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d Depto. de Matemática, CBC, Universidad de Buenos Aires, Argentina
e Instituto de Ciencias, Universidad Nacional de General Sarmiento, Argentina
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Abstract

We address the problem of characterizing those graphs G having only one Laplacian
eigenvalue greater than or equal to the average degree of G. Our conjecture is that
these graphs are stars plus a (possible empty) set of isolated vertices.
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1 Introduction

Let G be a graph on n vertices and m edges and let d1 ≥ · · · ≥ dn be its degree
sequence. Let A(G) be its adjacency matrix and D(G) its diagonal matrix of
vertex degrees. The Laplacian matrix of G is the positive semidefinite matrix
L(G) = D(G)−A(G). The spectrum of L(G) is called the Laplacian spectrum
of G and is denoted by Lspec(G) = {µ1, µ2, . . . , µn}, where n ≥ µ1 ≥ µ2 ≥
· · · ≥ µn = 0.

Understanding the distribution of Laplacian eigenvalues of graphs is a
problem that is both relevant and difficult. It is relevant due to the many
applications related to Laplacian matrices (see, for example [8,9]). It seems
to be difficult because little is known about how the n Laplacian eigenvalues
are distributed in the interval [0, n].

Our main motivation is understanding the structure of graphs that have
few large Laplacian eigenvalues. In particular, we would like to character-
ize graphs that have a single large Laplacian eigenvalue. What do we mean
by a large Laplacian eigenvalue? A reasonable measure is to compare this
eigenvalue with the average of all eigenvalues. Since the average of Laplacian
eigenvalues equals the average degree d(G) = 2m

n
of G, we say that a Laplacian

eigenvalue is large if it is greater than or equal the average degree.

Inspired by this idea, the paper [2] introduces the spectral parameter σ(G)
which counts the number of Laplacian eigenvalues greater than or equal to
d(G). Equivalently, σ(G) is the largest index i for which µi ≥ 2m

n
.

There is evidence that σ(G) plays an important role in defining structural
properties of a graph G. For example, it is related to the clique number ω of
G (the number of vertices of the largest induced complete subgraph of G) and
it also gives insight about the Laplacian energy of a graph [10,2]. Moreover
several structural properties of a graph are related to σ (see, for example [1,2]).

In this paper we are concerned with furthering the study of σ(G). In par-
ticular, we deal with a problem posed in [2] which asks for characterizing all
graphs having σ(G) = 1, i.e. having only one large Laplacian eigenvalue. We
conjecture that these graphs are some stars plus a (possible empty) set of iso-
lated vertices (K1,r denotes the star on r+1 vertices and + the disjoint union):

Conjecture 1.1 Let G be a graph. Then σ(G) = 1 if and only if G is iso-
morphic to K1, K2 + sK1 for some s ≥ 0, or K1,r + sK1 for some r ≥ 2 and
0 ≤ s < r − 1.

In this work, we show that this conjecture is true if it holds for graphs
which are simultaneously connected and co-connected (Conjecture 4.3) and



prove that Conjecture 1.1 is true for forests and extended P4-laden graphs [4]
(a common superclass of split graphs and cographs). The main tool for proving
our results is an interesting link we have found between σ and the number `
of nonempty anticomponents of G (see Section 2). The interesting feature of
this result is that it relates a spectral parameter with a classical structural
parameter. Studying structural properties of the anticomponents of G may
shed light on the distribution of Laplacian eigenvalues and, reciprocally, the
distribution of Laplacian eigenvalues should give insight about the structure
of the graph.

This extended abstract is organized as follows. In Section 2, we give some
definitions. In Section 3, we present some new results which establish the
connection between σ(G) and the number of nonempty anticomponents of G.
In Section 4, we present some evidence on the validity of Conjecture 1.1.

2 Definitions

In this abstract, all graphs are finite, undirected, and without multiple edges
or loops. All definitions and concepts not introduced here can be found in [11].
We say that a graph is empty if it has no edges. A trivial graph is a graph
with precisely one vertex; every trivial graph is isomorphic to the graph which
we will denote by K1. A graph is nontrivial if it has more than one vertex.

Assume that G1 = (V1, E1) and G2 = (V2, E2) are two graphs on disjoint
set of vertices. The disjoint union of G1 and G2 is the graph G1 + G2 =
(V1 ∪ V2, E1 ∪ E2). The join G1 ∨G2 is the graph obtained from G1 + G2 by
adding new edges from each vertex of G1 to every vertex of G2. The disjoint
union G + · · · + G of k copies of a graph G will be denoted by kG. A vertex
v of a graph G is a twin of another vertex w of G if they both have the same
neighbors in V (G) \ {v, w}.

The anticomponents of a graph G are each of the subgraphs of G induced
by the vertex set of a connected component of G, where G denotes the com-
plement of G. Notice that if G1, G2, . . . , Gk are the anticomponents of G, then
G = G1 ∨ · · · ∨Gk. A graph is co-connected if G is connected.

The chordless path (resp. cycle) on k vertices is denoted by Pk (resp. Ck).
A forest is a graph with no cycles and a tree is a connected forest. A cograph
is a graph with no induced P4. A spider [5] is a graph whose vertex set can be
partitioned into three sets S, C, and R, where S = {s1, . . . , sk} is a stable set
and C = {c1, . . . , ck} is a clique for some k ≥ 2; either each si is adjacent to
cj if and only if i = j (a thin spider), or si is adjacent to cj if and only if i 6= j
(a thick spider); and R is allowed to be empty and its vertices are adjacent to



all the vertices in C and nonadjacent to all the vertices in S. The sets C and
S are called body and legs of the spider, respectively. A graph is split [3] if its
vertex set can be partitioned into a clique and a stable set.

3 Relating σ and the number of anticomponents

In this section we establish a link between the two parameters.

Lemma 3.1 If G has k anticomponents, then k ≤ σ(G) + 1.

Theorem 3.2 Let G be a graph having k anticomponents where k = σ(G)+1.
If ` denotes the number of nonempty anticomponents, then ` ≤ σ. Moreover,
if k = `+ 1, then the remaining anticomponent of G is empty but nontrivial.

Let G be a graph with σ(G) = 1 and such that G is disconnected. By virtue
of Lemma 3.1, G has at most two anticomponents. As G is disconnected, G
has exactly two anticomponents G1 and G2. Hence, G = G1 ∨G2. Moreover,
it can be proved that G1 and G2 are empty and thus G is complete bipartite.

Corollary 3.3 If G is a graph with σ(G) = 1 and G is disconnected, then G
is a complete bipartite graph.

4 Graphs with σ = 1

We first verify Conjecture 1.1 for graphs having disconnected complement;
namely, we prove that the only graphs having σ(G) = 1 and disconnected
complement are the stars (including the trivial star K1). Then, we prove
that Conjecture 1.1 can be reduced to proving that the only connected and
co-connected graph with σ = 1 is K1. We then verify Conjecture 1.1 for
extended P4-laden graphs, a common superclass of the classes of cographs
and split graphs.

4.1 Reduction to co-connected graphs

We first obtain a result which proves the validity of Conjecture 1.1 for graphs
having disconnected complement.

Theorem 4.1 Let G be a graph with n vertices such that G is disconnected.
Then σ(G) = 1 if and only if G is isomorphic to K1,n−1.

Because of Theorem 4.1, Conjecture 1.1 holds for graphs G whose comple-
ment is disconnected. Hence, the validity of Conjecture 1.1 is equivalent to
the validity of the following weaker conjecture.



Conjecture 4.2 Let G be a graph with connected complement. Then, σ(G) =
1 if and only if G is isomorphic to K1, K2+sK1 for some s > 0, or K1,r +sK1

for some r ≥ 2 and 0 < s < r − 1.

4.2 Reduction to connected and co-connected graphs

We next show that the validity of Conjectures 1.1 and 4.2 can be reduced to
the validity of the following even weaker conjecture.

Conjecture 4.3 Let G be a connected graph with connected complement.
Then, σ(G) = 1 if and only if G is isomorphic to K1.

Moreover, below we prove that the reduction from Conjecture 1.1 to Con-
jecture 4.3 holds even when restricted to any graph class closed by taking
components. A graph class G is closed by taking components if every con-
nected component of every graph in G belongs to G. In particular, the class
of all graphs is closed by taking components.

Theorem 4.4 Let G be a graph class closed by taking components. If Con-
jecture 4.3 holds for G, then Conjecture 1.1 also holds for G.

It is well known that the only connected and co-connected cograph is
K1. Hence, Conjecture 4.3 holds trivially for cographs and, by Theorem 4.4,
Conjecture 1.1 holds for cographs.

4.3 Characterizing forests and extended P4-laden graphs with σ = 1

In this section, we verify Conjecture 1.1 for forests and extended P4-laden
graphs (a common superclass of cographs and split graphs).

Theorem 4.5 Conjecture 1.1 holds for forests.

A graph is pseudo-split [7] if it is {2P2, C4}-free. The class of pseudo-split
graphs is a superclass of split graphs [3]. A graph is extended P4-laden [4]
if and only if every induced subgraph on at most six vertices that contains
more than two induced P4’s is a pseudo-split graph. By definition, the class of
extended P4-laden graphs is a superclass of the class of pseudo-split graphs and
hence also of split graphs. Moreover, the class of extended P4-laden graphs
is a superclass of different superclasses of cographs defined by restricting the
number of induced P4’s, including P4-lite graphs [6] and P4-tidy graphs [5].

We first obtain the following results.

Lemma 4.6 If G is a spider or a graph that arises from a spider by adding
a twin of a vertex of the body or the legs, then σ(G) ≥ 2.



Theorem 4.7 Conjecture 1.1 holds for split graphs.

In [4], it was proved that a connected and co-connected extended P4-laden
graph G satisfies one of the following conditions: G is isomorphic to K1, P5,
P5, or C5, or G is a spider or arises from a spider by adding a twin of a
vertex of the body or the legs; or G is a split graph. By combining this result,
Lemma 4.6, and Theorem 4.7, we obtain the following result.

Theorem 4.8 Conjecture 1.1 holds for extended P4-laden graphs.
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