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Abstract

We prove several characterizations of hereditary (p, q)-Helly hypergraphs, includ-
ing one by minimal forbidden partial subhypergraphs, and show that the recognition
of hereditary (p, q)-Helly hypergraphs can be solved in polynomial time for fixed p
but is co-NP-complete if p is part of the input. We also give several characteriza-
tions of hereditary (p, q)-clique-Helly graphs, including one by forbidden induced
subgraphs, and prove that the recognition of hereditary (p, q)-clique-Helly graphs
can be solved in polynomial time for fixed p and q but is NP-hard if p or q is part
of the input. We prove similar results for hereditary (p, q)-biclique-Helly graphs.
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1 Introduction

In this work, we study the (p, q)-Helly property, which originated in the
works [7,8]. The core of a family F of sets, denoted core(F), is the inter-
section of all the sets in F . A family of sets is (p, q)-intersecting, if every
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nonempty subfamily consisting of p or fewer sets has core of size at least q. A
family of sets has the (p, q)-Helly property if every (p, q)-intersecting nonempty
subfamily has core of size at least q. The (p, 1)-Helly property is known as the
p-Helly property, which has its origin in the celebrated Helly’s theorem that
states that any finite family of convex sets in Rp−1 has the p-Helly property.
The 2-Helly property is the usual Helly property [1].

A hypergraph H has the (p, q)-Helly property if its edge family has the
(p, q)-Helly property and H is hereditary (p, q)-Helly if each of its subhyper-
graphs has the (p, q)-Helly property. Hereditary (p, 1)-Helly hypergraphs are
called hereditary p-Helly. In [2,4], characterizations of the class of hered-
itary p-Helly hypergraphs were given and its recognition was shown to be
polynomial-time solvable if p is fixed but NP-hard if p is part of the input.

A graph is (p, q)-clique-Helly if the family of its maximal cliques has the
(p, q)-Helly property. (In this work, the word maximal always means inclusion-
wise maximal.) A graph is hereditary (p, q)-clique-Helly if each of its induced
subgraphs is (p, q)-clique-Helly. Hereditary (p, 1)-clique-Helly graph are called
hereditary p-clique-Helly. In [4], different characterizations of the class of
hereditary p-clique-Helly graphs were given and its recognition was shown to
be polynomial-time solvable for fixed p but NP-hard if p is part of the input.

A biclique of a graph is a set of vertices inducing a complete bipartite graph,
where we regard edgeless graphs as complete bipartite graphs. We say a graph
is (p, q)-biclique-Helly if the family of its maximal bicliques has the (p, q)-Helly
property and hereditary (p, q)-biclique-Helly if all its induced subgraphs are
(p, q)-biclique-Helly. The ‘hereditary biclique-Helly graphs’ defined in [6] are
different from the hereditary (2, 1)-biclique-Helly graphs defined here because
in [6] edgeless graphs are not regarded as complete bipartite graphs.

In this work, graphs are finite, undirected, and without loops or multiple
edges. For undefined hypergraph or graph notions, see [1] or [9], respectively.

This abstact is organized as follows. In Section 2, we give several char-
acterizations of the classes of hereditary (p, q)-Helly hypergraphs, hereditary
(p, q)-clique-Helly graphs, and hereditary (p, q)-biclique-Helly graphs. In Sec-
tion 3, we give polynomial-time bounds and hardness results for the recog-
nition of these classes depending on which of p and q are fixed. Our results
generalize structural and algorithmic results for the case q = 1 given in [2,4].

2 Characterizations

It was proved in [4] that hereditary p-Helly hypergraphs coincide with strong
p-Helly hypergraphs [5]. We give the following generalization of the latter,



which we will show to coincide with hereditary (p, q)-Helly hypergraphs. A
hypergraph H is strong (p, q)-Helly if, for each (p, q)-intersecting nonempty
partial hypergraph H′ of H, some nonempty subfamily of p or fewer edges of
H′ has the same core as H′.

Let q be a positive integer. We denote by ϕq(S) the set of all subsets of
size q of a set S. For every hypergraph H, we define Φq(H) as the hypergraph
whose vertices are the subsets of size q of V (H) that are contained in some edge
of H and whose edge family consists of those sets ϕq(E) that are nonempty
as E varies over the edge family of H. This hypergraph operator Φq mirrors
the graph operator Φq defined in [3] to characterize (p, q)-clique-Helly graphs.

For each positive integer p and q and each s ∈ {0, 1, . . . , q − 1}, we define
Jp+1,q,s as the unique hypergraph H (up to isomorphism) having (p + 1)(q −
s) + s vertices and such that E(H) = {V (H) − Ti: 1 ≤ i ≤ p + 1} where
T1, . . . , Tp+1 are p + 1 pairwise disjoint subsets of size q − s of V (H). Since
Jp+1,q,s is (p, q)-intersecting but has core of size s, Jp+1,q,s is not (p, q)-Helly.

An incidence matrix M(H) of a hypergraph H is an edge vs. vertex inci-
dence matrix. A matrix P contains a matrix Q if Q is a submatrix of P .

A (p+1, q)-basis of a hypergraph H is a family S of p+1 pairwise different
subsets of size q of V (H). A support set of S is the union of all but exactly
one member of S. We denote by H∪S the partial hypergraph of H formed by
those edges that contain some support set of S each. We say S is nontrivial
if each of its support sets is contained in some edge of H. We say S is starlike
if every vertex which belongs to at least two members of S also belongs to
core(S). We denote by ext(S) the set of vertices belonging to some set of S
but not to core(S).

Our first result extends to hereditary (p, q)-Helly hypergraphs the charac-
terizations given in [2,4] for hereditary p-Helly hypergraphs.

Theorem 2.1 If p and q are positive integers, then the following statements
are equivalent for each hypergraph H:

(i) H is hereditary (p, q)-Helly;

(ii) H is (p, q′)-Helly for every q′ ≥ q;

(iii) H is strong (p, q)-Helly;

(iv) every partial (p+ 1)-hypergraph of H is strong (p, q)-Helly;

(v) Φq(H) is hereditary p-Helly;

(vi) M(H) contains no incidence matrix of Jp+1,q,s for any s ∈ {0, . . . , q−1};
(vii) Jp+1,q,s is not a partial subhypergraph of H for any s ∈ {0, . . . , q − 1};



(viii) for each nontrivial starlike (p+1, q)-basis S of H, core(H∪S)∩ext(S) 6= ∅.
(ix) for each starlike (p+1, q)-basis S of H, either H∪S is empty or core(H∪S)∩

ext(S) 6= ∅.
Characterization (vii) above is by minimal forbidden partial subhypergraphs.

We now turn to the problem of characterizing hereditary (p, q)-clique-Helly
graphs. Let G be a graph. The graph operator Φq was introduced in [3] as
follows: Φq(G) is the graph whose vertices are the cliques of size q of G and
two cliques of size q of G are adjacent in Φq(G) if and only if they are contained
in a common clique of G. The clique hypergraph C(G) of G is the hypergraph
whose vertices are those of G and whose edge family is the set of maximal
cliques of G. A clique-matrix C(G) of G is an incidence matrix of C(G). We
say that G is strong (p, q)-clique-Helly if C(G) is strong (p, q)-Helly.

We generalize (p+1)-oculars, which were used in [4] to characterize hered-
itary p-clique-Helly graphs. If p and q are positive integers and s ∈ {0, . . . , q−
1}, a (p+1, q, s)-ocular is a graph whose vertex set is the union of two disjoint
sets U and W where U has size (p + 1)(q − s) + s and T1, . . . , Tp+1 are p + 1
pairwise disjoint subsets of size q−s of U such that one of the following holds:

(α1) p = 1, W = ∅, and U − Ti is a clique but (U − Ti) ∪ {vi} is not a clique
for each vi ∈ Ti and each i ∈ {1, 2};

(α2) p ≥ 2, W = {w1, . . . , wp+1}, U is a clique, and wi is adjacent all vertices
in U −Ti and nonadjacent to all vertices in Ti for each i ∈ {1, . . . , p+ 1}.

Observe that if p ≥ 2 then the vertices of W may induce an arbitrary graph.

The theorem below generalizes to hereditary (p, q)-clique-Helly graphs the
characterizations for hereditary p-clique-Helly graphs given in [2,4].

Theorem 2.2 If p and q are positive integers, then the following statements
are equivalent for each graph G:

(i) G is hereditary (p, q)-clique-Helly;

(ii) G is (p, q′)-clique-Helly, for every q′ ≥ q;

(iii) G is strong (p, q)-clique-Helly;

(iv) Every family of p+ 1 maximal cliques of G is strong (p, q)-Helly;

(v) Φq(G) is hereditary p-clique-Helly;

(vi) C(G) contains no incidence matrix of Jp+1,q,s for any s ∈ {0, . . . , q− 1};
(vii) G contains no induced (p+ 1, q, s)-ocular for any s ∈ {0, . . . , q − 1}.
Characterization (vii) above is by forbidden induced subgraphs.

The remaining of this section is devoted to the characterization of heredi-



tary (p, q)-biclique-Helly hypergraphs. If G is a graph, the biclique hypergraph
B(G) is the hypergraph whose vertices are those of G and whose edges are the
maximal bicliques of G. A biclique-matrix B(G) of G is an incidence matrix
of B(G). We say G is strong (p, q)-biclique-Helly if B(G) is strong (p, q)-Helly.

We define the analogue of oculars, which we call bioculars. For each pos-
itive integers p and q and each s ∈ {0, . . . , q − 1} such that (p, q) 6= (1, 1), a
(p + 1, q, s)-biocular is a graph whose vertex set is the union of two disjoint
sets U and W where U has size (p+1)(q−s)+s and T1, . . . , Tp+1 are pairwise
disjoint subsets of size q − s of U such that one of the following holds:

(β1) p ∈ {1, 2}, W = ∅, U−Ti is a biclique but (U−Ti)∪{vi} is not a biclique
for each vi ∈ Ti for each i ∈ {1, . . . , p+ 1}, and either p = 1 or s = 0;

(β2) p ≥ 2, (p, q) 6= (2, 1), W = {w1, . . . , wp+1}, U is a biclique, and (U−Ti)∪
{wi} is a biclique but (U −Ti)∪{wi, vi} is not a biclique for each vi ∈ Ti
for each i ∈ {1, . . . , p+ 1}.

If p ≥ 2 then the vertices of W may induce in G an arbitrary graph. For
(p, q) = (1, 1), we define the (2, 1, 0)-bioculars as the graphs P3 and K3, where
P3 and K3 are the chordless path and the complete graph on 3 vertices each.

We give several characterizations of hereditary (p, q)-biclique-Helly graphs.

Theorem 2.3 If p and q are positive integers, then the following statements
are equivalent for each graph G:

(i) G is hereditary (p, q)-biclique-Helly;

(ii) G is (p, q′)-biclique-Helly for each q′ ≥ q;

(iii) G is strong (p, q)-biclique-Helly;

(iv) Each family of p+ 1 maximal bicliques of G is strong (p, q)-Helly;

(v) Φq(B(G)) is hereditary p-Helly;

(vi) B(G) contains no incidence matrix of Jp+1,q,s for any s ∈ {0, . . . , q− 1}.
(vii) G contains no induced (p+ 1, q, s)-biocular for any s ∈ {0, . . . , q − 1}.
Characterization (vii) above is by forbidden induced subgraphs.

3 Algorithmic results

We denote by n and m the number of vertices and edges. For hypergraphs, r
denotes the maximum size of an edge and M the sum of the sizes of all edges.
For graphs, ω (resp. ψ) denotes the maximum size of a clique (resp. biclique).

First, we extend results for hereditary p-Helly hypergraphs in [2] and [4].



Theorem 3.1 The recognition of hereditary (p, q)-Helly hypergraphs: (i) can
be solved in O(rn(p+1)q + Mnpq) time if p and q are fixed; (ii) can be solved
in O(rmp+1) time if p is fixed (even if q is part of the input); (iii) is co-NP-
complete if p is part of the input (even for fixed q).

Next, we generalize results in [4] for hereditary p-clique-Helly graphs.

Theorem 3.2 The recognition of hereditary (p, q)-clique-Helly graphs: (i) can
be solved in O(mpq/2+1 + ωm(p+1)q/2 + n) time if p and q are fixed; (ii) is NP-
hard if p or q is part of the input (even if the other is fixed).

We also have similar results for hereditary (p, q)-biclique-Helly graphs.

Theorem 3.3 The recognition of hereditary (p, q)-biclique-Helly graphs: (i)
can be solved in O(ψn(p+1)q) time if p and q are fixed; (ii) is co-NP-complete
if p or q is part of the input (even if the other is fixed).
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