Epistemic BL-Algebras

An Algebraic Semantics for BL-Possibilistic Logic

Penélope Cordero

IMAL (CONICET - UNL)

XIV Congreso Dr. Antonio Monteiro, Bahía Blanca

Work in progress joint with M. Busaniche and R.O. Rodríguez

Monadic BL-Algebras

Definition (Castaño et al. 2016)

An algebra $\mathbf{A} = \langle A, \lor, \land, *, \rightarrow, \exists, \forall, 0, 1 \rangle$ is called a *monadic BL-algebra* if the following are satisfied:

Epistemic BL-Algebras

Definition

An algebra $\mathbf{A} = \langle A, \lor, \land, *, \rightarrow, \forall, \exists, 0, 1 \rangle$ of type (2, 2, 2, 2, 1, 1, 0, 0) is called a *Epistemic* BL-*algebra* (an EBL-algebra for short) if $\langle A, \lor, \land, *, \rightarrow, 0, 1 \rangle$ is a BL-algebra that also satisfies:

Epistemic BL-Algebras

Definition

An algebra $\mathbf{A} = \langle A, \lor, \land, *, \rightarrow, \forall, \exists, 0, 1 \rangle$ of type (2, 2, 2, 2, 1, 1, 0, 0) is called a *Epistemic* BL-*algebra* (an EBL-algebra for short) if $\langle A, \lor, \land, *, \rightarrow, 0, 1 \rangle$ is a BL-algebra that also satisfies:

$(E\forall)$	$\forall 1$	=	1
(E∃)	$\exists 0$	=	0
(E1)	$\forall a \to \exists a$	=	1
(E2)	$\forall (a \to \forall b)$	=	$\exists a \to \forall b$
(E3)	$\forall (\forall a \to b)$	=	$\forall a \rightarrow \forall b$
(E4)	$\exists a \to \forall \exists a$	=	1
(E4a)	$\forall (a \land b)$	=	$\forall a \land \forall b$
(E4b)	$\exists (a \lor b)$	=	$\exists a \vee \exists b$
(E5)	$\exists (a*\exists b)$	=	$\exists a*\exists b$

Epistemic BL-Algebras

Definition

An algebra $\mathbf{A} = \langle A, \lor, \land, \ast, \rightarrow, \forall, \exists, 0, 1 \rangle$ of type (2, 2, 2, 2, 1, 1, 0, 0) is called a *Epistemic* BL-*algebra* (an EBL-algebra for short) if $\langle A, \lor, \land, \ast, \rightarrow, 0, 1 \rangle$ is a BL-algebra that also satisfies:

$$\begin{array}{rcl} (\mathrm{E}\forall) & \forall 1 & = & 1 \\ (\mathrm{E}\exists) & \exists 0 & = & 0 \\ (\mathrm{E}1) & \forall a \to \exists a & = & 1 \\ (\mathrm{E}2) & \forall (a \to \forall b) & = & \exists a \to \forall b \\ (\mathrm{E}3) & \forall (\forall a \to b) & = & \forall a \to \forall b \\ (\mathrm{E}4) & \exists a \to \forall \exists a & = & 1 \\ (\mathrm{E}4a) & \forall (a \wedge b) & = & \forall a \wedge \forall b \\ (\mathrm{E}4b) & \exists (a \lor b) & = & \exists a \lor \exists b \\ (\mathrm{E}5) & \exists (a \ast \exists b) & = & \exists a \ast \exists b \end{array}$$

Epistemic BL-Algebras

Definition

An algebra $\mathbf{A} = \langle A, \lor, \land, *, \rightarrow, \forall, \exists, 0, 1 \rangle$ of type (2, 2, 2, 2, 1, 1, 0, 0) is called a *Epistemic* BL-*algebra* (an EBL-algebra for short) if $\langle A, \lor, \land, *, \rightarrow, 0, 1 \rangle$ is a BL-algebra that also satisfies:

Epistemic BL-Algebras

Definition

An algebra $\mathbf{A} = \langle A, \lor, \land, *, \rightarrow, \forall, \exists, 0, 1 \rangle$ of type (2, 2, 2, 2, 1, 1, 0, 0) is called a *Epistemic* BL-*algebra* (an EBL-algebra for short) if $\langle A, \lor, \land, *, \rightarrow, 0, 1 \rangle$ is a BL-algebra that also satisfies:

Epistemic BL-Algebras

Definition

An algebra $\mathbf{A} = \langle A, \lor, \land, \ast, \rightarrow, \forall, \exists, 0, 1 \rangle$ of type (2, 2, 2, 2, 1, 1, 0, 0) is called a *Epistemic* BL-*algebra* (an EBL-algebra for short) if $\langle A, \lor, \land, \ast, \rightarrow, 0, 1 \rangle$ is a BL-algebra that also satisfies:

Epistemic BL-Algebras

Definition

An algebra $\mathbf{A} = \langle A, \lor, \land, \ast, \rightarrow, \forall, \exists, 0, 1 \rangle$ of type (2, 2, 2, 2, 1, 1, 0, 0) is called a *Epistemic* BL-*algebra* (an EBL-algebra for short) if $\langle A, \lor, \land, \ast, \rightarrow, 0, 1 \rangle$ is a BL-algebra that also satisfies:

$(E\forall)$	$\forall 1$	=	1			
(E∃)	$\exists 0$	=	0			
(E1)	$\forall a \to \exists a$	=	$1 \qquad (M1)$	$\forall a \to a$	=	1
(E2)	$\forall (a \to \forall b)$	=	$\exists a \to \forall b \ (M2)$	$\forall (a \to \forall b)$	=	$\exists a \to \forall b$
(E3)	$\forall (\forall a \to b)$	=	$\forall a \rightarrow \forall b $ (M3)	$\forall (\forall a \to b)$	=	$\forall a \to \forall b$
(E4)	$\exists a \to \forall \exists a$	=	1			
(E4a)	$\forall (a \land b)$	=	$\forall a \land \forall b$			
(E4b)	$\exists (a \lor b)$	=	$\exists a \lor \exists b (M4)$	$\forall (\exists a \lor b)$	=	$\exists a \vee \forall b$
(E5)	$\exists (a * \exists b)$	=	$\exists a * \exists b (M5)$	$\exists (a * a)$	=	$\exists a \ast \exists a$

Epistemic BL-algebras and Monadic BL-algebras

As a consequence of the **Lemma 2.2** (Castaño et al. 2016), it can be seen that monadic BL-algebras satisfy the properties $(E\forall) - (E5)$, whereby

 \mathbb{MBL} is a subvariety of \mathbb{EBL}

・ロト ・ 西ト ・ ヨト ・ ヨー ・ つへぐ

Epistemic BL-algebra that is not Monadic

Theorem (Castaño et al. 2016) If **A** is a totally ordered MMV-algebra, then $\exists a = a$ for every $a \in A$, that is, the quantifier on **A** is the identity.

Epistemic BL-algebra that is not Monadic

Theorem (Castaño et al. 2016) If **A** is a totally ordered MMV-algebra, then $\exists a = a$ for every $a \in A$, that is, the quantifier on **A** is the identity.

Examples Consider the MV-chain $L_7 = \{0, \frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{5}{6}, 1\}$

Epistemic BL-algebra that is not Monadic

Theorem (Castaño et al. 2016) If **A** is a totally ordered MMV-algebra, then $\exists a = a$ for every $a \in A$, that is, the quantifier on **A** is the identity.

Examples Consider the MV-chain $L_7 = \{0, \frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{5}{6}, 1\}$

$\forall a$	a	$\exists a$
1	1	1
$\frac{5}{6}$	$\frac{5}{6}$	$\frac{5}{6}$
$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$
0	0	0

Table: Monadic BL-algebra

Epistemic BL-algebra that is not Monadic

Theorem (Castaño et al. 2016) If **A** is a totally ordered MMV-algebra, then $\exists a = a$ for every $a \in A$, that is, the quantifier on **A** is the identity.

Examples Consider the MV-chain $L_7 = \{0, \frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{5}{6}, 1\}$

$\forall a$	a	$\exists a$
1	1	1
$\frac{5}{6}$	$\frac{5}{6}$	$\frac{5}{6}$
$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$
0	0	0

$\forall a$	a	$\exists a$
1	1	1
1	$\frac{5}{6}$	1
$\frac{1}{2}$	$\frac{2}{3}$	$\frac{1}{2}$
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{2}$
0	$\frac{1}{6}$	0
0	0	0

Table: Monadic BL-algebra

Table: Epistemic BL-algebra

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Epistemic BL-Algebras. Properties.

Let $\mathbf{A} \in \mathbb{EBL}$ and $a, b \in A$:

(Ec) \\0		0	(E12)	$\exists (\exists a \lor \exists b)$	=	$\exists a \lor \exists b$
$(\mathbf{E0}) \lor 0$	=	0	(E13)	$\exists (\exists a \star \exists b)$	=	$\exists a \star \exists b$
(E7) ∃1	=	1	(E14)	$\forall (\exists a \rightarrow b)$	=	$\exists a \to \forall b$
(E8) $\forall \forall a$	=	$\forall a$	(E15)	$\exists (\exists a \rightarrow \exists b)$	=	$\exists a \rightarrow \exists b$
(E9) $\exists \forall a$	=	$\forall a$	(E16)	$\exists (\exists a \land \exists b)$	_	$\exists a \land \exists b$
(E10) ∃∃a	=	$\exists a$		$\Box(\Box u \land \Box b)$	- then	$\exists a \land \exists b$ $\forall a \land \forall b = 1$
$(E11) \forall \exists a$	=	$\exists a$	$(\mathbf{N}\mathbf{I}\vee)$	$\prod a \to 0 = 1$	then	$\forall a \rightarrow \forall b \equiv 1$
			(M∃)	If $a \to b = 1$	then	$\exists a \to \exists b = 1$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Epistemic BL-Algebras. Properties.

Let $\mathbf{A} \in \mathbb{EBL}$ and $a, b \in A$:

	0	(E12)	$\exists (\exists a \lor \exists b)$	=	$\exists a \lor \exists b$
=	0	(E13)	$\exists (\exists a \star \exists b)$	=	$\exists a \star \exists b$
=	1	(E14)	$\forall (\exists a \rightarrow b)$	=	$\exists a \to \forall b$
=	$\forall a$	(E15)	$\exists (\exists a \rightarrow \exists b)$	_	$\exists a \rightarrow \exists b$
=	$\forall a$	(E10)	(1 u / 1 u)	_	
=	$\exists a$	$(\mathbf{E}\mathbf{I}0)$	$\exists (\exists a \land \exists b)$	=	$\exists a \land \exists 0$
_	$\exists a$	(M∀)	If $a \to b = 1$	then	$\forall a \to \forall b = 1$
_		(M∃)	If $a \to b = 1$	then	$\exists a \to \exists b = 1$
		$\begin{array}{rcl} = & 0 \\ = & 1 \\ = & \forall a \\ = & \forall a \\ = & \exists a \\ = & \exists a \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$= 0 \qquad (E12) \qquad \exists (\exists a \lor \exists b) \\ = 1 \qquad (E13) \qquad \exists (\exists a \star \exists b) \\ = \forall a \qquad (E14) \qquad \forall (\exists a \to b) \\ = \forall a \qquad (E15) \qquad \exists (\exists a \to \exists b) \\ = \exists a \qquad (E16) \qquad \exists (\exists a \land \exists b) \\ = \exists a \qquad (M \forall) \qquad \text{If } a \to b = 1 \\ (M \exists) \qquad \text{If } a \to b = 1 \end{bmatrix}$	$ \begin{array}{cccc} & (\mathbf{E12}) & \exists (\exists a \lor \exists b) & = \\ & (\mathbf{E13}) & \exists (\exists a \star \exists b) & = \\ & = & 1 & (\mathbf{E14}) & \forall (\exists a \to b) & = \\ & = & \forall a & (\mathbf{E15}) & \exists (\exists a \to \exists b) & = \\ & = & \exists a & (\mathbf{E16}) & \exists (\exists a \land \exists b) & = \\ & = & \exists a & (\mathbf{M} \forall) & \text{If } a \to b = 1 & \text{then} \\ & (\mathbf{M} \exists) & \text{If } a \to b = 1 & \text{then} \end{array} $

Theorem

If $\mathbf{A} \in \mathbb{EBL}$, then $\forall A = \exists A \text{ and } \exists \mathbf{A} \text{ is a BL-subalgebra of } \mathbf{A}$.

P.Cordero

Epistemic BL-Algebras. Filters and Congruences.

Definition

A subset F of a EBL-algebra **A** is a *epistemic* BL-*filter* if F is a BL-implicative filter (i.e. a filter of its BL-reduct) and

Epistemic BL-Algebras. Filters and Congruences.

Definition

A subset F of a EBL-algebra **A** is a *epistemic* BL-*filter* if F is a BL-implicative filter (i.e. a filter of its BL-reduct) and

 $x \to y \in F$ implies $\forall x \to \forall y \in F$ and $\exists x \to \exists y \in F$.

Epistemic BL-Algebras. Filters and Congruences.

Definition

A subset F of a EBL-algebra **A** is *a epistemic* BL-*filter* if F is a BL-implicative filter (i.e. a filter of its BL-reduct) and

 $x \to y \in F$ implies $\forall x \to \forall y \in F$ and $\exists x \to \exists y \in F$.

Theorem

Let F be a epistemic BL-filter of a EBL-algebra **A**. Then the binary relation \equiv_F on A defined by $a \equiv_F b$ if and only if $a \to b \in F$ and $b \to a \in F$ is a congruence relation. Moreover, $F = \{a \in A \mid a \equiv_F 1\}$.

Conversely, if \equiv is a congruence on A, then $F_{\equiv} = \{a \in A \mid a \equiv 1\}$ is a epistemic BL-filter, and $a \equiv b$ if and only if $a \rightarrow b \equiv 1$ and $b \rightarrow a \equiv 1$.

Therefore, the correspondence $F \mapsto \equiv_F$ is a bijection from the set of epistemic BL-filters of **A** onto the set of congruences on **A**.

イロト イロト イヨト イヨト ヨー のへの

Epistemic BL-Algebras. Subdirect Representation

Theorem

Every non trivial EBL-algebra is a subdirect product of EBL-chains.

P.Cordero

Complex Epistemic BL-Algebras

Considering a Π **A**-frame $\mathcal{P} = \langle W, \pi \rangle$ and remembering that $\pi \in \mathbf{A}^W$, we can define its associated epistemic **A**-algebra $\mathcal{A}^{\mathcal{P}} = \langle \mathbf{A}^W, \forall^{\mathcal{P}}, \exists^{\mathcal{P}} \rangle$ where \mathbf{A}^W is the product algebra, and for each map $f \in \mathbf{A}^W$:

$$\forall^{\mathcal{P}}(f) = \inf_{w \in W} \{\pi(w) \Rightarrow f(w)\}$$

$$\exists^{\mathcal{P}}(f) = \sup_{w \in W} \{\pi(w) * f(w)\}$$

We call an algebra with universe \mathbf{A}^W a complex Epistemic A-algebra.

Complex Epistemic BL-Algebras

Considering a Π **A**-frame $\mathcal{P} = \langle W, \pi \rangle$ and remembering that $\pi \in \mathbf{A}^W$, we can define its associated epistemic **A**-algebra $\mathcal{A}^{\mathcal{P}} = \langle \mathbf{A}^W, \forall^{\mathcal{P}}, \exists^{\mathcal{P}} \rangle$ where \mathbf{A}^W is the product algebra, and for each map $f \in \mathbf{A}^W$:

$$\forall^{\mathcal{P}}(f) = \inf_{w \in W} \{ \pi(w) \Rightarrow f(w) \}$$
$$\exists^{\mathcal{P}}(f) = \sup_{w \in W} \{ \pi(w) * f(w) \}$$

We call an algebra with universe \mathbf{A}^W a complex Epistemic A-algebra.

Theorem

Let $\mathcal{P} = \langle W, \pi, e \rangle$ be a $\Pi \mathcal{A}$ -model. Then the set $\mathbf{E} = \{\tilde{e}(\varphi) | \varphi \in \mathcal{L}\} \subseteq \mathbf{A}^W$ is the universe of a complex Epistemic BL-algebra, and, hence, there is a one to one correspondence between $\Pi \mathcal{A}$ -models, and complex Epistemic BL-algebras.

Complex Epistemic BL-algebra. Example

$$\pi(n) = \frac{n}{n+1}$$

Complex Epistemic BL-algebra. Example

$$\pi(n) = \frac{n}{n+1}$$

$f\in [0,1]^{\mathbb{N}}$	$\inf_{n\in\mathbb{N}}\{f(n)\}$	$\inf_{n\in\mathbb{N}}\{\pi(n)\Rightarrow f(n)\}$	$\sup_{n\in\mathbb{N}}\{f(n)\}$	$\sup_{n\in\mathbb{N}}\{\pi(n)*f(n)\}$
$\frac{1}{n}$	0	0	1	$\frac{1}{2}$

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ

Complex Epistemic BL-algebra. Example

$$\pi(n) = \frac{n}{n+1}$$

$f\in [0,1]^{\mathbb{N}}$	$\inf_{n\in\mathbb{N}}\{f(n)\}$	$\inf_{n\in\mathbb{N}}\{\pi(n)\Rightarrow f(n)\}$	$\sup_{n\in\mathbb{N}}\{f(n)\}$	$\sup_{n\in\mathbb{N}}\{\pi(n)*f(n)\}$
$\frac{1}{n}$	0	0	1	$\frac{1}{2}$
$\left(\frac{1}{2}\right)^n$	0	0	$\frac{1}{2}$	0

Complex Epistemic BL-algebra. Example

$$\pi(n) = \frac{n}{n+1}$$

$f\in [0,1]^{\mathbb{N}}$	$\inf_{n\in\mathbb{N}}\{f(n)\}$	$\inf_{n\in\mathbb{N}}\{\pi(n)\Rightarrow f(n)\}$	$\sup_{n\in\mathbb{N}}\{f(n)\}$	$\sup_{n\in\mathbb{N}}\{\pi(n)*f(n)\}$
$\frac{1}{n}$	0	0	1	$\frac{1}{2}$
$\left(\frac{1}{2}\right)^n$	0	0	$\frac{1}{2}$	0
$1 - \left(\frac{1}{n}\right)^n$	0	$\frac{1}{2}$	1	1

イロト イロト イヨト イヨト ヨー のへの

Complex Epistemic BL-algebra. Example

$$\pi(n) = \frac{n}{n+1}$$

$f\in [0,1]^{\mathbb{N}}$	$\inf_{n\in\mathbb{N}}\{f(n)\}$	$\inf_{n\in\mathbb{N}}\{\pi(n)\Rightarrow f(n)\}$	$\sup_{n\in\mathbb{N}}\{f(n)\}$	$\sup_{n\in\mathbb{N}}\{\pi(n)*f(n)\}$
$\frac{1}{n}$	0	0	1	$\frac{1}{2}$
$\left(\frac{1}{2}\right)^n$	0	0	$\frac{1}{2}$	0
$1 - \left(\frac{1}{n}\right)^n$	0	$\frac{1}{2}$	1	1
$ \left\{ \begin{array}{ll} 1 & n = 1 \\ \frac{1}{2} + \frac{1}{n} & n > 1 \end{array} \right. $	$\frac{1}{2}$	$\frac{1}{2}$	1	1

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

	Functiona	l Monadic	Complex	Epistemic
	BL-algebra		BL-algebra	
	$orall_{\wedge} f$	$\exists_{\vee} f$	$\forall f$	$\exists f$
$\frac{1}{n}$	0	1	0	$\frac{1}{2}$
$\left(\frac{1}{2}\right)^n$	0	0	$\frac{1}{2}$	0
$1 - \left(\frac{1}{n}\right)^n$	0	$\frac{1}{2}$	1	1
$\begin{cases} 1 & n=1\\ \frac{1}{2}+\frac{1}{n} & n>1 \end{cases}$	$\frac{1}{2}$	$\frac{1}{2}$	1	1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

c-EBL-algebras

Definition

Given a EBL-algebra **A**, we will be called a c-EBL-algebra, if there is an element $c \in A$ which satisfies:

$$c = \inf_{a \in A} \{ (\forall a \to a) \land (a \to \exists a) \}.$$

P.Cordero

c-EBL-algebras

Definition

Given a EBL-algebra **A**, we will be called a c-EBL-algebra, if there is an element $c \in A$ which satisfies:

$$c = \inf_{a \in A} \{ (\forall a \to a) \land (a \to \exists a) \}.$$

Theorem

Let **A** be a c-EBL-algebra such that $\forall c = 1$ and let B be the subalgebra $\forall \mathbf{A} = \exists \mathbf{A}$, then

 $\forall a = \max\{b \in B : b \le c \to a\} \quad and \quad \exists a = \min\{b \in B : c * a \le b\}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ つへぐ

Example of c-EBL-algebra

Consider the following EBL-algebras on $L_7 = \left\{0, \frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{5}{6}, 1\right\}$

$\forall a$	a	$\exists a$
1	1	1
$\frac{1}{2}$	$\frac{5}{6}$	1
$\frac{2}{2}$	$\frac{2}{3}$	1
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
0	$\frac{1}{3}$	$\frac{1}{2}$
0	$\frac{1}{6}$	$\frac{1}{2}$
0	0	0

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – わへで

Example of c-EBL-algebra

Consider the following EBL-algebras on $L_7 = \left\{0, \frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{5}{6}, 1\right\}$

$\forall a$	a	$\exists a$	$\forall a$	a	$\exists a$
1	1	1	1	1	1
$\frac{1}{2}$	$\frac{5}{6}$	1	1	$\frac{5}{6}$	1
$\frac{2}{2}$	$\frac{2}{3}$	1	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{1}{2}$
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
0	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{2}$
0	$\frac{1}{6}$	$\frac{1}{2}$	0	$\frac{1}{6}$	0
0	0	0	0	0	0

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Example of c-EBL-algebra

Consider the following EBL-algebras on $L_7 = \left\{0, \frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{5}{6}, 1\right\}$

a	a	$\exists a$	$\forall a$	a	$\exists a$
1	1	1	1	1	1
$\frac{1}{2}$	$\frac{5}{6}$	1	1	$\frac{5}{6}$	1
$\frac{2}{2}$	$\frac{2}{3}$	1	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{1}{2}$
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
0	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{2}$
0	$\frac{1}{6}$	$\frac{1}{2}$	0	$\frac{1}{6}$	0
0	0	0	0	0	0
	<i>c</i> –	1	C	<u> </u>	
	L —	T	C	$-\overline{6}$	

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – わへで

Example of c-EBL-algebra

We take the subalgebra $\forall L_7 = \{0, \frac{1}{2}, 1\}$ and c = 1 for the first case, then

a	$c \rightarrow a$	$\max\{b\in \forall A: b\leq c\rightarrow a\}$	c * a	$\min\{b\in \forall A: c*a\leq b\}$
1	1	1	1	1
$\frac{5}{6}$	$\frac{5}{6}$	$\frac{1}{2}$	$\frac{5}{6}$	1
$\frac{2}{3}$	$\frac{2}{3}$	$\frac{1}{2}$	$\frac{2}{3}$	1
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
$\frac{1}{3}$	$\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{1}{2}$
$\frac{1}{6}$	$\frac{1}{6}$	0	$\frac{1}{6}$	$\frac{1}{2}$
0	$\frac{1}{9}$	0	0	0

For the second case, with $c = \frac{5}{6}$, we obtain

a	$c \rightarrow a$	$\max\{b\in \forall A: b\leq c\rightarrow a\}$	c * a	$\min\{b\in \forall A: c*a\leq b\}$
1	1	1	$\frac{5}{6}$	1
$\frac{5}{6}$	1	1	$\frac{2}{3}$	1
$\frac{2}{3}$	$\frac{5}{6}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
$\frac{1}{2}$	$\frac{2}{3}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{2}$
$\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{2}$
$\frac{1}{6}$	$\frac{1}{3}$	0	0	0
0	$\frac{1}{6}$	0	0	0

Subalgebra c-relatively complete

Definition

Let **A** be a BL-algebra and **B** a BL-subalgebra of **A**. We say that a pair (B, c) is a *c*-relatively complete subalgebra, with a fixed *c*, if the following conditions hold:

Subalgebra c-relatively complete

Definition

Let **A** be a BL-algebra and **B** a BL-subalgebra of **A**. We say that a pair (B, c) is a *c*-relatively complete subalgebra, with a fixed *c*, if the following conditions hold:

e1 For every $a \in A$, the subset $\{b \in B : b \le c \to a\}$ has a greatest element and the subset $\{b \in B : c * a \le b\}$ has a least element.

Subalgebra c-relatively complete

Definition

Let **A** be a BL-algebra and **B** a BL-subalgebra of **A**. We say that a pair (B, c) is a *c*-relatively complete subalgebra, with a fixed *c*, if the following conditions hold:

e1 For every $a \in A$, the subset $\{b \in B : b \le c \to a\}$ has a greatest element and the subset $\{b \in B : c * a \le b\}$ has a least element.

P.Cordero

e2
$$\{x \in A : c^2 \le x\} \cap B = \{1\}.$$

Subalgebra c-relatively complete

Definition

Let **A** be a BL-algebra and **B** a BL-subalgebra of **A**. We say that a pair (B, c) is a *c*-relatively complete subalgebra, with a fixed *c*, if the following conditions hold:

e1 For every $a \in A$, the subset $\{b \in B : b \le c \to a\}$ has a greatest element and the subset $\{b \in B : c * a \le b\}$ has a least element.

e2
$$\{x \in A : c^2 \le x\} \cap B = \{1\}.$$

Theorem

Given a BL-algebra A and a c-relatively complete subalgebra (B, c), if we define on A the operations:

 $\forall a := \max\{b \in B : b \le c \to a\} \qquad \exists a := \min\{b \in B : c * a \le b\}$

then $\langle \mathbf{A}, \forall, \exists \rangle$ is an epistemic BL-algebra such that $\forall A \equiv \exists A \equiv B$. Conversely, if \mathbf{A} is a c-EBL-algebra such that $\forall c = 1$, then $(\forall A, c)$ is a c-relatively complete subalgebra of \mathbf{A} .

Building EBL-algebras from c-relatively complete subalgebras

Consider L_7 and c = 1 fixed. If we take $L_4 \hookrightarrow L_7$ is clear that (L_4, c) is a c-relatively complete subalgebra of L_7 and by the above, we can construct an EBL-algebra structure on L_7 :

Building EBL-algebras from c-relatively complete subalgebras

Consider L_7 and c = 1 fixed. If we take $L_4 \hookrightarrow L_7$ is clear that (L_4, c) is a c-relatively complete subalgebra of L_7 and by the above, we can construct an EBL-algebra structure on L_7 :

a	$c \rightarrow a$	$\max\{b \in L_4 : b \le c \to a\}$	c * a	$\min\{b \in L_4 : c * a \le b\}$
1	1	1	1	1
$\frac{5}{6}$	$\frac{5}{6}$	$\frac{2}{3}$	$\frac{5}{6}$	1
$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{2}{3}$
$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
$\frac{1}{6}$	$\frac{1}{6}$	0	$\frac{1}{6}$	$\frac{1}{3}$
0	0	0	0	0

イロト イロト イヨト イヨト ヨー のへの

Building EBL-algebras from c-relatively complete subalgebras

 $(L_4,1) \hookrightarrow L_7$ determines the following EBL-algebra:

$\forall a$	a	$\exists a$
1	1	1
$\frac{2}{3}$	$\frac{5}{6}$	1
$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$
$\frac{1}{3}$	$\frac{1}{2}$	$\frac{3}{3}$
$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
0	$\frac{1}{6}$	$\frac{1}{3}$
0	0	0

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Thank you for your attention

