The spectra of arrangement graphs José O. Araujo y Tim Bratten

1 La teoría espectral del grafos

Sea Γ un grafo (no dirigido y finito). El grafo consiste de un conjunto de vértices V y una conjunto de aristas, donde aristas son conjuntos de dos vertices (asumimos que aristas relacionan dos vértices distintos). Decimos que dos vértices $v, w \in V$ son adyacentes, y escribimos $v \sim w$ si $\{v, w\}$ es un arista.

Supongamos que el número de vértices de Γ es m. Ordenamos las vértices v_1, \ldots, v_m . La matriz de adyacencia es la matriz $m \times m$, (a_{ij}) , definida por

$$a_{ij} = \begin{cases} 1 & \text{si } v_i \neq v_j \text{ son advacentes} \\ 0 & \text{si } v_i \neq v_j \text{ no son advacentes} \end{cases}.$$

La matriz (a_{ij}) es simétrica con ceros en la diagonal. El análisis de la matriz (a_{ij}) en términos de sus valores propios, sus respectivas multiplicidades y los vectores propios es la teoría espectral del grafo.

2 La teoría espectral y la teoría de representaciones

Sea Γ un grafo y V el conjunto de vértices. Un automorfismo de Γ es una permutación σ de V que satisface $\sigma(v) \sim \sigma(w)$ si $v \sim w$. Los automorfismos del grafo dan un subgrupo de las permutaciones de V. Supongamos que G es un subgrupo de los automorfismos de Γ y sea \mathbb{V} el espacio vectorial complejo con base V. El grupo G actua en forma natural en \mathbb{V} . Llamamos a esta acción la representación asociada al grafo.

Sea

$$\Psi: \mathbb{V} \to \mathbb{V}$$

el operador lineal definido en la base por

$$\Upsilon\left(v\right) = \sum_{w \sim v} w$$

donde $v \in V$. El operador satisface

$$\Upsilon(g \cdot v) = g \cdot \Upsilon(v)$$

para cada $v \in \mathbb{V}$ y cada $g \in G$, y su matriz en la base V es la matriz de adyacencia. Llamamos a Ψ el operador asociado a la matriz adyacente.

Posibilidad: usar la teoria de representaciones de G para estudiar la teoria espectral del grafo.

3 Grafo de arreglo (arrangement graph)

Para cada $m \in \mathbb{N}$ sea

$$I_m = \{1, 2, \dots, m\}$$
.

Sean $k, n \in \mathbb{N}$ tal que $k \leq n$. Por definición, una k-permutación es una función inyectiva

$$\sigma: I_k \to I_n$$
.

Sea V(n,k) el conjunto de k-permutaciones. El (n,k)-grafo de arreglo A(n,k) es el grafo con vértices V(n,k) donde $\sigma \sim \gamma$ si existe un único elemento $m_0 \in I_k$ tal que $\sigma(m_0) \neq \gamma(m_0)$.

El espectro de A(n,k) fue estudiado por Chen, Ghorbani y Wong en dos articulos:

- [1] Chen, B.F, Ghorbani, E. and Wong, K.B.: Cyclic decomposition of k-permutations and eigenvalues of the arrangement graphs. Electron. J. Comb.20 (4) (2013) #P22.
- [2] Chen, B.F, Ghorbani, E. and Wong, K.B.: On the eigenvalues of certain Cayley graphs and arrangement graphs. Linear Algebra Appl. 444 (2014) 246-253.

En el segundo articulo prueban que los valores propios son enteros pero dejan abierto el problema de describir el espectro. Además proponen una conjetura que para k fijo y n grande, -k es el único valor propio negativo.

4 La representación asociada al grafo de arreglo

El grupo $G = S_n$, de permutaciones de I_n actua en el grafo A(n,k) por

$$\pi \cdot \sigma = \pi \circ \sigma$$
.

En este caso, la representación asociada de G en \mathbb{V} , tiene una estructura simple. Para caracterizar la representación, sea S_k el grupo de permutations de I_k y sea S_{n-k} el grupo de permutaciones de $I_n - I_k$. El grupo $S_k \times S_{n-k}$ es naturalmente identificado con un subgrupo H de G.

Sea W el conjunto de vértices que satisfacen $\sigma(I_k) = I_k$ y sea \mathbb{W} el subespacio de \mathbb{V} con base W. Como representación de S_k , \mathbb{W} es la representación regular, y la acción de S_{n-k} en \mathbb{W} es trivial.

Teorema

$$\mathbb{V} \cong \operatorname{Ind}_H^G(\mathbb{W}) \qquad \blacksquare$$

Con esta descripción, la teoría de representaciones caracteriza la representación \mathbb{V} . En particular, se sabe que las representaciones del grupo simétrico S_m estan parametrizadas por particiones (equivalentemente, diagramos de Young): $\lambda = (\lambda_1, \ldots, \lambda_j)$ donde $\lambda_i \in \mathbb{N}$, $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_j$ y $\lambda_1 + \lambda_2 + \cdots + \lambda_j = m$. Si λ es una partición de m escribimos $\lambda \vdash m$ y escrimbos S^{λ} por la correspondiente representación irreducible de S_m . Si $m_{\lambda} = \dim(S^{\lambda})$ se sabe que

$$\mathbb{W} \cong \bigoplus_{\lambda \vdash k} m_{\lambda} S^{\lambda}$$

como H-modulo. Por lo tanto

$$\mathbb{V} \cong \operatorname{Ind}_{H}^{G}(\bigoplus_{\lambda \vdash k} m_{\lambda} S^{\lambda}) \cong \bigoplus_{\lambda \vdash k} m_{\lambda} \operatorname{Ind}_{H}^{G}(S^{\lambda}).$$

Si ponemos

$$\mathbb{V}_{\lambda} = m_{\lambda} \operatorname{Ind}_{H}^{G}(S^{\lambda})$$

entonces la formula de Pieri dice que representaciones irreducibles de S_n aparecen en \mathbb{V}_{λ} (y que multiplicidad tienen). En particular, sea μ una particion de n. Escribimos $\mu \prec \lambda$ si el diagramo de Young de μ se obtiene del

diagramo de Young de λ por agregar a lo sumo una caja a cada columna. La formula de Pieri dice

$$\operatorname{Ind}_H^G(S^{\lambda}) \cong \bigoplus_{\mu \prec \lambda} S^{\mu}$$

5 El operador asociado a la matriz adyacente

Introducimos el siguiente elemento T_m del álgebra del grupo $\mathbb{C}[S_m]$

$$T_m = \sum_{1 \le i < j \le m} (ij).$$

Lema

 T_m es en el centro de $\mathbb{C}[S_m]$ y para $\lambda \vdash m$ actua en la representación S^λ por la formula

$$T_m \cdot v = {m \choose 2} \frac{\chi_{\lambda}(\tau)}{\chi_{\lambda}(1)} v \text{ para } v \in S^{\lambda}$$

donde χ_{λ} es el carácter de S^{λ} y τ es cualquier transposición.

Sea $\Psi: \mathbb{V} \to \mathbb{V}$ el operador correspondiente
b a la matriz adyacente.

Proposición

(a) La restricción $\Psi{:}\mathbb{W}\to\mathbb{V}$ está dada por

$$\Psi \mid_{\mathbb{W}} = T_n - T_k - \binom{n-k}{2}$$

(b) \mathbb{V}_{λ} es invariante bajo Ψ y

$$\Psi \mid_{\mathbb{V}_{\lambda}} = T_n - \left(\binom{k}{2} \frac{\chi_{\lambda} (\tau)}{\chi_{\lambda} (1)} + \binom{n-k}{2} \right).$$

Teorema (corolario)

Sea τ_n una trasnposición de S_n y τ_k una trasnposición de S_k . Los valores propios de la matriz de adyacencia de A(n,k) son los números de la forma

$$\binom{n}{2} \frac{\chi_{\mu} \left(\tau_{n}\right)}{\chi_{\mu} \left(1\right)} - \binom{k}{2} \frac{\chi_{\lambda} \left(\tau_{k}\right)}{\chi_{\lambda} \left(1\right)} - \binom{n-k}{2}$$

donde $\lambda \vdash k$ y donde $\mu \vdash n$ tal que $\lambda \prec \mu$.

Para calcular los números, hay una fórmula atribuido a Frobenius. La versión de la fórmula que usamos en el artículo viene de un trabajo de Persi Diaconis y Mehrdad Shahshahani y dice que: si $\lambda = (\lambda_1, \dots, \lambda_l) \vdash m$, y $\tau \in S_m$ es cualquier transposición, entonces

$$\binom{m}{2}\frac{\chi_{\lambda}\left(\tau\right)}{\chi_{\lambda}\left(1\right)} = \sum_{j=1}^{l} \left(\binom{\lambda_{j}-j+1}{2} - \binom{j}{2}\right) = \left(\sum_{j=1}^{l} \binom{\lambda_{j}-j+1}{2}\right) - \binom{l+1}{3}.$$

6 Un conjectura de Chen, Ghorbani y Wong

Usando nuestra formula para los valores propios del grafo, probamos la siguiente:

Teorema

Sea $k \in \mathbb{N}$. Si $n > \frac{1}{6}k(k+1)(k+5)$ entonces el único valor propio negativo del grafo A(n.k) es -k. Además su multiplicidad es

$$\sum_{\lambda \vdash k} \chi_{\mu(\lambda)} \left(1 \right) \chi_{\lambda} \left(1 \right)$$

donde $\mu(\lambda) = (n - k, \lambda_1, \dots, \lambda_q)$ si $\lambda = (\lambda_1, \dots, \lambda_q)$.