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Abstract

In this paper we introduce a novel approach to the combinatorial analysis of flow shop scheduling
problems for the case of two jobs, assuming that processing times are unknown. The goal is to
determine the dominance properties between permutation flow shop (PFS) and non-permutation
flow shop (NPFS) schedules. In order to address this issue we develop a graph-theoretical ap-
proach to describe the sets of operations that define the makespan of feasible PFS and NPFS
schedules (critical paths). The cardinality of these sets is related to the number of switching ma-
chines at which the sequence of the previous operations of the two jobs becomes reversed. This,
in turn, allows us to uncover structural and dominance properties between the PFS and NPFS ver-
sions of the scheduling problem. We also study the case in which the ratio between the shortest
and longest processing times, denoted ρ, is the only information known about those processing
times. A combinatorial argument based on ρ leads to the identification of the NPFS schedules
that are dominated by PFS ones, restricting the space of feasible solutions to the NPFS problem.
We also extend our analysis to the comparison of NPFS schedules (with different number of
switching machines). Again, based on the value of ρ, we are able to identify NPFS schedules
dominated by other NPFS schedules.

Keywords: non-permutation flow shop scheduling problem, makespan, critical path, unknown
processing times, structural and dominance properties

1. Introduction

Scheduling problems have been widely studied, thanks to their great importance in industrial
environments [22]. Our goal in this paper is to study such a problem, motivated by real-life
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industrial applications, namely the design of flow shop environments in the case when exact input
data about the processing time of jobs operations is lacking. More specifically, we focus on the
flow shop scheduling problem with unknown processing times in a two-jobs setting. Formally,
the flow shop scheduling problem considered in this paper involves a set J = {J1, J2} of jobs and
a set M = {M1, . . . ,Mm} of m machines. Each job J j consists of a set O j = {O j,1, . . . ,O j,m} of
m operations, where the ith operation is to be carried out by machine Mi. Moreover, operation
O j,i+1 may start only when O j,i is completed. Operations are performed one at a time on each
machine Mi and preemption is not allowed. Furthermore, each operation O j,i has a processing
time p j,i ∈ N unknown to the scheduler. A solution to the problem consists of a schedule σ of
jobs on machines such that the best value of an objective function is obtained. In our case this
function is the makespan, expressed by F(σ), which the optimal schedule minimizes.

The literature identifies two ways in which to address the above scheduling problem. One is
by solving its permutation version, which only considers the same sequence of jobs on all the ma-
chines. The other way of solving the scheduling problem is by considering its non-permutation
version, in which the ordering of jobs can change from a machine to another. The latter version
is more general and its space of solutions contains those of the former, i.e. the permutation flow
shop (PFS) scheduling problem is a restricted version of the non-permutation flow shop (NPFS)
scheduling problem. This means that the optimal PFS schedule may not be optimal for the NPFS
version. Furthermore, the optimal NPFS schedule cannot be strictly improved by one for the PFS
scheduling problem. For n jobs the downside of this advantage of NPFS schedules is that, instead
of considering the n! possible schedules of the PFS scheduling problem, we have to assess the
n!m candidate schedules of NPFS scheduling problem. This feature has spurred the interest in
the latter problem [33], [16], [38], [3], [4], [26], [25].

In this paper we extend some preliminary results presented in [27], solving both the PFS and
the NPFS versions of the two-jobs and m-machines scheduling problem with unknown values of
the processing times. We accomplish this by applying a novel modeling technique that allows to
describe the structure of solutions independently of the processing times. We also analyze the
particular case in which the only known data about the processing times is the ratio between the
maximum and minimum of the processing times.

This paper is organized as follows. Section 2 is a literature review on the particular PFS and
NPFS scheduling problems in which the goal is the minimization of the makespan, highlighting
the most relevant results in the field. Section 3 presents the definition of scheduling problems,
introducing relevant concepts allowing us to characterize their PFS and NPFS versions. Section
4 describes the structural and dominance properties of the PFS and NPFS scheduling problems,
which constitute the theoretical results obtained in this research. Finally, the conclusions and
prospects for future work are discussed in Section 6.

2. Literature Review

The research on flow shop scheduling was pioneered by Johnson [14], who stated what is
currently known as the classical flow shop scheduling problem. The literature usually studies
versions of this problem in which the processing times or at least their probabilistic distribution
are known. The classical versions of the PFS and NPFS scheduling problems of minimization
of makespan in two-jobs settings admit optimal solutions in polynomial time. The shortest paths
can be found, subject to vertical line segment barriers, examining their graphical representation
[2, 1, 32]. In addition, it has been known since the 1960s that there exists an optimal schedule for
the NPFS scheduling problem with the same job ordering in the first two and the last machines
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[8], as can be shown in a simple exchange argument [11]. In practice, this implies that there
exists an optimal solution σ∗ for the NPFS scheduling problem such that the job ordering does
not change on machines M1, M2 and Mm. Thus, when the number of machines m satisfies m ≤ 3,
the NPFS scheduling problem admits a PFS schedule as an optimal solution. For instances with
a number of machines m > 3, the same schedule may not be optimal simultaneously for both the
PFS and NPFS scheduling problems, as shown in Figure 1.

M1 p 2,1
M2 p 1,2
M3 p 1,3
M4 p 2,4
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p 1,1
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Figure 1: Gantt chart of the optimal schedules of the PFS problem (left) and the NPFS problem (right) for an instance I
with n = 2 jobs and m = 4 machines. For this setting, the optimal makespan values of PFS and NPFS schedules are 14
and 12, respectively.

The impact of the permutation condition on the flow shop scheduling problem with the goal
of minimizing the makespan has been little studied. Potts et al. [23] analyzed the flow shop
scheduling problem with zero processing times, and showed that for a family of instances the best
permutation schedule is worse than

√
m/2 times the best NPFS schedule. This is shown using

the results of Erdős and Szakeres on sequences of distinct integers [9]. Choi et al. [7], studied
the processing times defined1 by p j,i = p j/si, where si is the processing speed of the machine
i, and proved that for m ≥ 4, PFS schedules are optimal if there exists a slowest machine, i.e.,
sk < s1 = . . . = sk−1 = sk+1 = . . . = sm for some machine Mk. Nagarajan and Svirdenko
[17] study the ratio between permutation and non-permutation scheduling versions in instances
with n jobs and m machines, obtaining a tight value of 2

√
min{m, n} based on the results drawn

from the analysis of a randomized algorithm. Rebaine [24] studies the structural properties of
NPFS scheduling problem in instances with m = 2 machines and n jobs with time delays, finding
that the ratio is bounded by 2 for arbitrary processing times, and by max{2 − (3/(n + 2)),m} for
processing times restricted to be 1. More recently, Panwalkar and Koulamas [19] addressed an
ordered flow shop scheduling problem, considering that processing times meet certain conditions
such that for any generic machine, denoted k, the processing times can be ordered in a decreasing
order, i.e., pi,k > pl,k, among other considerations. Furthermore, these authors proved that a PFS
schedule is optimal if the processing times are increasing on the successive machines, for every
fixed job j (see Lemma 1 therein). A good and updated source of relevant results for the NPFS
scheduling problem can be found in [25].

All these works study the PFS and NPFS problems seeking conditions ensuring that PFS
schedules are optimal (and therefore, dominant). A common feature of those papers is the impo-
sition of strong conditions on each p j,i. This conditioning allows to study ordering rules ensuring
optimal solutions. Although there are real cases in which this type of conditioning applies, there
are other real cases that can not be modeled in this way. In order to tackle this shortcoming, we
approach the problem by lifting all the conditions on the processing times. A recent contribu-
tion to the literature already lifts some constraints on the processing times in a 3-machines flow

1Here we have chosen to subindexing p by first the job and next by the machine, contrary to the convention in the
literature. Since we only assume two jobs, the first subindex can be only either 1 or 2, simplifying the interpretation of
p j,i.
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shop problem in which the displacements of a single robot, taking jobs over from a machine to
another, must be scheduled [28]. The authors assume that processing times are independent of
the jobs and depend only on the machine in which they are carried out, i.e. p j,i = pi for each
machine i.

Processing times have also been studied in problems with significant learning effects [37],
[21],[34]. Other cases in which the processing times are relevant arise when they depend on the
discretionary allocation of resources by a scheduler seeking to accelerate the production process
[31],[29],[30],[36], [6].

The case analyzed in this paper generalizes all the aforementioned problems, in which the
conditions on the processing times are more or less restrictive. We model the processing times as
being independent of the parametrization used for each specific problem. This approach allows
us to work with graph-theoretical descriptions as well as with the structure of the critical paths of
PFS and NPFS schedules. We can conjecture that under those structures it should be possible to
find NPFS schedules that are dominated by PFS schedules regardless the values of the processing
times. We show, through a combinatorial analysis, that this is the actual case. Even if in this
contribution we study only the case of two jobs and m-machines, we provide intuitions on how
to generate NPFS schedules for n > 2 in which the last job on machine i becomes the first on the
(i + 1)th. Nevertheless, finding clear analytical results for n > 2 jobs goes beyond the scope of
this article.

3. Statement of the problem

We focus on flow shop problems with n = 2 jobs and m machines, with unknown processing
times. We consider schedules corresponding to their PFS and NPFS versions. Given the partic-
ular feature of our approach we need to develop new tools to make our solutions independent of
the exact values of the processing times. One of these tools is a novel graphical representation of
Flow Shop problems. While usually scheduling problems are represented by means of disjunc-
tive graphs [22], the particular structure of flow shop problems (being themselves instances of job
shop problems) makes them prone to an alternative representation, recently introduced in [20].
Our own representation is closely related to the latter rerpresentation, based on Gantt charts, but
allowing generic processing times and being easier to interpret than disjunctive graphs.

Definition 1. Graph representation. Consider a graph Gσ(V, A, P), where V is the set of vertices,
A is a class of solid and dashed edges and P the class of labels of the edges. Gσ(V, A, P) is the
graph representation of a feasible schedule σ. The set V of vertices is the set of (instantaneous)
idle states before or after the execution of jobs. Each solid edge in A represents an operation
O ji of a job j on a machine i joining the corresponding idle states before and after the execution
of O ji. Each dashed edge in A represents the precedence constraint between operations O ji and
O j,i+1 joining the idle state after the execution of O ji and the idle state before the execution of
O j,i+1. Both types of edges connect the vertices in V, indicating changes in machine status, either
from idle to busy or from busy to idle. P is the set of processing times weighting the solid edges
while the dashed edges are assumed to have null weights.

A graph representation can be defined both for PFS and NPFS schedules. The type of σ
determines which is the case. The main difference between a feasible PFS schedule and a feasible
NPFS schedule is that the latter has, on at least one machine, a different sequence than in the
previous machines. To make this idea precise we formally introduce the following definition:
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Definition 2. Switching machine. A machine Mk is said to be a switching machine if it reverses
the order in which jobs were processed on the previous machine.

To illustrate Definition 1 and Definition 2 we present Figure 2 where the example of Figure 1
is considered. In Figure 2, the right panels depict the graph representations of the Gantt diagrams
from the left panels. The NPFS schedule is at the bottom while the PFS schedule is on the top
panels. The graph of the NPFS schedule has, in this case, one switching machine (machine
M3) on which the ordering of jobs becomes reversed. For convenience, we denote S σ the set of
switching machines defined by a particular schedule σ. Notice that machines M1, M2 and Mm

cannot be switching machines in any optimal schedule due to the results of Conway et al. [8].
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Figure 2: Gantt and graph representations of the optimal schedules of the PFS scheduling problem (top) and the NPFS
scheduling problem (bottom) for an instance with n = 2 jobs and m = 4 machines. The switching machine in the NPFS
schedule is M3.

In general, the graph representation in scheduling problems allows to characterize the makespan
(see [15, 13, 5]). This is also the case in our work, where the makespan is characterized by the
flow shop critical path, as originally defined in [18] in terms of a grid of size n · m for a given
schedule π (i.e. all the operations ordered according to π), in which the longest path from start
to end yields π’s makespan. We start up from this representation in [18], incorporating our own
ideas:

Definition 3. Flow shop critical path. Given a feasible σ, the critical path is constituted by at
least one operation on each machine, supporting the makespan of graph Gσ(V, A, P).

In order to illustrate Definition 3 we present Figure 3, in which the example of Figure 1 is
revisited. In Figure 3 we highlight the critical path of both the PFS and NPFS schedules.

The solid edges of PFS and NPFS graphs in Figure 3 are labeled by the corresponding pro-
cessing times, p j,i. These labels allow to distinguish which operation belongs to the critical path
(critical operations) and which not. Even in the case that processing times are unknown, this
labeling allows to distinguish the critical operations from the rest. Thus, each operation has its
own different label. A simple inspection shows that there are different possible paths from the
first node on the first machine to the last node on the last machine. In the case that processing
times are known, the longest of those paths is the critical path and its length in terms of the
processing times is the makespan of the schedule. We can see, for instance, in Figure 3 that
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Figure 3: Critical path representations (solid line) of the optimal schedules of the PFS scheduling problem (top) and the
NPFS scheduling problem (bottom) for an instance I with n = 2 jobs and m = 4 machines.

the critical path in the PFS graph is different from the one in the NPFS graph, supporting also
different makespans.

With regards to definition 3, notice that in Figure 3 the critical paths include at least one
operation on each machine, supporting the makespan of graph Gσ(V, A, P). Then, by definition,
paths that support the same value of makespan but skip operations on some machine cannot
obtain. Figure 4 depicts this concept: the dashed line describes an invalid path that has the same
makespan as the solid line one (a valid critical path), but skipping operations from M2.

Figure 4: Gantt and graph representations of a critical (solid line) and an invalid critical path (dashed line) of an NPFS
schedule (bottom) for an instance I with n = 2 jobs and m = 4 machines

The three-field notation introduced in Graham et al. [12] defines what a problem is, allowing
to state and compare scheduling problems. However, this notation does not necessarily specify
the number of machines and/or jobs. One may obtain different subproblems by setting the num-
ber of machings and/or jobs to specific fixed values. Not every such subproblem of F|prmu|Cmax
is NP-Hard, even if the subproblem obtained by fixing the number of machines to 3 belongs to
this complexity class [10]. Then, even when we deal with the same scheduling problem, defined
through the same three-field notation, different subproblems may not share the same features. In
turn, for each subproblem may exist alternative parameterizations leading to different schedul-
ing problems. Vallada et al. [35] show that there exist distinct parameterizations of flow shop
scheduling problems minimizing makespan, and that for the same subproblem (i.e. a given value
of n and m) there exist benchmark data making the search harder for iterated greedy algorithms.
An important piece of information that help to assess this question is the gap between the lower
bound (best relaxed solution) and the best state-of-the-art solution (see Vallada et al. [35]). The
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take away for us is that, even if the class of problems (F|prmu|Cmax), the subproblem and the
solution method are fixed, not every case presents the same difficulty for its solution.

Up to now we have presented a new way of representing the feasible schedulesσ of the family
of problems F|prmu, n = 2|Cmax and F|n = 2|Cmax by means of graphs Gσ(V, A, P) with labeled
arcs. We also established a relation between graphs and makespan through critical paths. Given
a schedule σ the corresponding Gσ(V, A, P) can be obtained, yielding a critical path supporting
the optimal makespan. Since the edges of the graph are labeled, we can distinguish and identify
the possible critical paths, characterizing the structure of solutions for the family of problems we
are considering.

In what follows we model a parametrization of an instance of a problem, on the basis of
its graph representation. In this way we can generate different critical paths for each feasible
schedule and obtain all possible makespans for that schedule. For each instance we already
know the size of the universe of feasible schedules (n! for PFS scheduling problems and n!m−2

for NPFS ones). Then, given an instance, we can generate the universe of makespans up from
all the critical paths of each graph allowing the comparison of the structural properties of both
the PFS and NPFS schedules. This comparison is based on the presence (or not) of operations
in the critical paths. Even if the processing time of an operation is unknown, if it belongs to the
critical paths of both PFS and NFPS, it impacts in the same way on their makespans, according
to Definition 3.

On the other hand, in the cases in which there are operations that do not belong to both kinds
of critical paths, the following magnitude becomes relevant:

Definition 4. Ratio ρ. Given pmax = maxm∈M, j∈J p j,i and pmin = minm∈M, j∈J p j,i, we define ρ as
the ratio between pmax and pmin.

It is interesting to note that even when the actual values of the processing times are unknown,
ρ can be determined, at least roughly, in manufacturing settings. For instance, it can be known
that the processing time of no operation can take more than 3 times that of the fastest operation.

4. Structural and dominance properties

In this section, we study the structural and dominance properties in both problems F|n =

2|Cmax and F|pmru, n = 2|Cmax, assuming an arbitrary number of machines m ≥ 4.

Theorem 1. The length in number of operations of the critical path of Gσ(V, A, P) is m+1+ |S σ|.

Proof. We consider an arbitrary instance I. For a feasible schedule σ with |S σ| = 0, we take the
critical path, defined by a set of m + 1 horizontal edges in Gσ(V, A, P): two edges correspond to
the first and last operations in the schedule σ. The other m − 1 edges are operations defined by
each pair of machines Mk and Mk+1, k ∈ {1, . . . ,m − 1}.

For a feasible schedule σ with |S σ| ≥ 1, we prove the claim by induction. Consider the graph
representation Gσ(V, A, P) with |S σ| = 1 and separate it into two sub-graphs such that the job
of the last operation in one sub-graph is the job of the first operation in the other sub-graph. A
switching machine, Mk, defines the split in two sub-graphs. Each sub-graph is free of switching
machines, and they include k − 1 and m − k + 1 machines, respectively. We take then the critical
paths from the first and second sub-graphs, of respective lengths (k − 1) + 1 and (m − k + 1) + 1.
Then, the overall critical path of the graph representation Gσ(V, A, P) is equal to the sum of the
critical paths of its subgraphs, m + 2 = m + 1 + |S σ| for |S σ| = 1.
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Now consider a feasible schedule σ with |S σ| = ` ≤ m − 3 and its graph representation
Gσ(V, A, P) and assume that the claim is true for any schedule with ` − 1 switching machines.
Let us separate it into two sub-graphs such that, on one hand, the job of the last operation in one
sub-graph is again the same as the job of the first operation in the other sub-graph. We define
the split in such way that the second subgraph does not include a switching machine. We can
assume, without loss of generality, that the kth machine, Mk defines the split in two sub-graphs.
Since the class of the remaining switching machines has cardinality ` − 1, the critical path in the
first sub-graph has (k−1)+1+ `−1 edges while the critical path of the second has (m−k +1)+1
edges (recall that it does not contain a switching machine and it includes m − k + 1 machines).
Thus, the critical path of the graph representation Gσ(V, A, P) has m + ` + 1 edges.

Theorem 1 determines the length of the critical path of a given schedule in terms of the
number of operations. That is, it calculates the cardinality of the subset of operations that belong
to the critical path. This idea is depicted in Figure 5 which exhibits on its left side the Gantt charts
and the critical paths (solid lines) representations of the numerical example presented in Figure
1. On the right side is the representation of the sets of operations that belong to each critical
path of the optimal PFS (top) and NPFS schedules (bottom). While the cardinality of the set of
operations that belongs to critical path of PFS schedule is 5, the cardinality of the corresponding
set in the NPFS schedule is 6, verifying Theorem 1 for a feasible schedule σ with |S σ| = 1.

O2,1 O2,2 O2,3 O2,4 O1,4

O2,1 O2,2 O1,2 O1,3 O1,4 O2,4

Figure 5: Gantt chart and critical path (solid line) representations (left), and ordered sequence of the operations belonging
to the critical paths of the optimal PFS schedule (top) and the optimal NPFS schedule (bottom) for an instance I with
n = 2 jobs and m = 4 machines.

According to Theorem 1, the NPFS critical path has more or equal operations than the pos-
sible PFS critical paths. Let us call a the number of these extra operations. Given that the total
number of operations required in an instance I is constant, it can be inferred that with increasing
values of a the NPFS critical path may end up including all the operations in the PFS critical path.
Thus, all the operations in the NPFS critical path impact on the makespan of the schedule with a
switching machines, according to Definition 3. Then, that critical path has a makespan at least as
large as the one of the PFS critical path, since it includes all the operations of the latter and some
more. Only if some operations have zero processing times it might happen that the makespans
of both critical paths coincide. Otherwise, the makespan of the PFS schedule must improve over
the makespan of the NPFS schedule. On the other hand, given the lower computational cost
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of solving the PFS version of the scheduling problem, it becomes important to detect either the
cases in which the makespans of both scheduling problems versions coincide or those in which
the PFS schedule makespan is strictly lower. In order to capture this notion, we introduce two
new definitions.

Definition 5. Dominance. Given σ∗0 := arg minσ,|S σ |=0 F(σ) and an NPFS schedule π with
|S π| > 0. The NPFS schedule π is dominated by permutation if F(σ∗0) ≤ F(π), where F(σ∗0) and
F(π) represent the makespans of σ∗0 and π, respectively.

Definition 6. Independent set Tπ. Given an NPFS schedule π with |S π| > 0. An independent set
Tπ is the set of operations in the critical path of Gσ∗0 (V, A, P) that are not included in the critical
path of Gπ(V, A, P).

To illustrate Definition 6 we introduce Figure 6, in which an instance I of n = 2 jobs and
m = 5 machines is considered. Figure 6 illustrates the Gantt charts of two feasible PFS schedules
at its top and center panels, while the bottom picture shows an NPFS schedule with |S π| = 1,
and for each schedule the critical paths (solid lines) are depicted. From the PFS schedules, the
optimal one, σ∗0, corresponds to the center picture, while in the NPFS schedule π the switching
machine is M3. The operations of the independent set Tπ are encircled by dashed lines.

As mentioned, it is important to identify those cases in which NPFS schedules are dominated
by PFS ones. Thus, we present a relevant new result based on Theorem 1 and on the concept of
dominance, which allows to identify cases where the PFS schedule dominates NPFS schedules.
This is the gist of the next lemma.

Lemma 1. Given an instance I and an NPFS schedule π with |S π| > 0, if

ρ ≤ 1 +
|S π|

|Tπ|
, (1)

then π is dominated by permutation.

Proof. We consider an instance I and schedules σ∗0 and πwith |S π| > 0. Let p1+. . .+ pm+1−|Tπ | be
the sum of processing times of the operations in the critical path of Gσ∗0 (V, A, P) that are included
in the critical path of Gπ(V, A, P). From Theorem 1, we have:

F(σ∗0) =p1 + . . . + pm+1−|Tπ | +
∑

p j,i∈Tπ

p j,i

The case in which the makespan of the PFS schedule is the longest must obtain if we assume that
all the operations of Tπ have processing time pmax. Then:

F(σ∗0) ≤p1 + . . . + pm+1−|Tπ | + |Tπ|pmax. (2)

Expression 2 can be formulated in terms of ρ and then:

F(σ∗0) ≤p1 + . . . + pm+1−|Tπ | + ρ

(
|Tπ|

|Tπ| + |S π|

)
(|Tπ| + |S π|) pmin. (3)

According to our assumptions we have that ρ ≤ 1 + |S π|/|Tπ|. Thus, we obtain the following
inequality
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Figure 6: Gantt charts of a PFS schedule σ (top), the optimal PFS schedule σ∗0 (center), and an NPFS schedule π (bottom)
with |S π | = 1, and their critical paths (solid line) for an instance I with n = 2 jobs and m = 5 machines. The switching
machine of the NPFS schedule π is M3. The operations of the independent set Tπ are encircled by a dashed line.

ρ

(
|Tπ|

|Tπ| + |S π|

)
(|Tπ| + |S π|) pmin ≤ (|Tπ| + |S π|) pmin. (4)

From expressions 3 and 4, we have

F(σ∗0) ≤p1 + . . . + pm+1−|Tπ | + (|Tπ| + |S π|) pmin ≤ F(π),

which indicates that the NPFS schedule π is dominated by permutation, concluding the proof.

Lemma 1 justifies the claim that the NPFS schedule is not dominated by the PFS schedule in
the numerical example of Figure 1, since the rate between pmin and pmax is 4, i.e. ρ = 4. This, in
fact, does not meet the condition of the Lemma 1 that ρ ≤ 1 + |S π|/|Tπ|, being |S π| = |Tπ| = 1.
Nevertheless, Lemma 1 does not provide a necessary condition for the domination of the NPFS
schedule, as it can be seen in the case of 2 jobs and 4 machines in which p ji = 1, for all j, i,
except for p1,3 = p2,3 = 2, for which the NPFS makespan (Cmax−NPFS = 8) is dominated by the
PFS one (Cmax−PFS = 6).
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A relevant consequence of Lemma 1 is that it implicitly associates the concept of dominance
(Definition 5) to the number of switching machines of a feasible schedule σ with |S σ| and ρ (the
relation between pmax and pmin). These are in turn associated to the cardinality of the independent
set |Tπ|. In practice, ρ is a piece of information that is not hard to obtain, at least approximately,
while |S σ| is a decision variable. On the contrary |Tπ| cannot be determined easily. The next
section addresses this problem.

4.1. Comparative combinatorial analysis of PFS and NPFS critical paths
Up to this point we have shown the structure of the critical paths of PFS and NPFS schedules.

Simple combinatorial arguments allowed us to analyze the dominance relation between both
types of scheduling problem. We intend now to deepen this analysis by generating an upper
bound for the cardinality of Tπ. We will show that |Tπ| is at most the difference between 2m and
the number of operations in Gπ(V, A, P), i.e. m + 1 + |S |. Furthermore, we will show that this
maximum is a tight bound.

An upper bound on |Tπ| allows to find the minimal |S π| that satisfies the relation established
in Lemma 1, which can be obtained by rewriting (1) as follows:

|S π| > (ρ − 1) · |Tπ| (5)

In order to illustrate how this lower bound can be obtained, we present an example of an
instance I with n = 2 jobs and m = 5 machines in Figure 7. Figure 7 shows the Gantt charts
of the PFS schedule σ∗0 (top panel), an NPFS schedule π (bottom) with |S π| = 2, and their
critical paths (solid lines). The operations of the independent set Tπ are highlighted with dashed
encirclements. The switching machines of the NPFS schedule are M3 and M4.

M2

M 3

M 4

M 5

1

1 1

1 − ε

1 + 2ε

1 1

1 + ε 1

1 + 2ε

M1

M 2

M 3

M 4

M 5 11 + ε

1

M1 1 1

1 − ε

1 + 2ε 1 + 2ε

11

Figure 7: Gantt charts of the PFS schedule σ∗0 (top panel), and an NPFS schedule π (bottom panel) with |S π | = 2, and
their critical paths (solid lines) for an instance I with n = 2 jobs and m = 5 machines. The operations of the independent
set Tπ are encircled by a dashed line. The switching machines are M3 and M4.

We note that the NPFS schedule π is such that |S π| = 2 and the universe of possible operations
has size 2m = 10. According to Theorem 1, the critical path of Gπ(V, A, P) includes m + 1 +

11



Table 1: Distribution of processing times. Here Mk is the first switching machine and k = m − `.

M1 M2 M3 ... Mk Mk+1 Mk+2 ... Mm

J1 1 1 − ε 1 ... 1 + 2ε 1 1 + ε ... 1 + ε

J2 1 1 1 ... 1 + (m − k)ε 1 1 ... 1

|S π| = 8 operations. This means that Gσ(V, A, P) is such that the maximum cardinality of the
independent set |Tπ| is 2m − (m + 1 + |S π|) = 10 − 8 = 2, indicating that Lemma 1 is tight for the
NPFS schedule π of Figure 7.

The main point shown in Figure 7 is that while the critical path of a PFS schedule tends to go
through the operations of one of the jobs, the critical path of the NPFS schedule goes through the
operations of the other one. In Figure 7, the critical path of the PFS schedule σ∗0 goes through the
operations of J1 up to M3, and after that, through those of J2. In contrast, the critical path of the
NPFS schedule π (bottom panel) goes through the operations of J2 up to M3 and then through
those of J1. This is computed according to the distribution of the ε-dependent processing times.
Notice that operation O1,2 has processing time p1,2 = 1 − ε, while for O1,3 it is p1,3 = 1 + 2ε.
This implies that operation O2,3 starts necessarily at the end of O1,3. A similar criterion applies
downstream: O2,3 has p2,3 = 1 + 2ε, compensating O1,5, with processing time p1,5 = 1 + ε. In
this way, the critical path Gσ∗0 (V, A, P) of the PFS schedule σ∗0 goes in an orderly fashion through
J1 and J2. On the other hand, in the NPFS schedule π the critical path Gπ(V, A, P) goes through
operations of J1 and J2 with processing times that compensate the contribution on the makespan
from the operations of σ∗0. Notice that the processing time p1,5 of operation O1,5 must be 1 + ε in
order to ensure that Gπ(V, A, P) goes through operations of J1.

The structure in Figure 7 can be extended to m machines. Table 1 shows how to distribute
the processing times in order to extend the structure to m machines. It shows that it is enough
that p1,2 = 1 − ε (of O1,2) to ensure that the critical path of the PFS schedule goes through J1 up
to Mk, no matter the number of machines between M2 and Mk (provided J1 is the first job in the
schedule). Then, at Mk operation O2,k has to be such that p2,k = 1 + (m − k)ε to compensate the
processing times of the J1 operations on machines between Mk+2 and Mm. The other processing
times can be conventionally set at p j,i = 1.

In order to formalize the intuition reflected in Table 1, we define a particular instance, which
we call hard instance, generalizing the structure of the instance from Figure 7.

Definition 7. Hard instance An instance I is a hard instance when the operations of the jobs
are defined by three blocks of machines and the number of switching machines, `, is ` ≤ m − 3.
The blocks are defined as follows:

initial block: It includes the first k − 1 operations of J1 and J2 to be carried out in the first k − 1
machines (m − ` ≤ k ≤ m − 1). Job J1 is assigned k − 1 operations with processing times
equal to one, except operation O1,2 with a processing time equal to 1 − ε. The second job
J2 has processing times equal to 1 on all of its k − 1 first operations.

switching machines block: The operations to be carried out on the ` switching machines are
included in this block. The first switching machine is kth machine, where k = m − `, and
comes after the machines in the initial block. The kth operation in J1 has a processing
time equal to 1 + 2ε while in J2 the kth operation has processing time 1 + (m − k)ε. The
processing time of each operation on machines in this block is 1 + ε for operations of job
J1 (except for machine Mk+1 that is 1) and 1 for operations of job J2 .
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final block: It includes the operations to be carried out on the last machine for both jobs J1 and
J2. The processing times are 1 + ε for J1 and 1 for J2.

A special feature of the hard instance is that among the feasible PFS schedules, the optimal
one will always have the same job scheduling, regardless of the value of m. This is shown in the
following result:

Lemma 2. The PFS schedule σ∗0 of a hard instance has job J1 as the first one in the sequence.

Proof. We prove this claim by induction. As base case, we consider a hard instance with m = 4
machines. Here, the PFS schedule σ∗0 is defined by job J1 as first job in the sequence, as shown
in Figure 8.

M 2

M 3

M 4 1 1

1 + ε

M 1 1 1

1 − ε 1

1 + 2ε

M 2

M 3

M 4

M 1 1 1

1 1 − ε

1 + 2ε

1 1

1 + ε

5 + 3ε

5 + 2ε

Figure 8: Gantt charts of the two critical paths of the PFS feasible schedule. Their critical paths are depicted with solid
lines. The instance I has n = 2 jobs and m = 4 machines. In one of the PFS schedules the first job is J1 (in the bottom
panel) while in the other it is J2 (top panel). The schedule of the bottom panel corresponds to σ∗0 .

For the inductive proof, we increase the number of operations of J1 and J2 in the initial and
the switching machines blocks of a hard instance. Consider a hard instance with m = 4 + µ
operations defined by the incorporation of µ operations to each job in the initial block with the
processing times given in Definition 7. This incorporation of operations increases the makespan
of the critical path of σ∗0 by µ units, having as in the base case, J1 as the first job in the sequence.

Consider again a hard instance with m = 4+µ operations defined, this time, by the incorpora-
tion of µ operations to each job in the switching machines block (with unitary processing times).
The kth operation of the job J2 has a processing time equal to 1 + (m − k) · ε and the processing
times of the operations on the last machines are defined by m = 4 +µ (according to the definition
of the final block). Then, we compute the makespan of the PFS schedules and obtain an increase
of µ(1 + 2ε) for the PFS schedule in which the first job in the sequence is J1 and an increase of
µ(1+2ε) for the PFS schedule with J2 as the first job in the sequence. In agreement with the base
case, the PFS schedule σ∗0 of the hard instance is defined by job J1 as first job in the sequence.

13



This proves that in either case, J1 is the first job in the sequence.

The following theorem formalizes the generalization of the evidence depicted in Figure 7 to
obtain a tight upper bound for the cardinality of the independent set Tπ in an arbitrary instance.

Theorem 2. m − 1 − |S π| is a tight upper bound on the cardinality of the independent set Tπ for
an NPFS schedule π with |S π| > 0.

Proof. Consider an NPFS schedule π with |S π| = ` ≤ m − 3. Notice that the universe of possible
operations has size 2m. According to Theorem 1, in the critical path in Gπ(V, A, P), the number of
operations included is m+1+`. This means that Gσ(V, A, P) has at most 2m−(m+1+`) = m−1−`
possible different operations, and consequently |Tπ| ≤ m − 1 − `. We claim that this upper bound
is tight for the hard instances that can be defined for this problem. To prove this claim, we need
two technical lemmas.

Lemma 3. Consider a hard instance, an NPFS schedule π with |S π| > 0, which starts with the
operation of job J1. The k − 2 operations on machines M2 to Mk−1 in the critical path of the PFS
schedule σ∗0 are not in the critical path of the NPFS schedule π.

Proof. We prove this claim by induction. Consider an NPFS schedule π and a PFS schedule σ∗0,
both starting, by definition, with the same operation. Consider, in particular, an NPFS schedule π
with |S π| = 1. Then, the number of the operations in the switching machines block is 1 for each
job J1 and J2, where S π = {Mk}.

For the base case, we consider k = 3 and a hard instance with m = k + 1 = 4 machines. In
this case, we obtain the largest independent set of the NPFS schedule π, |Tπ| = 2 as shown in
Figure 8.

We now consider k − 1 = µ and a hard instance with m = µ + 2 machines. Note that µ
operations for each job belong to the initial block. Given that the second operation of J1 has a
processing time equal to 1 − ε and all remaining operations in the block for jobs J1 and J2 have
processing time 1, in the PFS schedule σ∗0 the completion times of operation O1,k and O2,k−1 are
µ+ 1 + ε and µ+ 1, respectively. Then, the operations in the critical path of σ∗0 the operations on
machines M2 to Mk−1 correspond to J1. For the NPFS schedule π, we have that the first switching
machine is Mk and then the operations on machines M2 to Mk−1 in the critical path correspond to
J2, concluding the proof.2

Lemma 4. Consider a hard instance. Only one operation on machines Mk+1 to Mm in the critical
path defined by the PFS schedule σ∗0 is not in the critical path defined for an NPFS schedule π
with |S π| > 0.

Proof. We prove this claim again by induction. Consider an NPFS schedule π and a PFS schedule
σ∗0. We know that both schedules start with the same operation. Consider an NPFS schedule π
with |S π| = m − 3. Then, the number of operations in the initial block is 2 for both J1 and J2,
where Mk is the first switching machine of the instance, and J1 is the first job in the sequence.

For the base case k = 3, we consider a hard instance with m = k + 1 = 4 machines and the
largest independent set of an NPFS schedule π is such that |Tπ| = 2. One operation from the
initial block and another operation from the switching machines block are shown in Figure 8.

2We can extend the proof by noting that the claim is still true for arbitrary hard instances of an NPFS schedule π with
|S π | > 1, where Mk is the first switching machine of the instance.
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Consider now a hard instance with k = 4, m = k + 1 = 5 machines and largest independent
set of an NPFS schedule π such that |Tπ| = 2. One operation from the initial block and another
from the switching machines block are shown in Figure 7.

For k = µ, we consider a hard instance with m = µ + 1 machines. We have one operation in
the independent set from the initial block, since |S π| = m − 3 limits the number of machines that
can be included in that block. We now analyze the impact of incorporating µ operations in the
rest of the structure of the hard instance, i.e., in the switching machines and the final blocks.

Note that operations of both jobs J1 and J2 to be performed on the switching machines
Mk, . . . ,Mm−2 are included in the critical path of the NPFS schedule π. By the definition of
the hard instance, we have that the operations of jobs J1 and J2 to be carried out on the last
machine Mm are included in the critical path of the NPFS schedule π (as in Figure 7). Thus, we
see that the single operation O2 m−1 defined by the PFS schedule σ∗0 is the only one that is not in
the critical path defined for an NPFS schedule π with |S π| = m − 3.

Finally, we note that this result holds for an arbitrary hard instance with an NPFS schedule π
with |S π| > 0 by considering a number of operations in the initial blocks larger than 2 for each of
the jobs. This concludes the proof.

The combination of Lemmas 3 and 4 yields the tightness of the upper bound on |Tπ|.

4.2. NPFS feasible space: PFS-bounding
Lemma 1 associates the number of switching machines, ρ (the quotient between pmax and

pmin) and |Tπ|. We seek now to reformulate that claim in a form more amenable for practice. In
order to do that we introduce Corollaries 1 and 2:

Corollary 1. Given an instance I with m machines and an NPFS schedule π with |S π| > 0, if

ρ ≤
m − 1

m − 1 − |S π|
. (6)

then π is dominated by permutation.

Corollary 2. Given an instance I with m machines and an NPFS schedule π with |S π| > 0, if
(m − 1) ρ−1

ρ
≤ |S π|, then any arbitrary NPFS π′ with |S π| ≤ |S π′ | is dominated by permutation.

Corollaries 1 and 2 follow from replacing Tπ by the tight upper bound found in Theorem 2
in expression (1) from Lemma 1.

Corollary 3. Given an instance I with m machines, the number of the NPFS schedules domi-
nated is at least

m−2∑
i=

⌈
(m−1) ρ−1

ρ

⌉
(
m − 2

i

)
.

This result is obtained by considering the number of NPFS schedules dominated by permu-
tation.

We are now in conditions of graphing the dominance by permutation zone for NPFS sched-
ules according the number of machines m and the ratio ρ.

Corollary 1 provides a practical summary of most of the results found in this investigation,
since ρ as given by equation 6 can be easily estimated in real world contexts. In an industrial
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flow shop environment, the number of machines m will be known. With these two parameters
(ρ and m) at hand the scheduler can read in Figure 9 the maximal cost-effective |S | discarding
larger values of S , reducing the size of the search space for her problem without missing the
optimal solution. Suppose the scheduler faces an instance I of 10 machines (m = 10) and 2 jobs,
where the operations are such that ρ = 3. In Figure 9 we identify the green curve corresponding
to m = 10, and given ρ = 3 we see that for NPFS schedules with a number of the switching
machines larger than 6, all possible NPFS solutions will be dominated by PFS ones. Thus, it
makes sense to focus on the others.

ρ
v
al

u
e

|Sσ|

7 m

8 m

9 m

10 m

11 m

Figure 9: Graphs of ρ as function of the number of switching machines, |Sσ | defined by equation 6, parameterized by
different values of m.

These results indicate that NPFS schedules tend to incorporate more operations than PFS
ones. It can be inferred that the latter will usually dominate the former under not very demand-
ing conditions on processing times. It is natural to consider that something similar should happen
with NPFS schedules with different quantities of switching machines, the ones with lowest num-
ber of switching machines dominating those with a larger number of them. This follows from
Theorem 1, which indicates that the cardinality of the critical path depends on the number of
switching machines. We will present a formal proof of this intuition in next section.

5. Generalizations

In this section we extend and generalize the comparison of NPFS schedules with different
quantities of switching machines for flow shop systems with 2 jobs. We follow here the same
line of reasoning as for the comparison of PFS and NPFS schedules in Lemma 1, by defining a
generalized dominance concept according to which a schedule π2 with |S 2| switching machines
dominates a schedule π1 with |S 1| switching machines, where |S 1| > |S 2|.
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Definition 8. Generalized dominance. Given two NPFS schedules π1 and π2 with |S π1 | and |S π2 |

switching machines, respectively, and |S π1 | > |S π2 |. π1 is dominated by π2 if F(π2) ≤ F(π1),
where F(π2) and F(π1) represent the makespans of π1 and π2, respectively.

Another extension involves defining a set of independent operations but this time for NPFS
schedules with different quantities of switching machines, which we call generalized independent
set and is analogous to the independent set of Definition 6.

Definition 9. Generalized independent set Tπ1,π2 . Given two NPFS schedules π1 and π2 with
|S π1 | and |S π2 | switching machines, respectively, and |S π1 | > |S π2 |, the NPFS generalized inde-
pendent set Tπ1,π2 is the set of operations in the critical path of Gπ2 (V, A, P) that are not included
in the critical path of Gπ1 (V, A, P).

Following Definition 9, we can formulate an analogous to Lemma 1:

Lemma 5. Given an instance I and two NPFS schedules π1 and π2 with |S π1 | and |S π2 | switching
machines respectively, and |S π1 | > |S π2 |, if

ρ ≤ 1 +
(|S π1 | − |S π2 |)
|Tπ1,π2 |

(7)

then π1 is dominated by π2.

Proof. Consider an instance I and schedules π1 and π2 with |S π1 | and |S π2 | switching machines
respectively, and |S π1 | > |S π2 |. Let p1 + . . . + pm+1−|Tπ1 ,π2 |

be the sum of processing times of
operations in the critical path of Gπ2 (V, A, P) that are included in the critical path of Gπ1 (V, A, P).
From Theorem 1, we have:

F(π2) =p1 + . . . + pm+1−|Tπ1 ,π2 |
+

∑
p j=2,i∈Tπ1 ,π2

p j,i

If we assume that all the operations from Tπ1,π2 have processing time pmax we obtain:

F(π2) ≤p1 + . . . + pm+1−|Tπ1 ,π2 |
+ |Tπ1,π2 |pmax. (8)

Expression 8 can be thus reformulated in terms of ρ:

F(π2) ≤p1 + . . . + pm+1−|Tπ1 ,π2 |
+ ρ

(
|Tπ1,π2 |

|Tπ1,π2 | + (|S π1 | − |S π2 |)

) (
|Tπ1,π2 | + (|S π1 | − |S π2 |)

)
pmin. (9)

According to our assumptions we have that ρ ≤ 1 + (|S π1 | − |S π2 |)/|Tπ1,π2 |. Thus, we obtain
the following inequality

ρ

(
|Tπ1,π2 |

|Tπ1,π2 | + (|S π1 | − |S π2 |)

) (
|Tπ1,π2 | + (|S π1 | − |S π2 |)

)
pmin ≤

(
|Tπ1,π2 | + (|S π1 | − |S π2 |)

)
pmin. (10)

From expressions 9 and 10, we have

F(π2) ≤p1 + . . . + pm+1−|Tπ1 ,π2 |
+

(
Tπ1,π2 + (|S π1 | − |S π2 |)

)
pmin ≤ F(π1),

which indicates that the NPFS schedule π1 is dominated by schedule π2, concluding the proof.
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Table 2: Distribution of processing times for generalized results when |S π1 | and |S π2 | are both even or both odd at the
same time.

M1 M2 ... Mk−1 Mk Mk+1 ... Mk+|S π2 |−1 Mk+|S π2 |
Mk+|S π2 |+1 ... Mk+|S π1 |−1 ... Mm

J1 1 1 − ε 1 1 1 + 2ε 1 1 1 1 1 + 2ε 1 1 1 1 + ε

J2 1 1 1 1 1 + 2ε 1 1 1 1 1 + 2ε 1 1 1 1 + ε

Table 3: Distribution of processing times for generalized results when |S π1 | and |S π2 | are even and odd, respectively, and
vice versa.

M1 M2 ... Mk−1 Mk Mk+1 ... Mk+|S π2 |−1 Mk+|S π2 |
Mk+|S π2 |+1 ... Mk+|S π1 |−1 ... Mm

J1 1 1 − ε 1 1 1 + 2ε 1 1 1 1 1 1 1 1 1 + ε

J2 1 1 1 1 1 + 2ε 1 1 1 1 1 1 1 1 1 + ε

Lemma 5 relates the value of ρ with those of |S π1 | amd |S π2 |. These values are either easy to
acquire in practice or are decision variables. But, as in Lemma 1, this result depends on |Tπ1,π2 |

which is not directly measurable in industrial environments. We need thus a new upper bound
for this magnitude, defined in terms of other variables.

Since the generalized independent set plays a similar role as the independent set, the new
upper bound will be determined analogously. This implies showing that the operations that are
not in the critical path of the NPFS schedule π1 (the one with the largest number of the switch-
ing machines) may be in the critical path of π2 (the one with the lowest number of switching
machines). This means that |Tπ1,π2 | has a tight upper bound m − (1 + |S π1 |) (which follows from
2m − (m + 1 + |S π1 |)). To show this we introduce a generalized instance in which the bound is
tight for every pair |S π1 | and |S π2 | in which |S π1 |, |S π2 | ≤ m − 3. The distribution of processing
times of the generalized instance is presented in Tables 2 and 3.

Tables 2 and 3 have a similar structure as that for the hard instance in Definition 7 and Table
1. The only difference between Tables 2 and 3 is that the former applies to cases in which |S π1 |

and |S π2 | are either both even or both odd, making schedules π1 and π2 start and end in the same
order. Table 3 instead, applies to the case in which |S π1 | and |S π2 | have different parity.

Definition 10. Generalized instance. An instance I is a generalized instance when two NPFS
schedules π1 and π2 with |S π1 | and |S π2 | switching machines, respectively, satisfy |S π1 | > |S π2 |

(|S π2 | > 0) and the operations of jobs are defined by three blocks of machines. The blocks are
defined as follows:

Initial block: This block includes the first k − 1 operations of J1 and J2 to be carried out on the
first k − 1 machines, being the kth machine the first switching machine of π1 while the first
switching machine of π2 is k + 1 (m − |S π1 | ≤ k ≤ m − 1). The processing times of the k − 1
operations of J1 are all equal to 1, except for operation O1,2, which has processing time
1 − ε. The processing times of the k − 1 first operations of J2 are all 1.

switching machines block: The operations to be carried out on the S π1 and S π2 switching ma-
chines are included in this block (all the switching machines are consecutive). The first
switching machine is the kth machine, where k = m − |S π1 |, and come after the initial
block. The operations to be carried out on the |S π2 | switching machines are also included,
but they start at machine k + 1. The kth operations of jobs J1 and J2 have a processing
time equal to 1 + 2ε. The other processing times of the operations of both jobs included in
this block are equal to 1. The first operation after the last switching machine of S π2 , i.e.,

18



mk+|S π2 |+1. Two cases are possible, depending on whether |S π1 | and |S π2 | are both even or
odd simultaneously or not. Tables 2 and 3 show these two cases.

final block: It includes the operations to be carried out on the last machine for both J1 and J2.
Their processing times are equal to 1 + ε.

Figure 10 illustrates the generalized instance, presenting the Gantt diagrams for the entries
in Table 2. Schedule π1 is represented in the bottom panel of Figure 10, while schedule π2 is
depicted in the top panel, both with their corresponding critical paths. The Gantt diagram of π2
identifies the operations in Tπ1,π2 with dashed circles. We can now determine the upper bound on
the cardinality of this last set.
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Theorem 3. A tight upper bound on the cardinality of the extended independent set Tπ1,π2 for
two NPFS schedules π1 and π1 with |S π1 | and |S π2 | respectively, and |S π1 | > |S π2 | is m − 1 − |S π1 |.

Proof. Consider an NPFS schedule π1 with |S π1 | ≤ m − 3. Notice that the universe of possible
operations has size 2m. According to Theorem 1, in the critical path in Gπ1 (V, A, P), the number
of operations included is m+1+|S π1 |. That means that Gπ2 (V, A, P) has at most 2m−(m+1+|S π1 |) =

m − 1 − |S π1 | possible different operations, and consequently |Tπ1,π2 | ≤ m − 1 − |S π1 |. We claim
that this upper bound is tight for the generalized instances defined for the problem. To prove this
claim, we need two technical lemmas.

Lemma 6. Consider a generalized instance, and two NPFS schedules π1 and π2 with |S π1 | >
|S π2 |, starting with the operation of job J1. The k − 2 operations on machines M2 to Mk−1 in the
critical path of π2 are not in the critical path of π1.

(The proof of this Lemma is in the Appendix section).

Lemma 7. Consider a generalized instance. Only one operation on machines Mk+1 to Mm in
the critical path defined by the NPFS schedule π2 is not in the critical path defined for an NPFS
schedule π1 such that |S π1 | > |S π2 |.

(The proof of this Lemma is in the Appendix section).

Thus, combining the results of Lemmas 6 and 7 we obtain the complete set of operations
appearing in the formulation of Theorem 3, since Lemma 6 identifies the first k − 2 operations
and Lemma 7 the m − (k + |S π1 | − 1) operations. Thus, adding both we get

k − 2 + m − (k + |S π1 | − 1),

which is
m − |S π1 | − 1

proving that the the bound is tight for the generalized instance.

5.1. NPFS generalized feasible space

Lemma 5 associates the cardinality of the sets of switching machines |S π1 |,|S π2 |, the value
of ρ (the relation between pmax and pmin) and the cardinality of the generalized independent set,
Tπ1,π2 . Corollary 4 gives an alternative version:

Corollary 4. Given a generalized instance I with m machines and two NPFS schedules π1 and
π2 with |S π1 | > |S π2 |, if

ρ ≤
m − 1 − |S π2 |

m − 1 − |S π1 |
. (11)

then π1 is dominated by π2.

It is easy to see that Corollary 4 generalizes Corollary 1 and inequality 6. Corollary 1 holds
as a particular case, taking into account that |S π2 | = 0 because the π2 is a PFS schedule.
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Corollary 5. Given a generalized instance I with m machines and an NPFS schedule π1 and π2

with |S π1 | > |S π2 | ≥ 0, if (m − 1) ρ−1
ρ

+
|S π2 |

ρ
≤ |S π1 |, then any arbitrary NPFS π′ with |S π′ | ≥ |S π1 |

is dominated by π2

These two corollaries obtain by replacing Tπ by its tight upper bound in expression 7 of
Lemma 5.

Corollary 6. Given a generalized instance I with m machines and an NPFS schedule π1 and π2
with |S π1 | > |S π2 | ≥ 0. The number of NPFS schedules dominated by π2 is at least

m−2∑
i=

⌈
(m−1) ρ−1

ρ +
|Sπ2 |
ρ

⌉
(
m − 2

i

)
.

This corollary is obtained by considering the number of schedules in NPFS scheduling prob-
lem dominated by NPFS schedules of low number of switching machines.

This result, that parallels Corollary 1, is useful in practice, being the only difference that now
equation 11 includes both |S π2 | and |S π1 |. Figure 11 depicts the values of ρ for which π2 dominates
π1 under generalized dominance. Each curve is parameterized by the number of machines. Under
the curves, π2 is the dominant schedule. Finally, in Figure 11 we assume that |S π2 | = 2 in all cases.

Comparing Figures 9 and 11 we can see that the curves have a very similar behavior, only
that in the latter case (in which |S π2 | = 2) they tend to be displaced to the right. So, revisiting the
example analyzed for Figure 9 with m = 10 and ρ ≤ 3, in which we found that PFS schedules
dominate NPFS ones when |S | > 6, now in the case of two NPFS schedules we can see that the
one with less switching machines (i.e. with |S π2 | = 2) dominates those such |S π1 | > 6. In fact, for
this to be true it is enough that ρ < 2.5, approximately. This shows that ρ becomes lower from
one figure to the other. This is because the inclusion of switching machines in both schedules
reduces the upper bound on |Tπ1,π2 |. In other words, as indicated by equation 11 a larger |S π2 |

leads to a lower ρ.

6. Conclusions

In this work we have studied the PFS and the NPFS scheduling problems in the case of two
jobs, when makespan is the objective function and processing times are not known. We found
new structural and dominance properties of these problems. These properties provide a novel
perspective on these problems. We found new instances in which a PFS schedule dominates an
NPFS one with at least one switching machine. We also described a new bound on the maximum
number of feasible schedules of F||Cmax problems, when the only information available about
the problem is the ratio between pmax and the pmin, defined as ρ. This, in turn, allows a drastic
reduction of the number of candidate schedules. As a general remark, we can notice that, for the
F||Cmax problem, the larger the number of switching machines in a schedule, the lower will be
the possibility of the schedule being optimal.

Open questions for future work include how to extend this approach when the number of jobs
is n ≥ 3 and how to characterize a tight upper bound on the feasible schedule for particular kinds
of instances or for the general problem F||Cmax when |S σ| ≥ 2.
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Appendix A. Proofs of section 5

Proofs of lemmas 6 and 7 respectively.

Proof. Consider two NPFS schedules π1 and π2 with |S π1 | and |S π2 | and |S π1 | > |S π2 |, where both
schedules start with the same operation by definition. The first switching machine of π1 is Mk,
while for π2 is Mk+1, as illustrated in Figure 10.

Consider the initial blocks of both Gantt charts of Figure10. Given that the second operation
of J1 has processing time equal to 1 − ε and all remaining processing times in the block for both
jobs J1 and J2 are 1, in schedule π2 the completion times of operations O1,k and O2,k−1 are k + ε
and k, respectively. Then, the operations in the critical path of π2 of machines M2 to Mk−1 are
operations of job J1. For schedule π1, we have that the first switching machine is Mk and then,
the operations on machines M2 to Mk−1 in its critical path are operations of job J2, concluding
the proof of this lemma.

Proof. Consider two NPFS schedules π1 and π2 with |S π1 | > |S π2 |, where both schedules start, by
definition, with the same operation. The first switching machine of π1 is Mk such that machine
Mk+|S π1 |−1 coincides with Mm−1, while for π2 it is Mk+1, as illustrated in Figure 10.

Since we are considering the case where |S π1 | and |S π2 | are even or uneven simultaneously
(Table 2), both schedules will finish with the same job ordering, as in Figure 10. Note that in
this representation the operations of both jobs on machine Mk+|S π2 |+1 have processing time 1+2ε.
This leads to the inclusion of operations of J2 in the critical path of π2, as shown in the top panel.
However, as the operations of machine Mk+|S π2 |+1 are included in the switching machines block
of π1 (all the switching machines are consecutive), their processing times may not have the same
impact on the critical path of π1. While the processing times of the last operations of both jobs
(1 + ε) on Mm affect the critical path of π1 by including operations of J1 instead of J2 as happens
in the critical path of π2. Finally, operation O2,m−1 is not included in the critical path of π1.
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