On the poset product representation of BL-algebras

Conrado Gomez

Instituto de Matemática Aplicada del Litoral (UNL-CONICET)

Facultad de Ingeniería Química (UNL)

A *residuated lattice* is an algebra $\langle L, \wedge, \vee, \cdot, \rightarrow, 0, 1 \rangle$ with four binary operations and two constants such that $\langle L, \wedge, \vee, 0, 1 \rangle$ is a lattice with minimum 0 and maximum 1 (w.r.t. the lattice ordering \leq), $\langle L, \cdot, 1 \rangle$ is a commutative monoid with the unit element 1 and

$$z \le (x o y) \iff x \cdot z \le y$$
 (residuation)

for all $x, y, z \in L$. A residuated lattice $(L, \land, \lor, \cdot, \rightarrow, 0, 1)$ is a *BL-algebra* if and only if the following identities hold for all $x, y \in L$

 $x \wedge y = x \cdot (x \rightarrow y)$ (divisibility)

$$(x \rightarrow y) \lor (y \rightarrow x) = 1$$
 (prelinearity)

A BL-chain is a totally ordered BL-algebra.

We will mainly work with two subvarieties of BL-algebras:

• MV-algebras

 $\neg \neg x = x$ (where $\neg x \text{ is } x \rightarrow 0$)

• Product algebras

$$(\neg \neg z \cdot ((x \cdot z) \rightarrow (y \cdot z))) \rightarrow (x \rightarrow y) = 1$$

 $x \land \neg x = 0$

Given a poset $\mathbf{P} = \langle P, \leq \rangle$ and a collection $\{\mathbf{A}_p : p \in P\}$ of BLalgebras sharing the same neutral element 1 and the same minimum element 0, the *poset product* $\bigotimes_{p \in P} \mathbf{A}_p$ is the residuated lattice $\mathbf{A} = \langle A, \cdot, \rightarrow, \vee, \wedge, \bot, \top \rangle$ defined as follows:

Given a poset $\mathbf{P} = \langle P, \leq \rangle$ and a collection $\{\mathbf{A}_p : p \in P\}$ of BLalgebras sharing the same neutral element 1 and the same minimum element 0, the *poset product* $\bigotimes_{p \in P} \mathbf{A}_p$ is the residuated lattice $\mathbf{A} = \langle A, \cdot, \rightarrow, \vee, \wedge, \bot, \top \rangle$ defined as follows:

• A is the set of all maps $x \in \prod_{p \in P} A_p$ such that for all $i \in P$, if $x_i \neq 1$, then $x_j = 0$ provided that j > i.

Given a poset $\mathbf{P} = \langle P, \leq \rangle$ and a collection $\{\mathbf{A}_p : p \in P\}$ of BLalgebras sharing the same neutral element 1 and the same minimum element 0, the *poset product* $\bigotimes_{p \in P} \mathbf{A}_p$ is the residuated lattice $\mathbf{A} = \langle A, \cdot, \rightarrow, \vee, \wedge, \bot, \top \rangle$ defined as follows:

- A is the set of all maps $x \in \prod_{p \in P} A_p$ such that for all $i \in P$, if $x_i \neq 1$, then $x_j = 0$ provided that j > i.
- \top (\perp) is the map whose value in each coordinate is 1 (0).

Given a poset $\mathbf{P} = \langle P, \leq \rangle$ and a collection $\{\mathbf{A}_p : p \in P\}$ of BLalgebras sharing the same neutral element 1 and the same minimum element 0, the *poset product* $\bigotimes_{p \in P} \mathbf{A}_p$ is the residuated lattice $\mathbf{A} = \langle A, \cdot, \rightarrow, \vee, \wedge, \bot, \top \rangle$ defined as follows:

- A is the set of all maps $x \in \prod_{p \in P} A_p$ such that for all $i \in P$, if $x_i \neq 1$, then $x_j = 0$ provided that j > i.
- \top (\perp) is the map whose value in each coordinate is 1 (0).
- Monoid and lattice operations are defined pointwise.

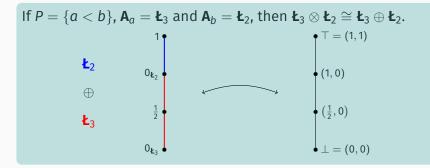
Given a poset $\mathbf{P} = \langle P, \leq \rangle$ and a collection $\{\mathbf{A}_p : p \in P\}$ of BLalgebras sharing the same neutral element 1 and the same minimum element 0, the *poset product* $\bigotimes_{p \in P} \mathbf{A}_p$ is the residuated lattice $\mathbf{A} = \langle A, \cdot, \rightarrow, \vee, \wedge, \bot, \top \rangle$ defined as follows:

- A is the set of all maps $x \in \prod_{p \in P} A_p$ such that for all $i \in P$, if $x_i \neq 1$, then $x_j = 0$ provided that j > i.
- \top (\perp) is the map whose value in each coordinate is 1 (0).
- Monoid and lattice operations are defined pointwise.
- The residual is

$$(x \rightarrow_{\mathbf{A}} y)_i = egin{cases} x_i \rightarrow_{\mathbf{A}_i} y_i & ext{if } x_j \leq y_j ext{ for all } j < i; \\ 0 & ext{otherwise.} \end{cases}$$

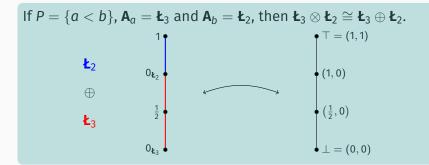
The poset product construction - Properties and examples

When *P* is finite and totally ordered, $\bigotimes_{p \in P} \mathbf{A}_p \cong \bigoplus_{p \in P} \mathbf{A}_p$.



The poset product construction - Properties and examples

When *P* is finite and totally ordered, $\bigotimes_{p \in P} \mathbf{A}_p \cong \bigoplus_{p \in P} \mathbf{A}_p$.



When P is an antichain, $\bigotimes_{p \in P} \mathbf{A}_p = \prod_{p \in P} \mathbf{A}_p$.

If $P = \{a \parallel b\}$ and $\mathbf{A}_a = \mathbf{A}_b = \mathbf{k}_2$, then $\mathbf{k}_2 \otimes \mathbf{k}_2 = \mathbf{k}_2 \times \mathbf{k}_2$.

Although the class of BL-algebras is not closed under poset product,

if P is a *forest* and \mathbf{A}_p is a BL-chain for all $p \in P$, then $\bigotimes_{p \in P} \mathbf{A}_p$ is a BL-algebra.

In general, the answer is *no*.

In general, the answer is *no*.

Consider $A = k_3 \oplus (0, 1]_{\Pi}$, which is neither an MV-chain nor a product chain. Any attempt to write A as a poset product would require two *bounded* summands.

In general, the answer is no. However,

Theorem (Jipsen-Montagna)

Every BL-algebra is a subalgebra of a family of MV-chains and product chains indexed by a forest.

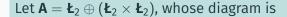
In general, the answer is no. However,

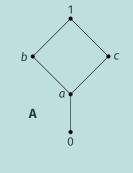
Theorem (Jipsen-Montagna)

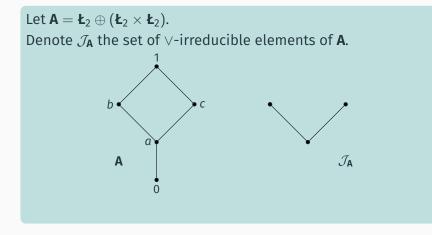
Every BL-algebra is a subalgebra of a family of MV-chains and product chains indexed by a forest.

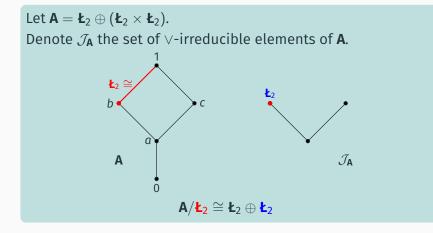
For finite BL-algebras the authors proved that

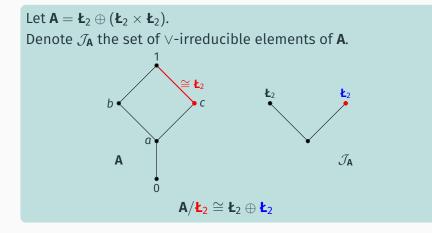
every finite BL-algebra is isomorphic to the poset product of a family of MV-chains.

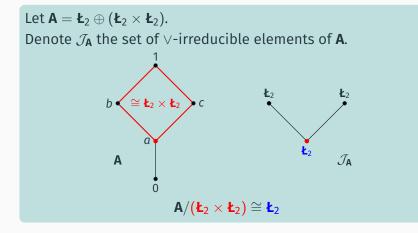


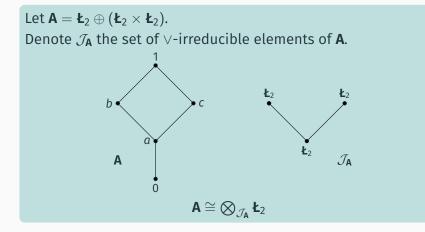












An algebra **A** is said to be *poset product indecomposable* if **A** is non-trivial and if **A** is a poset product of two algebras A_1 and A_2 , then either A_1 or A_2 is trivial.

We will say that a BL-chain **A** is *idempotent free* if $Id(A) \cong \mathbf{k}_2$.

An algebra **A** is said to be *poset product indecomposable* if **A** is non-trivial and if **A** is a poset product of two algebras A_1 and A_2 , then either A_1 or A_2 is trivial.

We will say that a BL-chain **A** is *idempotent free* if $Id(A) \cong k_2$.

Proposition

Let **A** be a non-trivial BL-chain. Then **A** is idempotent free if and only if **A** is poset product indecomposable.

Given a BL-chain **A**, if there are a totally ordered set *P* and a collection of idempotent free BL-chains $\{\mathbf{A}_p : p \in P\}$ such that $\mathbf{A} \cong \bigotimes_{p \in P} \mathbf{A}_p$, we will say that **A** is *representable*.

Given a BL-chain **A**, if there are a totally ordered set *P* and a collection of idempotent free BL-chains $\{\mathbf{A}_p : p \in P\}$ such that $\mathbf{A} \cong \bigotimes_{p \in P} \mathbf{A}_p$, we will say that **A** is *representable*.

- Since they are idempotent free BL-chains, MV-chains and every BL-chain of type $\mathbf{k}_n \oplus (\mathbf{0}, \mathbf{1}]_{\Pi}$ $(n \geq 2)$ are representable.
- Finite BL-algebras are representable.

Given a Gödel algebra A we set \mathcal{J}_A to be the poset of completely \lor -irreducible elements of A.

Theorem If \mathcal{J}_A is a well partial order, then $A \cong \bigotimes_{\mathcal{J}_A} \mathbf{k}_2$. Let $\mathcal{J}_{\textbf{A}}$ be the poset of completely $\lor\text{-irreducible}$ elements of a Gödel algebra A.

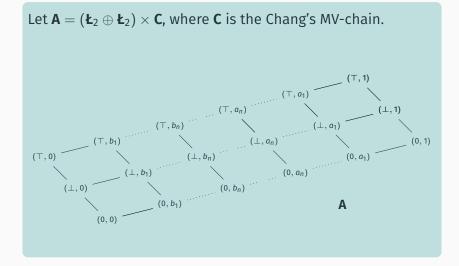
- If every prime filter of ${\bf A}$ is a principal filter, then each connected component of the poset ${\cal J}_{{\bf A}}$ has a minimum element. In addition,
- if $\mathcal{J}_{\textbf{A}}$ has no infinite antichains, then

each connected component of the poset $\mathcal{J}_{\textbf{A}}$ is partially well-ordered.

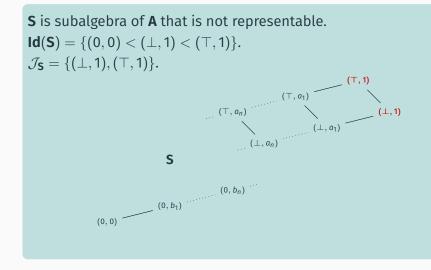
The BL-chain $A = (\bigoplus_{\mathbb{N}} \mathbf{k}_2) \oplus (\mathbf{0}, \mathbf{1}]_{\Pi}$ is not representable.

- Since $\mathcal{J}_{A}\cong\mathbb{N}$ as a poset, \mathcal{J}_{A} is a well-ordered set.
- Essentially, A is not representable because $(\mathbf{0},\mathbf{1}]_{\Pi}$ is unbounded.

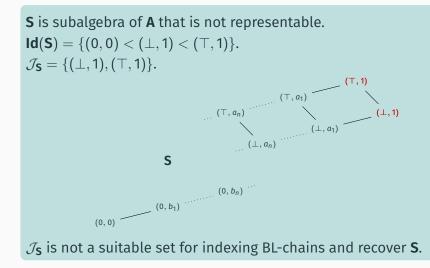
From Gödel algebras to BL-algebras - Issues



From Gödel algebras to BL-algebras - Issues



From Gödel algebras to BL-algebras - Issues



Last examples suggest the introduction of additional conditions.

Theorem

Let **A** be a BL-algebra such that each connected component of the poset of idempotent completely \lor -irreducible elements \mathcal{J}_A is a partially well-ordered set. If

(a) every
$$i \in \mathcal{J}_{\mathbf{A}}$$
 is a \lor -irreducible element in \mathbf{A} and

(b) $\bigcap_{i \in \mathcal{J}_{\mathbf{A}}}[i] = \{1\}$, then

 $\mathbf{A} \cong \bigotimes_{i \in \mathcal{J}_{\mathbf{A}}} \mathbf{A}_i$, where each \mathbf{A}_i is an idempotent free BL-chain.

If $i \in \mathcal{J}_A$,

• $[i) = \{x \in A : x \ge i\}$ is a prime filter of **A**.

Thus the quotient algebra **A**/[*i*) is isomorphic to the BL-chain [0, *i*]

If $i \in \mathcal{J}_A$,

- $[i) = \{x \in A : x \ge i\}$ is a prime filter of **A**.
- *i* has a lower cover $j \in Id(\mathbf{A})$.

Thus the quotient algebra $\mathbf{A}/[\mathbf{i})$ is isomorphic to the BL-chain

 $[\mathbf{0},i]\cong [\mathbf{0},j]\oplus [j,i].$

If $i \in \mathcal{J}_A$,

- $[i) = \{x \in A : x \ge i\}$ is a prime filter of **A**.
- *i* has a lower cover $j \in Id(\mathbf{A})$.

Thus the quotient algebra A/[i) is isomorphic to the BL-chain

 $[\mathbf{0},\mathbf{i}]\cong [\mathbf{0},\mathbf{j}]\oplus [\mathbf{j},\mathbf{i}].$

We set $A_i = [j, i]$, which is an idempotent free BL-chain.

Given a BL-algebra **A**, the theorem requires its Gödel subalgebra **Id**(**A**) to be representable.

- Given a BL-algebra **A**, the theorem requires its Gödel subalgebra **Id(A)** to be representable.
- The condition every $i \in \mathcal{J}_A$ is a \lor -irreducible element in **A** ensures that the prime spectrum is preserved.

Given a BL-algebra **A**, the theorem requires its Gödel subalgebra **Id(A)** to be representable.

The condition every $i \in \mathcal{J}_A$ is a \lor -irreducible element in **A** ensures that the prime spectrum is preserved.

Hypothesis $\bigcap_{i \in \mathcal{J}_{A}}[i) = \{1\}$ guarantees injectivity.

Sufficient conditions for representability - The hypothesis

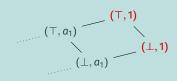
If $A = (\bigoplus_{\mathbb{N}} \underline{k}_2) \oplus (0, 1]_{\Pi}$,

• $i \in \mathcal{J}_{\mathbf{A}} \implies i \text{ is } \lor$ -irreducible in \mathbf{A}

- $i \in \mathcal{J}_{\mathbf{A}} \implies i \text{ is } \lor$ -irreducible in \mathbf{A}
- $\bigcap_{i\in\mathcal{J}_{\mathbf{A}}}[i)=(0,1]_{\Pi}\neq\{1\}$

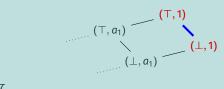
- $i \in \mathcal{J}_{\mathbf{A}} \implies i \text{ is } \lor$ -irreducible in \mathbf{A}
- $\bigcap_{i\in\mathcal{J}_{\mathbf{A}}}[i)=(0,1]_{\Pi}\neq\{1\}$

If **S** is the subalgebra of $(\mathbf{k}_2 \oplus \mathbf{k}_2) \times \mathbf{C}$ that we have defined, then condition (*b*) clearly holds. On the other hand,



- $i \in \mathcal{J}_{\mathbf{A}} \implies i \text{ is } \lor$ -irreducible in \mathbf{A}
- $\bigcap_{i\in\mathcal{J}_{\mathbf{A}}}[i)=(0,1]_{\Pi}\neq\{1\}$

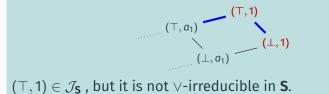
If **S** is the subalgebra of $(\mathbf{k}_2 \oplus \mathbf{k}_2) \times \mathbf{C}$ that we have defined, then condition (*b*) clearly holds. On the other hand,



$$(\top,1)\in \mathcal{J}_{\boldsymbol{S}}$$

- $i \in \mathcal{J}_{\mathbf{A}} \implies i \text{ is } \lor$ -irreducible in \mathbf{A}
- $\bigcap_{i\in\mathcal{J}_{\mathbf{A}}}[i)=(0,1]_{\Pi}\neq\{1\}$

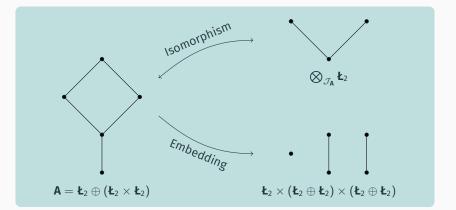
If **S** is the subalgebra of $(\mathbf{k}_2 \oplus \mathbf{k}_2) \times \mathbf{C}$ that we have defined, then condition (*b*) clearly holds. On the other hand,



- Busaniche, M. and C. Gomez, Poset product and BL-chains, submitted.
- Busaniche, M. and F. Montagna, **Hájek's logic BL and BL-algebras**, in Handbook of Mathematical Fuzzy Logic, vol. 1 of Studies in Logic, Mathematical Logic and Foundations, chap. V, College Publications, London, 2011, pp. 355–447.
- Jipsen, P., Generalizations of boolean products for lattice-ordered algebras, Annals of Pure and Applied Logic, 161 (2009), 228–234.
- Jipsen, P. and F. Montagna, **The Blok-Ferreirim theorem for normal GBL**algebras and its applications, *Algebra Universalis*, 60 (2009), 381–404.
- Jipsen, P. and F. Montagna, **Embedding theorems for classes of GBLalgebras**, *Journal of Pure and Applied Algebra*, 214 (2010), 1559–1575.

Thank you

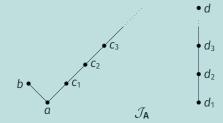
Appendix - Embedding and representation theorems



The Gödel algebra (with infinite spectrum)

$$\mathbf{A} = \left(\mathbf{k}_2 \oplus \left(\mathbf{k}_2 \times \bigoplus_{\mathbb{N}} \mathbf{k}_2\right)\right) \times \bigoplus_{\mathbb{N} \cup \{d\}} \mathbf{k}_2$$

is representable. The forest $\mathcal{J}_{\textbf{A}}$ looks like



We showed that $\mathbf{A} \cong \bigotimes_{\mathcal{J}_{\mathbf{A}}} \mathbf{k}_2$.