where ∇ =
2n−1∏
i=0

((FreeGH(i))⊥)ai,n ×
2n−1∏
i=n

(FreeGH(i))bi,n .
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