On the hereditary (p, q)-Helly property of hypergraphs, cliques, and bicliques ${ }^{1,2}$

Mitre C. Dourado ${ }^{\text {a }}$, Luciano N. Grippo ${ }^{\text {b }}$ and Martín D. Safe ${ }^{\text {b }}$
${ }^{\text {a }}$ Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
${ }^{\text {b }}$ Instituto de Ciencias, Universidad Nacional de General Sarmiento, Los Polvorines, Buenos Aires, Argentina

Abstract

We prove several characterizations of hereditary (p, q)-Helly hypergraphs, including one by minimal forbidden partial subhypergraphs, and show that the recognition of hereditary (p, q)-Helly hypergraphs can be solved in polynomial time for fixed p but is co-NP-complete if p is part of the input. We also give several characterizations of hereditary (p, q)-clique-Helly graphs, including one by forbidden induced subgraphs, and prove that the recognition of hereditary (p, q)-clique-Helly graphs can be solved in polynomial time for fixed p and q but is NP-hard if p or q is part of the input. We prove similar results for hereditary (p, q)-biclique-Helly graphs.

Keywords: forbidden induced subgraphs, forbidden partial subhypergraphs, maximal bicliques, maximal cliques, (p, q)-Helly property, recognition algorithms

1 Introduction

In this work, we study the (p, q)-Helly property, which originated in the works $[7,8]$. The core of a family \mathcal{F} of sets, denoted $\operatorname{core}(\mathcal{F})$, is the intersection of all the sets in \mathcal{F}. A family of sets is (p, q)-intersecting, if every

[^0]nonempty subfamily consisting of p or fewer sets has core of size at least q. A family of sets has the (p, q)-Helly property if every (p, q)-intersecting nonempty subfamily has core of size at least q. The ($p, 1$)-Helly property is known as the p-Helly property, which has its origin in the celebrated Helly's theorem that states that any finite family of convex sets in \mathbb{R}^{p-1} has the p-Helly property. The 2-Helly property is the usual Helly property [1].

A hypergraph \mathcal{H} has the (p, q)-Helly property if its edge family has the (p, q)-Helly property and \mathcal{H} is hereditary (p, q)-Helly if each of its subhypergraphs has the (p, q)-Helly property. Hereditary $(p, 1)$-Helly hypergraphs are called hereditary p-Helly. In [2,4], characterizations of the class of hereditary p-Helly hypergraphs were given and its recognition was shown to be polynomial-time solvable if p is fixed but NP-hard if p is part of the input.

A graph is (p, q)-clique-Helly if the family of its maximal cliques has the (p, q)-Helly property. (In this work, the word maximal always means inclusionwise maximal.) A graph is hereditary (p, q)-clique-Helly if each of its induced subgraphs is (p, q)-clique-Helly. Hereditary $(p, 1)$-clique-Helly graph are called hereditary p-clique-Helly. In [4], different characterizations of the class of hereditary p-clique-Helly graphs were given and its recognition was shown to be polynomial-time solvable for fixed p but NP-hard if p is part of the input.

A biclique of a graph is a set of vertices inducing a complete bipartite graph, where we regard edgeless graphs as complete bipartite graphs. We say a graph is (p, q)-biclique-Helly if the family of its maximal bicliques has the (p, q)-Helly property and hereditary (p, q)-biclique-Helly if all its induced subgraphs are (p, q)-biclique-Helly. The 'hereditary biclique-Helly graphs' defined in [6] are different from the hereditary $(2,1)$-biclique-Helly graphs defined here because in [6] edgeless graphs are not regarded as complete bipartite graphs.

In this work, graphs are finite, undirected, and without loops or multiple edges. For undefined hypergraph or graph notions, see [1] or [9], respectively.

This abstact is organized as follows. In Section 2, we give several characterizations of the classes of hereditary (p, q)-Helly hypergraphs, hereditary (p, q)-clique-Helly graphs, and hereditary (p, q)-biclique-Helly graphs. In Section 3, we give polynomial-time bounds and hardness results for the recognition of these classes depending on which of p and q are fixed. Our results generalize structural and algorithmic results for the case $q=1$ given in $[2,4]$.

2 Characterizations

It was proved in [4] that hereditary p-Helly hypergraphs coincide with strong p-Helly hypergraphs [5]. We give the following generalization of the latter,
which we will show to coincide with hereditary (p, q)-Helly hypergraphs. A hypergraph \mathcal{H} is strong (p, q)-Helly if, for each (p, q)-intersecting nonempty partial hypergraph \mathcal{H}^{\prime} of \mathcal{H}, some nonempty subfamily of p or fewer edges of \mathcal{H}^{\prime} has the same core as \mathcal{H}^{\prime}.

Let q be a positive integer. We denote by $\varphi_{q}(S)$ the set of all subsets of size q of a set S. For every hypergraph \mathcal{H}, we define $\Phi_{q}(\mathcal{H})$ as the hypergraph whose vertices are the subsets of size q of $V(\mathcal{H})$ that are contained in some edge of \mathcal{H} and whose edge family consists of those sets $\varphi_{q}(E)$ that are nonempty as E varies over the edge family of \mathcal{H}. This hypergraph operator Φ_{q} mirrors the graph operator Φ_{q} defined in [3] to characterize (p, q)-clique-Helly graphs.

For each positive integer p and q and each $s \in\{0,1, \ldots, q-1\}$, we define $\mathcal{J}_{p+1, q, s}$ as the unique hypergraph \mathcal{H} (up to isomorphism) having $(p+1)(q-$ $s)+s$ vertices and such that $E(\mathcal{H})=\left\{V(\mathcal{H})-T_{i}: 1 \leq i \leq p+1\right\}$ where T_{1}, \ldots, T_{p+1} are $p+1$ pairwise disjoint subsets of size $q-s$ of $V(\mathcal{H})$. Since $\mathcal{J}_{p+1, q, s}$ is (p, q)-intersecting but has core of size $s, \mathcal{J}_{p+1, q, s}$ is not (p, q)-Helly.

An incidence matrix $M(\mathcal{H})$ of a hypergraph \mathcal{H} is an edge vs. vertex incidence matrix. A matrix P contains a matrix Q if Q is a submatrix of P.

A $(p+1, q)$-basis of a hypergraph \mathcal{H} is a family \mathcal{S} of $p+1$ pairwise different subsets of size q of $V(\mathcal{H})$. A support set of \mathcal{S} is the union of all but exactly one member of \mathcal{S}. We denote by $\mathcal{H}_{\mathcal{S}}^{\cup}$ the partial hypergraph of \mathcal{H} formed by those edges that contain some support set of \mathcal{S} each. We say \mathcal{S} is nontrivial if each of its support sets is contained in some edge of \mathcal{H}. We say \mathcal{S} is starlike if every vertex which belongs to at least two members of \mathcal{S} also belongs to $\operatorname{core}(\mathcal{S})$. We denote by $\operatorname{ext}(\mathcal{S})$ the set of vertices belonging to some set of \mathcal{S} but not to core (\mathcal{S}).

Our first result extends to hereditary (p, q)-Helly hypergraphs the characterizations given in [2,4] for hereditary p-Helly hypergraphs.
Theorem 2.1 If p and q are positive integers, then the following statements are equivalent for each hypergraph \mathcal{H} :
(i) \mathcal{H} is hereditary (p, q)-Helly;
(ii) \mathcal{H} is $\left(p, q^{\prime}\right)$-Helly for every $q^{\prime} \geq q$;
(iii) \mathcal{H} is strong (p, q)-Helly;
(iv) every partial $(p+1)$-hypergraph of \mathcal{H} is strong (p, q)-Helly;
(v) $\Phi_{q}(\mathcal{H})$ is hereditary p-Helly;
(vi) $M(\mathcal{H})$ contains no incidence matrix of $\mathcal{J}_{p+1, q, s}$ for any $s \in\{0, \ldots, q-1\}$;
(vii) $\mathcal{J}_{p+1, q, s}$ is not a partial subhypergraph of \mathcal{H} for any $s \in\{0, \ldots, q-1\}$;
(viii) for each nontrivial starlike $(p+1, q)$-basis \mathcal{S} of \mathcal{H}, core $\left(\mathcal{H}_{\mathcal{S}}^{\cup}\right) \cap \operatorname{ext}(\mathcal{S}) \neq \emptyset$.
(ix) for each starlike $(p+1, q)$-basis \mathcal{S} of \mathcal{H}, either $\mathcal{H}_{\mathcal{S}}^{\cup}$ is empty or $\operatorname{core}\left(\mathcal{H}_{\mathcal{S}}^{\cup}\right) \cap$ $\operatorname{ext}(\mathcal{S}) \neq \emptyset$.
Characterization (vii) above is by minimal forbidden partial subhypergraphs.
We now turn to the problem of characterizing hereditary (p, q)-clique-Helly graphs. Let G be a graph. The graph operator Φ_{q} was introduced in [3] as follows: $\Phi_{q}(G)$ is the graph whose vertices are the cliques of size q of G and two cliques of size q of G are adjacent in $\Phi_{q}(G)$ if and only if they are contained in a common clique of G. The clique hypergraph $\mathcal{C}(G)$ of G is the hypergraph whose vertices are those of G and whose edge family is the set of maximal cliques of G. A clique-matrix $C(G)$ of G is an incidence matrix of $\mathcal{C}(G)$. We say that G is strong (p, q)-clique-Helly if $\mathcal{C}(G)$ is strong (p, q)-Helly.

We generalize $(p+1)$-oculars, which were used in [4] to characterize hereditary p-clique-Helly graphs. If p and q are positive integers and $s \in\{0, \ldots, q-$ $1\}$, a $(p+1, q, s)$-ocular is a graph whose vertex set is the union of two disjoint sets U and W where U has size $(p+1)(q-s)+s$ and T_{1}, \ldots, T_{p+1} are $p+1$ pairwise disjoint subsets of size $q-s$ of U such that one of the following holds:
$\left(\alpha_{1}\right) p=1, W=\emptyset$, and $U-T_{i}$ is a clique but $\left(U-T_{i}\right) \cup\left\{v_{i}\right\}$ is not a clique for each $v_{i} \in T_{i}$ and each $i \in\{1,2\}$;
$\left(\alpha_{2}\right) p \geq 2, W=\left\{w_{1}, \ldots, w_{p+1}\right\}, U$ is a clique, and w_{i} is adjacent all vertices in $U-T_{i}$ and nonadjacent to all vertices in T_{i} for each $i \in\{1, \ldots, p+1\}$.
Observe that if $p \geq 2$ then the vertices of W may induce an arbitrary graph.
The theorem below generalizes to hereditary (p, q)-clique-Helly graphs the characterizations for hereditary p-clique-Helly graphs given in $[2,4]$.

Theorem 2.2 If p and q are positive integers, then the following statements are equivalent for each graph G :
(i) G is hereditary (p, q)-clique-Helly;
(ii) G is $\left(p, q^{\prime}\right)$-clique-Helly, for every $q^{\prime} \geq q$;
(iii) G is strong (p, q)-clique-Helly;
(iv) Every family of $p+1$ maximal cliques of G is strong (p, q)-Helly;
(v) $\Phi_{q}(G)$ is hereditary p-clique-Helly;
(vi) $C(G)$ contains no incidence matrix of $\mathcal{J}_{p+1, q, s}$ for any $s \in\{0, \ldots, q-1\}$;
(vii) G contains no induced $(p+1, q, s)$-ocular for any $s \in\{0, \ldots, q-1\}$.

Characterization (vii) above is by forbidden induced subgraphs.
The remaining of this section is devoted to the characterization of heredi-
tary (p, q)-biclique-Helly hypergraphs. If G is a graph, the biclique hypergraph $\mathcal{B}(G)$ is the hypergraph whose vertices are those of G and whose edges are the maximal bicliques of G. A biclique-matrix $B(G)$ of G is an incidence matrix of $\mathcal{B}(G)$. We say G is strong (p, q)-biclique-Helly if $\mathcal{B}(G)$ is strong (p, q)-Helly.

We define the analogue of oculars, which we call bioculars. For each positive integers p and q and each $s \in\{0, \ldots, q-1\}$ such that $(p, q) \neq(1,1)$, a ($p+1, q, s$)-biocular is a graph whose vertex set is the union of two disjoint sets U and W where U has size $(p+1)(q-s)+s$ and T_{1}, \ldots, T_{p+1} are pairwise disjoint subsets of size $q-s$ of U such that one of the following holds:
$\left(\beta_{1}\right) p \in\{1,2\}, W=\emptyset, U-T_{i}$ is a biclique but $\left(U-T_{i}\right) \cup\left\{v_{i}\right\}$ is not a biclique for each $v_{i} \in T_{i}$ for each $i \in\{1, \ldots, p+1\}$, and either $p=1$ or $s=0$;
$\left(\beta_{2}\right) p \geq 2,(p, q) \neq(2,1), W=\left\{w_{1}, \ldots, w_{p+1}\right\}, U$ is a biclique, and $\left(U-T_{i}\right) \cup$ $\left\{w_{i}\right\}$ is a biclique but $\left(U-T_{i}\right) \cup\left\{w_{i}, v_{i}\right\}$ is not a biclique for each $v_{i} \in T_{i}$ for each $i \in\{1, \ldots, p+1\}$.
If $p \geq 2$ then the vertices of W may induce in G an arbitrary graph. For $(p, q)=(1,1)$, we define the $(2,1,0)$-bioculars as the graphs $\overline{P_{3}}$ and K_{3}, where P_{3} and K_{3} are the chordless path and the complete graph on 3 vertices each.

We give several characterizations of hereditary (p, q)-biclique-Helly graphs.
Theorem 2.3 If p and q are positive integers, then the following statements are equivalent for each graph G :
(i) G is hereditary (p, q)-biclique-Helly;
(ii) G is $\left(p, q^{\prime}\right)$-biclique-Helly for each $q^{\prime} \geq q$;
(iii) G is strong (p, q)-biclique-Helly;
(iv) Each family of $p+1$ maximal bicliques of G is strong (p, q)-Helly;
(v) $\Phi_{q}(\mathcal{B}(G))$ is hereditary p-Helly;
(vi) $B(G)$ contains no incidence matrix of $\mathcal{J}_{p+1, q, s}$ for any $s \in\{0, \ldots, q-1\}$.
(vii) G contains no induced $(p+1, q, s)$-biocular for any $s \in\{0, \ldots, q-1\}$.

Characterization (vii) above is by forbidden induced subgraphs.

3 Algorithmic results

We denote by n and m the number of vertices and edges. For hypergraphs, r denotes the maximum size of an edge and M the sum of the sizes of all edges. For graphs, ω (resp. ψ) denotes the maximum size of a clique (resp. biclique).

First, we extend results for hereditary p-Helly hypergraphs in [2] and [4].

Theorem 3.1 The recognition of hereditary (p, q)-Helly hypergraphs: (i) can be solved in $O\left(r n^{(p+1) q}+M n^{p q}\right)$ time if p and q are fixed; (ii) can be solved in $O\left(r m^{p+1}\right)$ time if p is fixed (even if q is part of the input); (iii) is co-NPcomplete if p is part of the input (even for fixed q).

Next, we generalize results in [4] for hereditary p-clique-Helly graphs.
Theorem 3.2 The recognition of hereditary (p, q)-clique-Helly graphs: (i) can be solved in $O\left(m^{p q / 2+1}+\omega m^{(p+1) q / 2}+n\right)$ time if p and q are fixed; (ii) is NPhard if p or q is part of the input (even if the other is fixed).

We also have similar results for hereditary (p, q)-biclique-Helly graphs.
Theorem 3.3 The recognition of hereditary (p, q)-biclique-Helly graphs: (i) can be solved in $O\left(\psi n^{(p+1) q}\right)$ time if p and q are fixed; (ii) is co-NP-complete if p or q is part of the input (even if the other is fixed).

References

[1] Berge, C., "Graphs and hypergraphs," North-Holland, Amsterdam, 1973.
[2] Dourado, M. C., M. C. Lin, F. Protti and J. L. Szwarcfiter, Improved algorithms for recognizing p-Helly and hereditary p-Helly hypergraphs, Inform. Process. Lett. 108 (2008), pp. 247-250.
[3] Dourado, M. C., F. Protti and J. L. Szwarcfiter, Characterization and recognition of generalized clique-Helly graphs, Discrete Appl. Math. 155 (2007), pp. 24352443.
[4] Dourado, M. C., F. Protti and J. L. Szwarcfiter, On the strong p-Helly property, Discrete Appl. Math. 156 (2008), pp. 1053-1057.
[5] Golumbic, M. C. and R. E. Jamison, The edge intersection graphs of paths in a tree, J. Combin. Theory Ser. B 38 (1985), pp. 8-22.
[6] Groshaus, M. and J. L. Szwarcfiter, On hereditary Helly classes of graphs, Discrete Math. Theor. Comput. Sci. 10 (2008), pp. 71-78.
[7] Tuza, Z., Extremal bi-Helly families, Discrete Math. 213 (2000), pp. 321-331.
[8] Voloshin, V. I., On the upper chromatic number of a hypergraph, Australas. J. Combin. 11 (1995), pp. 25-45.
[9] West, D. B., "Introduction to graph theory," Prentice Hall Inc., Upper Saddle River, NJ, 1996.

[^0]: ${ }^{1}$ M.C. Dourado was partially supported by CNPq and FAPERJ (Brazil). L.N. Grippo and M.D. Safe were partially supported by UBACyT Grants 20020100100980 and 20020130100808BA, CONICET PIP 112-200901-00178 and 112-201201-00450CO, and ANPCyT PICT-2012-1324 (Argentina).
 2 E-mail addresses: mitre@dcc.ufrj.br, lgrippo@ungs.edu.ar, msafe@ungs.uba.ar.

