The Kesten-Stigum theorem in L2

Santiago Saglietti

Joint work with Matthieu Jonckheere

Pontificia Universidad Catdlica - Chile

Reunién anual UMA - Septiembre 2016



The ABMD process

» ABMD = absorbed Brownian motion with drift.



The ABMD process

» ABMD = absorbed Brownian motion with drift.

» Given any initial condition x > 0 and ¢ > 0, the ABMD(c) is
given by

X+Br—ct ift< Téx)
X =
0 if t > T

where B = (B;)¢>0 is a standard Brownian motion and

79 = inf{t > 0: XM =0},



The ABMD process

» ABMD = absorbed Brownian motion with drift.

» Given any initial condition x > 0 and ¢ > 0, the ABMD(c) is
given by

X+Br—ct ift< Téx)
X =
0 if t > T

where B = (B;)¢>0 is a standard Brownian motion and
79 = inf{t > 0: XM =0},

» Problem. Understand the asymptotic behavior of X.



The ABMD process

» ABMD = absorbed Brownian motion with drift.

» Given any initial condition x > 0 and ¢ > 0, the ABMD(c) is
given by

X+Br—ct ift< Téx)
X =
0 if t > T

where B = (B;)¢>0 is a standard Brownian motion and
79 = inf{t > 0: XM =0},

» Problem. Understand the asymptotic behavior of X.
» All trajectories of X are almost surely absorbed.



The ABMD process

» ABMD = absorbed Brownian motion with drift.

» Given any initial condition x > 0 and ¢ > 0, the ABMD(c) is
given by

X+Br—ct ift< Téx)
X =

0 if t > T
where B = (B;)¢>0 is a standard Brownian motion and
79 = inf{t > 0: XM =0},

» Problem. Understand the asymptotic behavior of X.

» All trajectories of X are almost surely absorbed.
» iWhat can we say about those which survive until time t > 17
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The maximal eigenvalue of L.
Let L. be the generator of ABMD(c) defined by the formula

LA = 57" (x) — e (x)

for f : [0, 4+00) — R sufficiently regular with (0) = 0.
One can show that:
> =)= —%2 is the maximal non-zero eigenvalue of L.
> h(x) := xe is the right eigenvector of L. associated to —),

which satisfies
P(TY) > £) < h(x) - p(t) - e .

3
for p(t) =t~ 2.

> The left eigenvector of L. is a finite measure v on R>q
which satisfies

lim P(X e AITY) > £) = v(A)

t—+o00
for all x > 0 and any Borel set A C Rxq.
Goal. Understand v.
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The B-ABMD(c,r) process

Consider the following branching dynamics:
i. The dynamics starts with a single particle located at x > 0
whose position evolves according to an ABMD(c).

ii. After a random exponential time of parameter r, this particle
dies and gives birth at his current location to 2 new particles.

iii. These two particles now evolve independently, imitating the
stochastic behavior of its parent.

» We call this dynamics the B-ABMD(c,r) process.

> If r > X then the dynamics is supercritical, i.e. for all x >0
P(NY - 0) > 0

where Ngx) denotes the amount of particles above 0 at time t.
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» Kesten stated that the following result holds:

Theorem. If r > X then for all x > 0 there exists a r.v. Wo(ff)
such that:
i. For any Borel set A C R>g
N (A
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where N)(A) is the amount of particles in A at time t.

i. WL > 0as. on the event of non-absorption {Nﬁx) - 0}.
iii. Conditionally on the event of non-absorption, for any A C Rxg

> However, he claimed to have an “ugly and complicated” proof
and so chose not to share it.
» No other proof has been obtained since.
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Let X be a Markov process on some state space J such that:
1. X has an absorbing set 0J.
2. If T®) denotes the hitting time of &J, then

PTG > )= o) - p(t) - e

where:

» —\ < 0 is the maximal non-zero eigenvalue of its generator L.
> ( is the right eigenvector associated to —A\.
» Its left eigenvector is a finite measure v which satisfies

lim P(XM e AT > 1) = v(A)

t——+4o0o
for all x > 0 and any A C Rx,.
» p(t) =t~ for some a > 0.

To abbreviate, we shall say that X satisfies the usual conditions
whenever it fulfills this description.
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we have that X is ergodic with invariant density h(x)dv(x).
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ABMD is not R-positive. In fact, it is R-transitive.
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Theorem |. Given x > 0, define for each t > 0 the random variable

(x)
W) = 7Nt( o
E(N;™)
Then, we have:

i. (Wt(X))tZO converges in L? <= (Wt(x))tzo is bounded in L.
ii. The latter occurs if and only if r > X and 0¥ < 400, where

(X) > h(XS(X))e/\S i —rs
o ::2r/0 E (h(x)) e "ds.

iii. o) < 400 if and only if r > 2.

Furthermore, if WX denotes the L2-limit of (Wt(x))tzo then:
iv. We have

Ey(Wa) =1 and Ex(W2) = o).
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Our main results (II)

Theorem II. If r > 2\ then for any Borel set A C R>q one has that

(A e V(A) - W),
E(NC))

Theorem 1. Wo(c)f) > 0 on the event of non-absorption.
In particular, for any Borel set A C R>¢ one has that

N (A)
N

v(A)

in probability and in LP for every p > 1, on the event {Ngx) - 0}.
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The proof consists of three parts:

Define for each t > 0 the random variable

N

(x)._
Wy = -
E(N))

and show that
a) r>Xand o™ < 400 = (Wt(x))tzo is a Cauchy in L2.
b) r> X and 0 = 400 = (W));50 is unbounded in 2.

. Show that if r > X\ and 0*) < +c0 then

N (A)

Ay w
E(N)

lim

t—+400

=0
12

for all A € B(R>o).
Show that if r > 2\ then P(WL) = 0) = P(N™ — 0).
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Note that for any t,h >0

W2 _B(NEn) o Ex(NernNe)  Ex(M?)

W), —

toh BT B (Neen)  Ex(Neen)Ex(N) T EZ(NY)

Thus, the idea to prove Part | is to show the following:

e If tis very large then, independently of h, i’ > 0, we have

Ex(NexnNewn) ()
Ex(Neyn)Ex(Netw)

We do this with the help of the many-to-few lemma.
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Lemma. For any pair of measurable functions f,g : R>g — R

Ex [ D f(u) ]| = e™E(F(X.)).

ueN;

and
Ec| 3 f(u)e(v) | = e E(E M F(X)g(X))).
u,veN;

where (X, X’) is a 2-spine with splitting time E ~ £(2r).
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Using the many-to-few lemma one can show that

e "ds

Ex(NeynNeyw) /f E«(P%.(To >t —s))
IEX(/\/t‘+h)EX(I\It-|—h’) 0 PE(TO > t)

and one may control the right-hand side using the asymptotics
Po(To > t) = xe™t 2 (1 + £(x, t))

for some error term e(x,t) — 0 as t — +oo0.

Difficulties. There are two problems that arise:
i. The asymptotic formula does not hold when s ~ t.

ii. One has to deal with the random error terms (X, t).
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» Define the functions

n(x) = P(N) = 0) and £(x) = P(WE) =

» Define also the MG-operator G : [0, 1]®+ — [0, 1]®+

by the formula
G(h)(x) = Ey (H h(u)) .
ueN;

» Notice that both 1 and £ are fixed points of G.

» Part Il is then deduced from the following theorem:

Theorem IV. n and 1 are the only fixed points of G.

0).
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Sketch of proof : Part Il (continued)

» Theorem IV is well-known for the classical G-W process.
» For a general branching process, though, it may be false.
» Theorem IV holds if the branching process survives locally, i.e.

for any A € B(R4) with v(A) > 0 one has that

limsup N¢(A) > 0

t—4-00

on the event of survival. In words, when the process survives,
the bulk of particles cannot escape to +oco nor to 0.

» We show that this is indeed the case for B-ABMD.
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Kesten's theorem for general (absorbed) processes (1)
Consider a general branching dynamics with:

» Evolution of particles given by a general (absorbed) process on
some state space J satisfying the usual conditions.

> Branching rate r > 0.
» Number of children given by an offspring distribution m.
Then, we can extend our result to this dynamics provided that

P(XY) € AITO > £) = v(A)(1 + 6a(x, 1))

and
P(TE? > ) = h(x) - p(t) - € (1 +2(x, 1))
where
> d and € tend to 0 as t — oo uniformly in compact sets of x.
» h(x) =0<= x=0.
» p(t) =t~ for some a > 0.
» 0 < A< (E(m)—1)r.
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Kesten's theorem for general (absorbed) processes (II)

» In this case, the quantity o(®) becomes

X t 2
o) = (E(m?)—E(m))r /0 E (’W) e (E(m)~1)rs o

» Also, Theorem Ill holds whenever:
i. (E(m)—1)r>Xand o™ < +o0,

ii. The branching dynamics survives locally.
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Example | : Subcritical Galton-Watson process

» We begin with a fixed number n € N of particles.

» Each particle waits for an exponential random time of rate 1
and then dies, giving birth to a random number Z of children.

» Each particle of the new generation independently imitates
the stochastic behavior of its parent.
Let X; denote the number of living individuals at time t.
» If E(Z) < 1 then X almost surely dies out.
> It is known that X is R-positive in this case.
» A:=E(Z) -1
> o(x) = x.
> v is not explicitly known!

We show that 0(*) < 400 if and only if r > X and E(Z?) < +o0,
and that all our results hold in this case.
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Example Il : Subcritical contact process

» We begin with a finite configuration of infected sites ¢ in Z9.

» Each infected site tries to infect one of its non-infected
neighbors at rate 7.

» Each infected site recovers from the infection at rate 1.

Let X; denote the configuration of infected sites at time t.
> If v < 7v.(d) then X almost surely dies out.
> It is known that X is R-positive in this case.
> Neither A\, ¢ nor v are known explicitly!

We show that o®) < +cc if and only if r > X and v < 7,
and that all our results hold in this case.



