The Kesten-Stigum theorem in L^2

Santiago Saglietti Joint work with Matthieu Jonckheere

Pontificia Universidad Católica - Chile

Reunión anual UMA - Septiembre 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

ABMD = absorbed Brownian motion with drift.

- ABMD = absorbed Brownian motion with drift.
- Given any initial condition x > 0 and c > 0, the ABMD(c) is given by

$$X_t^{(x)} = \begin{cases} x + B_t - ct & \text{if } t < T_0^{(x)} \\ \\ 0 & \text{if } t \ge T_0^{(x)} \end{cases}$$

where $B = (B_t)_{t \ge 0}$ is a standard Brownian motion and

$$T_0^{(x)} = \inf\{t \ge 0 : X_t^{(x)} = 0\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- ABMD = absorbed Brownian motion with drift.
- Given any initial condition x > 0 and c > 0, the ABMD(c) is given by

$$X_t^{(x)} = \begin{cases} x + B_t - ct & \text{if } t < T_0^{(x)} \\ 0 & \text{if } t \ge T_0^{(x)} \end{cases}$$

where $B = (B_t)_{t \ge 0}$ is a standard Brownian motion and

$$T_0^{(x)} = \inf\{t \ge 0 : X_t^{(x)} = 0\}.$$

< ロ > < 同 > < E > < E > E < の < 0</p>

• Problem. Understand the asymptotic behavior of X.

- ABMD = absorbed Brownian motion with drift.
- Given any initial condition x > 0 and c > 0, the ABMD(c) is given by

$$X_t^{(x)} = \begin{cases} x + B_t - ct & \text{if } t < T_0^{(x)} \\ \\ 0 & \text{if } t \ge T_0^{(x)} \end{cases}$$

where $B = (B_t)_{t \ge 0}$ is a standard Brownian motion and

$$T_0^{(x)} = \inf\{t \ge 0 : X_t^{(x)} = 0\}.$$

- Problem. Understand the asymptotic behavior of X.
 - All trajectories of X are almost surely absorbed.

- ABMD = absorbed Brownian motion with drift.
- Given any initial condition x > 0 and c > 0, the ABMD(c) is given by

$$X_t^{(x)} = \begin{cases} x + B_t - ct & \text{if } t < T_0^{(x)} \\ 0 & \text{if } t \ge T_0^{(x)} \end{cases}$$

where $B = (B_t)_{t \ge 0}$ is a standard Brownian motion and

$$T_0^{(x)} = \inf\{t \ge 0 : X_t^{(x)} = 0\}.$$

- Problem. Understand the asymptotic behavior of X.
 - All trajectories of X are almost surely absorbed.
 - ¿What can we say about those which survive until time $t \gg 1$?

< ロ > < 同 > < E > < E > E < の < 0</p>

Let \mathcal{L}_c be the generator of ABMD(c) defined by the formula

$$\mathcal{L}_c(f)(x) = \frac{1}{2}f''(x) - cf'(x)$$

for $f : [0, +\infty) \to \mathbb{R}$ sufficiently regular with f(0) = 0.

Let \mathcal{L}_c be the generator of ABMD(c) defined by the formula

$$\mathcal{L}_c(f)(x) = \frac{1}{2}f''(x) - cf'(x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for $f : [0, +\infty) \to \mathbb{R}$ sufficiently regular with f(0) = 0. One can show that:

Let \mathcal{L}_c be the generator of ABMD(c) defined by the formula

$$\mathcal{L}_c(f)(x) = \frac{1}{2}f''(x) - cf'(x)$$

for $f : [0, +\infty) \to \mathbb{R}$ sufficiently regular with f(0) = 0. One can show that:

• $-\lambda := -\frac{c^2}{2}$ is the maximal non-zero eigenvalue of \mathcal{L}_c .

Let \mathcal{L}_c be the generator of ABMD(c) defined by the formula

$$\mathcal{L}_c(f)(x) = \frac{1}{2}f''(x) - cf'(x)$$

for $f : [0, +\infty) \to \mathbb{R}$ sufficiently regular with f(0) = 0. One can show that:

- $-\lambda := -\frac{c^2}{2}$ is the maximal non-zero eigenvalue of \mathcal{L}_c .
- $h(x) := xe^{cx}$ is the right eigenvector of \mathcal{L}_c associated to $-\lambda$,

Let \mathcal{L}_c be the generator of ABMD(c) defined by the formula

$$\mathcal{L}_c(f)(x) = \frac{1}{2}f''(x) - cf'(x)$$

for $f : [0, +\infty) \to \mathbb{R}$ sufficiently regular with f(0) = 0. One can show that:

- $-\lambda := -\frac{c^2}{2}$ is the maximal non-zero eigenvalue of \mathcal{L}_c .
- ► h(x) := xe^{cx} is the right eigenvector of L_c associated to -λ, which satisfies

$$P(T_0^{(x)} > t) \asymp h(x) \cdot p(t) \cdot e^{-\lambda t}.$$

for $p(t) = t^{-\frac{3}{2}}$.

Let \mathcal{L}_c be the generator of ABMD(c) defined by the formula

$$\mathcal{L}_c(f)(x) = \frac{1}{2}f''(x) - cf'(x)$$

for $f : [0, +\infty) \to \mathbb{R}$ sufficiently regular with f(0) = 0. One can show that:

- $-\lambda := -\frac{c^2}{2}$ is the maximal non-zero eigenvalue of \mathcal{L}_c .
- ► h(x) := xe^{cx} is the right eigenvector of L_c associated to -λ, which satisfies

$$P(T_0^{(x)} > t) \asymp h(x) \cdot p(t) \cdot e^{-\lambda t}$$

for $p(t) = t^{-\frac{3}{2}}$.

► The left eigenvector of L_c is a finite measure ν on ℝ_{≥0} which satisfies

$$\lim_{t \to +\infty} P(X_t^{(x)} \in A | T_0^{(x)} > t) = \nu(A)$$

for all x > 0 and any Borel set $A \subseteq \mathbb{R}_{>0}$.

Let \mathcal{L}_c be the generator of ABMD(c) defined by the formula

$$\mathcal{L}_c(f)(x) = \frac{1}{2}f''(x) - cf'(x)$$

for $f : [0, +\infty) \to \mathbb{R}$ sufficiently regular with f(0) = 0. One can show that:

- $-\lambda := -\frac{c^2}{2}$ is the maximal non-zero eigenvalue of \mathcal{L}_c .
- ► h(x) := xe^{cx} is the right eigenvector of L_c associated to -λ, which satisfies

$$P(T_0^{(x)} > t) \asymp h(x) \cdot p(t) \cdot e^{-\lambda t}$$

for $p(t) = t^{-\frac{3}{2}}$.

► The left eigenvector of L_c is a finite measure ν on ℝ_{≥0} which satisfies

$$\lim_{t \to +\infty} P(X_t^{(x)} \in A | T_0^{(x)} > t) = \nu(A)$$

for all x > 0 and any Borel set $A \subseteq \mathbb{R}_{\geq 0}$. Goal. Understand ν .

Consider the following branching dynamics:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Consider the following branching dynamics:

i. The dynamics starts with a single particle located at x > 0 whose position evolves according to an ABMD(c).

Consider the following branching dynamics:

- i. The dynamics starts with a single particle located at x > 0 whose position evolves according to an ABMD(c).
- ii. After a random exponential time of parameter r, this particle dies and gives birth at his current location to 2 new particles.

Consider the following branching dynamics:

- i. The dynamics starts with a single particle located at x > 0 whose position evolves according to an ABMD(c).
- ii. After a random exponential time of parameter r, this particle dies and gives birth at his current location to 2 new particles.
- iii. These two particles now evolve independently, imitating the stochastic behavior of its parent.

Consider the following branching dynamics:

- i. The dynamics starts with a single particle located at x > 0 whose position evolves according to an ABMD(c).
- ii. After a random exponential time of parameter r, this particle dies and gives birth at his current location to 2 new particles.
- iii. These two particles now evolve independently, imitating the stochastic behavior of its parent.

► We call this dynamics the B-ABMD(c,r) process.

Consider the following branching dynamics:

- i. The dynamics starts with a single particle located at x > 0 whose position evolves according to an ABMD(c).
- ii. After a random exponential time of parameter r, this particle dies and gives birth at his current location to 2 new particles.
- iii. These two particles now evolve independently, imitating the stochastic behavior of its parent.
 - ▶ We call this dynamics the B-ABMD(c,r) process.
 - If $r > \lambda$ then the dynamics is supercritical, i.e. for all x > 0

$$P(N_t^{(x)} \not\rightarrow 0) > 0$$

where $N_t^{(x)}$ denotes the amount of particles above 0 at time t.

Kesten stated that the following result holds:

Theorem. If $r > \lambda$ then for all x > 0 there exists a r.v. $W_{\infty}^{(x)}$ such that:

i. For any Borel set $A \subseteq \mathbb{R}_{\geq 0}$

$$\frac{N_t^{(x)}(A)}{\mathbb{E}(N_t^{(x)})} \xrightarrow{a.s.} \nu(A) \cdot W_{\infty}^{(x)},$$

where $N_t^{(x)}(A)$ is the amount of particles in A at time t. ii. $W_{\infty}^{(x)} > 0$ a.s. on the event of non-absorption $\{N_t^{(x)} \not\rightarrow 0\}$.

Kesten stated that the following result holds:

Theorem. If $r > \lambda$ then for all x > 0 there exists a r.v. $W_{\infty}^{(x)}$ such that:

i. For any Borel set $A \subseteq \mathbb{R}_{\geq 0}$

$$\frac{N_t^{(x)}(A)}{\mathbb{E}(N_t^{(x)})} \xrightarrow{a.s.} \nu(A) \cdot W_{\infty}^{(x)},$$

where $N_t^{(\times)}(A)$ is the amount of particles in A at time t. ii. $W_{\infty}^{(\times)} > 0$ a.s. on the event of non-absorption $\{N_t^{(\times)} \not\rightarrow 0\}$. iii. Conditionally on the event of non-absorption, for any $A \subseteq \mathbb{R}_{\geq 0}$

$$\frac{N_t^{(x)}(A)}{N_t^{(x)}} \xrightarrow{a.s.} \nu(A).$$

Kesten stated that the following result holds:

Theorem. If $r > \lambda$ then for all x > 0 there exists a r.v. $W_{\infty}^{(x)}$ such that:

i. For any Borel set $A \subseteq \mathbb{R}_{\geq 0}$

$$\frac{N_t^{(x)}(A)}{\mathbb{E}(N_t^{(x)})} \xrightarrow{a.s.} \nu(A) \cdot W_{\infty}^{(x)},$$

where $N_t^{(x)}(A)$ is the amount of particles in A at time t. ii. $W_{\infty}^{(x)} > 0$ a.s. on the event of non-absorption $\{N_t^{(x)} \not\rightarrow 0\}$. iii. Conditionally on the event of non-absorption, for any $A \subseteq \mathbb{R}_{\geq 0}$

$$\frac{N_t^{(x)}(A)}{N_t^{(x)}} \xrightarrow{a.s.} \nu(A).$$

 However, he claimed to have an "ugly and complicated" proof and so chose not to share it.

Kesten stated that the following result holds:

Theorem. If $r > \lambda$ then for all x > 0 there exists a r.v. $W_{\infty}^{(x)}$ such that:

i. For any Borel set $A \subseteq \mathbb{R}_{\geq 0}$

$$\frac{N_t^{(x)}(A)}{\mathbb{E}(N_t^{(x)})} \xrightarrow{a.s.} \nu(A) \cdot W_{\infty}^{(x)},$$

where $N_t^{(x)}(A)$ is the amount of particles in A at time t. ii. $W_{\infty}^{(x)} > 0$ a.s. on the event of non-absorption $\{N_t^{(x)} \not\rightarrow 0\}$. iii. Conditionally on the event of non-absorption, for any $A \subseteq \mathbb{R}_{\geq 0}$

$$\frac{N_t^{(x)}(A)}{N_t^{(x)}} \xrightarrow{a.s.} \nu(A).$$

- However, he claimed to have an "ugly and complicated" proof and so chose not to share it.
- No other proof has been obtained since.

Let X be a Markov process on some state space J such that:

- 1. X has an absorbing set ∂J .
- 2. If $T^{(x)}$ denotes the hitting time of ∂J , then

$$P(T_0^{(x)} > t) \asymp \varphi(x) \cdot p(t) \cdot e^{-\lambda t}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

where:

Let X be a Markov process on some state space J such that:

- 1. X has an absorbing set ∂J .
- 2. If $T^{(x)}$ denotes the hitting time of ∂J , then

$$P(T_0^{(x)} > t) \asymp \varphi(x) \cdot p(t) \cdot e^{-\lambda t}$$

where:

• $-\lambda < 0$ is the maximal non-zero eigenvalue of its generator \mathcal{L} .

Let X be a Markov process on some state space J such that:

- 1. X has an absorbing set ∂J .
- 2. If $T^{(x)}$ denotes the hitting time of ∂J , then

$$P(T_0^{(x)} > t) \asymp \varphi(x) \cdot p(t) \cdot e^{-\lambda t}$$

where:

• $-\lambda < 0$ is the maximal non-zero eigenvalue of its generator \mathcal{L} .

• φ is the right eigenvector associated to $-\lambda$.

Let X be a Markov process on some state space J such that:

- 1. X has an absorbing set ∂J .
- 2. If $T^{(x)}$ denotes the hitting time of ∂J , then

$$P(T_0^{(x)} > t) \asymp \varphi(x) \cdot p(t) \cdot e^{-\lambda t}$$

where:

- $-\lambda < 0$ is the maximal non-zero eigenvalue of its generator \mathcal{L} .
- φ is the right eigenvector associated to $-\lambda$.
- Its left eigenvector is a finite measure ν which satisfies

$$\lim_{t \to +\infty} P(X_t^{(x)} \in A | T_0^{(x)} > t) = \nu(A)$$

for all x > 0 and any $A \subseteq \mathbb{R}_{\geq 0}$.

Let X be a Markov process on some state space J such that:

- 1. X has an absorbing set ∂J .
- 2. If $T^{(x)}$ denotes the hitting time of ∂J , then

$$P(T_0^{(x)} > t) \asymp \varphi(x) \cdot p(t) \cdot e^{-\lambda t}$$

where:

- $-\lambda < 0$ is the maximal non-zero eigenvalue of its generator \mathcal{L} .
- φ is the right eigenvector associated to $-\lambda$.
- Its left eigenvector is a finite measure ν which satisfies

$$\lim_{t \to +\infty} P(X_t^{(x)} \in A | T_0^{(x)} > t) = \nu(A)$$

for all x > 0 and any $A \subseteq \mathbb{R}_{\geq 0}$.

• $p(t) \approx t^{-\alpha}$ for some $\alpha \ge 0$.

Let X be a Markov process on some state space J such that:

- 1. X has an absorbing set ∂J .
- 2. If $T^{(x)}$ denotes the hitting time of ∂J , then

$$P(T_0^{(x)} > t) \asymp \varphi(x) \cdot p(t) \cdot e^{-\lambda t}$$

where:

- $-\lambda < 0$ is the maximal non-zero eigenvalue of its generator \mathcal{L} .
- φ is the right eigenvector associated to $-\lambda$.
- Its left eigenvector is a finite measure ν which satisfies

$$\lim_{t \to +\infty} P(X_t^{(x)} \in A | T_0^{(x)} > t) = \nu(A)$$

for all x > 0 and any $A \subseteq \mathbb{R}_{\geq 0}$. • $p(t) \approx t^{-\alpha}$ for some $\alpha \geq 0$.

To abbreviate, we shall say that X satisfies the **usual conditions** whenever it fulfills this description.

Suppose that X is a process satisfying the usual conditions above.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Suppose that X is a process satisfying the usual conditions above. Then:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Suppose that X is a process satisfying the usual conditions above. Then:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

• We say that X is R-positive if $\nu(h) < +\infty$.

Suppose that X is a process satisfying the usual conditions above. Then:

- We say that X is R-positive if $\nu(h) < +\infty$.
- If X is R-positive then, conditioned on non-absorption, we have that X is ergodic with invariant density h(x)dν(x).

< ロ > < 同 > < E > < E > E < の < 0</p>

Suppose that X is a process satisfying the usual conditions above. Then:

- We say that X is R-positive if v(h) < +∞.</p>
- If X is R-positive then, conditioned on non-absorption, we have that X is ergodic with invariant density h(x)dν(x).
- ► Kesten's result has been shown under *R*-positivity. However:

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Suppose that X is a process satisfying the usual conditions above. Then:

- We say that X is R-positive if ν(h) < +∞.</p>
- If X is R-positive then, conditioned on non-absorption, we have that X is ergodic with invariant density h(x)dν(x).
- ► Kesten's result has been shown under *R*-positivity. However:

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

i. Some further additional assumptions are needed.

Suppose that X is a process satisfying the usual conditions above. Then:

- We say that X is R-positive if ν(h) < +∞.</p>
- ► If X is R-positive then, conditioned on non-absorption, we have that X is ergodic with invariant density h(x)dν(x).
- ▶ Kesten's result has been shown under *R*-positivity. However:
 - i. Some further additional assumptions are needed.
 - ii. No results on whether $W_{\infty}^{(x)}$ is always strictly positive on the event of non-absorption $\{N_t^{(x)} \rightarrow 0\}$.

Some previous results - Part 2

Suppose that X is a process satisfying the usual conditions above. Then:

- We say that X is R-positive if ν(h) < +∞.</p>
- ► If X is R-positive then, conditioned on non-absorption, we have that X is ergodic with invariant density h(x)dν(x).
- ▶ Kesten's result has been shown under *R*-positivity. However:
 - i. Some further additional assumptions are needed.
 - ii. No results on whether $W_{\infty}^{(x)}$ is always strictly positive on the event of non-absorption $\{N_t^{(x)} \neq 0\}$.

ABMD is not *R*-positive.

Some previous results - Part 2

Suppose that X is a process satisfying the usual conditions above. Then:

- We say that X is R-positive if ν(h) < +∞.</p>
- If X is R-positive then, conditioned on non-absorption, we have that X is ergodic with invariant density h(x)dν(x).
- ▶ Kesten's result has been shown under *R*-positivity. However:
 - i. Some further additional assumptions are needed.
 - ii. No results on whether $W_{\infty}^{(x)}$ is always strictly positive on the event of non-absorption $\{N_t^{(x)} \rightarrow 0\}$.

▶ ABMD is not *R*-positive. In fact, it is *R*-transitive.

Theorem I. Given x > 0, define for each $t \ge 0$ the random variable

$$W_t^{(x)} := rac{N_t^{(x)}}{\mathbb{E}(N_t^{(x)})}.$$

Theorem I. Given x > 0, define for each $t \ge 0$ the random variable

$$W_t^{(x)} := rac{N_t^{(x)}}{\mathbb{E}(N_t^{(x)})}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Then, we have:

Theorem I. Given x > 0, define for each $t \ge 0$ the random variable

$$W_t^{(x)} := rac{N_t^{(x)}}{\mathbb{E}(N_t^{(x)})}.$$

Then, we have:

i. $(W_t^{(x)})_{t\geq 0}$ converges in $L^2 \iff (W_t^{(x)})_{t\geq 0}$ is bounded in L^2 .

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Theorem I. Given x > 0, define for each $t \ge 0$ the random variable

$$W_t^{(x)} := rac{N_t^{(x)}}{\mathbb{E}(N_t^{(x)})}$$

Then, we have:

i. $(W_t^{(x)})_{t\geq 0}$ converges in $L^2 \iff (W_t^{(x)})_{t\geq 0}$ is bounded in L^2 .

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

ii. The latter occurs if and only if $r > \lambda$ and $\sigma^{(x)} < +\infty$,

Theorem I. Given x > 0, define for each $t \ge 0$ the random variable

$$W_t^{(x)} := \frac{N_t^{(x)}}{\mathbb{E}(N_t^{(x)})}$$

Then, we have:

- i. $(W_t^{(x)})_{t\geq 0}$ converges in $L^2 \iff (W_t^{(x)})_{t\geq 0}$ is bounded in L^2 . ii. The latter occurs if and only if $r > \lambda$ and $\sigma^{(x)} < +\infty$, where
 - $\sigma^{(x)} := 2r \int_0^\infty \mathbb{E}\left(\left(\frac{h(X_s^{(x)})e^{\lambda s}}{h(x)}\right)^2\right) e^{-rs} ds.$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Theorem I. Given x > 0, define for each $t \ge 0$ the random variable

$$W_t^{(x)} := \frac{N_t^{(x)}}{\mathbb{E}(N_t^{(x)})}$$

Then, we have:

i. $(W_t^{(x)})_{t\geq 0}$ converges in $L^2 \iff (W_t^{(x)})_{t\geq 0}$ is bounded in L^2 . ii. The latter occurs if and only if $r > \lambda$ and $\sigma^{(x)} < +\infty$, where

$$\sigma^{(x)} := 2r \int_0^\infty \mathbb{E}\left(\left(\frac{h(X_s^{(x)})e^{\lambda s}}{h(x)}\right)^2\right) e^{-rs} ds$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

iii. $\sigma^{(x)} < +\infty$ if and only if $r > 2\lambda$.

Theorem I. Given x > 0, define for each $t \ge 0$ the random variable

$$W_t^{(x)} := \frac{N_t^{(x)}}{\mathbb{E}(N_t^{(x)})}$$

Then, we have:

i. $(W_t^{(x)})_{t\geq 0}$ converges in $L^2 \iff (W_t^{(x)})_{t\geq 0}$ is bounded in L^2 . ii. The latter occurs if and only if $r > \lambda$ and $\sigma^{(x)} < +\infty$, where

$$\sigma^{(x)} := 2r \int_0^\infty \mathbb{E}\left(\left(\frac{h(X_s^{(x)})e^{\lambda s}}{h(x)}\right)^2\right) e^{-rs} ds$$

iii. $\sigma^{(x)} < +\infty$ if and only if $r > 2\lambda$. Furthermore, if $W_{\infty}^{(x)}$ denotes the L^2 -limit of $(W_t^{(x)})_{t\geq 0}$ then:

Theorem I. Given x > 0, define for each $t \ge 0$ the random variable

$$W_t^{(x)} := \frac{N_t^{(x)}}{\mathbb{E}(N_t^{(x)})}$$

Then, we have:

i. $(W_t^{(x)})_{t\geq 0}$ converges in $L^2 \iff (W_t^{(x)})_{t\geq 0}$ is bounded in L^2 . ii. The latter occurs if and only if $r > \lambda$ and $\sigma^{(x)} < +\infty$, where

$$\sigma^{(x)} := 2r \int_0^\infty \mathbb{E}\left(\left(\frac{h(X_s^{(x)})e^{\lambda s}}{h(x)}\right)^2\right) e^{-rs} ds$$

iii. $\sigma^{(x)} < +\infty$ if and only if $r > 2\lambda$. Furthermore, if $W_{\infty}^{(x)}$ denotes the L^2 -limit of $(W_t^{(x)})_{t\geq 0}$ then: iv. We have

$$\mathbb{E}_{x}(W_{\infty}) = 1 \qquad \text{and} \qquad \mathbb{E}_{x}(W_{\infty}^{2}) = \sigma^{(x)}.$$

Theorem II. If $r > 2\lambda$ then for any Borel set $A \subseteq \mathbb{R}_{\geq 0}$ one has that

$$\frac{N_t^{(x)}(A)}{\mathbb{E}(N_t^{(x)})} \xrightarrow{L^2} \nu(A) \cdot W_{\infty}^{(x)}.$$

・ロト・日本・モト・モート ヨー うへぐ

Theorem III. $W_{\infty}^{(x)} > 0$ on the event of non-absorption.

Theorem II. If $r > 2\lambda$ then for any Borel set $A \subseteq \mathbb{R}_{\geq 0}$ one has that

$$\frac{N_t^{(x)}(A)}{\mathbb{E}(N_t^{(x)})} \xrightarrow{L^2} \nu(A) \cdot W_{\infty}^{(x)}.$$

Theorem III. $W_{\infty}^{(x)} > 0$ on the event of non-absorption. In particular, for any Borel set $A \subseteq \mathbb{R}_{>0}$ one has that

$$\frac{N_t^{(x)}(A)}{N_t^{(x)}} \longrightarrow \nu(A)$$

in probability and in L^p for every $p \ge 1$, on the event $\{N_t^{(x)} \not\rightarrow 0\}$.

The proof consists of three parts:

I. Define for each $t \ge 0$ the random variable

$$W_t^{(x)} := \frac{N_t^{(x)}}{\mathbb{E}(N_t^{(x)})}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

and show that

The proof consists of three parts:

I. Define for each $t \ge 0$ the random variable

$$W_t^{(x)} := \frac{N_t^{(x)}}{\mathbb{E}(N_t^{(x)})}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

and show that

a)
$$r > \lambda$$
 and $\sigma^{(x)} < +\infty \Longrightarrow (W_t^{(x)})_{t \ge 0}$ is a Cauchy in L^2 .

The proof consists of three parts:

I. Define for each $t \ge 0$ the random variable

$$W_t^{(x)} := \frac{N_t^{(x)}}{\mathbb{E}(N_t^{(x)})}$$

and show that

a)
$$r > \lambda$$
 and $\sigma^{(x)} < +\infty \Longrightarrow (W_t^{(x)})_{t \ge 0}$ is a Cauchy in L^2 .

b)
$$r > \lambda$$
 and $\sigma^{(x)} = +\infty \Longrightarrow (W_t^{(x)})_{t \ge 0}$ is unbounded in L^2 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The proof consists of three parts:

I. Define for each $t \ge 0$ the random variable

$$W_t^{(x)} := \frac{N_t^{(x)}}{\mathbb{E}(N_t^{(x)})}$$

and show that

a)
$$r > \lambda$$
 and $\sigma^{(x)} < +\infty \Longrightarrow (W_t^{(x)})_{t \ge 0}$ is a Cauchy in L^2 .
b) $r > \lambda$ and $\sigma^{(x)} = +\infty \Longrightarrow (W_t^{(x)})_{t \ge 0}$ is unbounded in L^2 .

II. Show that if $r > \lambda$ and $\sigma^{(x)} < +\infty$ then

$$\lim_{t \to +\infty} \left\| \frac{N_t^{(x)}(A)}{\mathbb{E}(N_t^{(x)})} - \nu(A) \cdot W_t^{(x)} \right\|_{L^2} = 0$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

for all $A \in \mathcal{B}(\mathbb{R}_{\geq 0})$.

The proof consists of three parts:

I. Define for each $t \ge 0$ the random variable

$$W_t^{(x)} := \frac{N_t^{(x)}}{\mathbb{E}(N_t^{(x)})}$$

and show that

a)
$$r > \lambda$$
 and $\sigma^{(x)} < +\infty \Longrightarrow (W_t^{(x)})_{t \ge 0}$ is a Cauchy in L^2 .
b) $r > \lambda$ and $\sigma^{(x)} = +\infty \Longrightarrow (W_t^{(x)})_{t \ge 0}$ is unbounded in L^2 .

II. Show that if $r > \lambda$ and $\sigma^{(x)} < +\infty$ then

$$\lim_{t \to +\infty} \left\| \frac{N_t^{(x)}(A)}{\mathbb{E}(N_t^{(x)})} - \nu(A) \cdot W_t^{(x)} \right\|_{L^2} = 0$$

for all $A \in \mathcal{B}(\mathbb{R}_{\geq 0})$. III. Show that if $r > 2\lambda$ then $P(W_{\infty}^{(x)} = 0) = P(N_t^{(x)} \to 0)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Note that for any $t, h \ge 0$

$$\|W_{t+h}^{(x)} - W_t^{(x)}\|_{L^2}^2 = \frac{\mathbb{E}_x(N_{t+h}^2)}{\mathbb{E}_x^2(N_{t+h})} - 2\frac{\mathbb{E}_x(N_{t+h}N_t)}{\mathbb{E}_x(N_{t+h})\mathbb{E}_x(N_t)} + \frac{\mathbb{E}_x(N_t^2)}{\mathbb{E}_x^2(N_t)}.$$

Note that for any $t, h \ge 0$

$$\|W_{t+h}^{(x)} - W_t^{(x)}\|_{L^2}^2 = \frac{\mathbb{E}_x(N_{t+h}^2)}{\mathbb{E}_x^2(N_{t+h})} - 2\frac{\mathbb{E}_x(N_{t+h}N_t)}{\mathbb{E}_x(N_{t+h})\mathbb{E}_x(N_t)} + \frac{\mathbb{E}_x(N_t^2)}{\mathbb{E}_x^2(N_t)}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thus, the idea to prove Part I is to show the following:

Note that for any $t, h \ge 0$

$$\|W_{t+h}^{(x)} - W_t^{(x)}\|_{L^2}^2 = \frac{\mathbb{E}_x(N_{t+h}^2)}{\mathbb{E}_x^2(N_{t+h})} - 2\frac{\mathbb{E}_x(N_{t+h}N_t)}{\mathbb{E}_x(N_{t+h})\mathbb{E}_x(N_t)} + \frac{\mathbb{E}_x(N_t^2)}{\mathbb{E}_x^2(N_t)}.$$

Thus, the idea to prove Part I is to show the following:

• If t is very large then, independently of $h, h' \ge 0$, we have

$$\frac{\mathbb{E}_{x}(N_{t+h}N_{t+h'})}{\mathbb{E}_{x}(N_{t+h})\mathbb{E}_{x}(N_{t+h'})} \approx \sigma^{(x)}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Note that for any $t, h \ge 0$

$$\|W_{t+h}^{(x)} - W_t^{(x)}\|_{L^2}^2 = \frac{\mathbb{E}_x(N_{t+h}^2)}{\mathbb{E}_x^2(N_{t+h})} - 2\frac{\mathbb{E}_x(N_{t+h}N_t)}{\mathbb{E}_x(N_{t+h})\mathbb{E}_x(N_t)} + \frac{\mathbb{E}_x(N_t^2)}{\mathbb{E}_x^2(N_t)}.$$

Thus, the idea to prove Part I is to show the following:

• If t is very large then, independently of $h, h' \ge 0$, we have

$$\frac{\mathbb{E}_{x}(N_{t+h}N_{t+h'})}{\mathbb{E}_{x}(N_{t+h})\mathbb{E}_{x}(N_{t+h'})} \approx \sigma^{(x)}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

We do this with the help of the many-to-few lemma.

The many-to-few lemma

Lemma. For any pair of measurable functions $f, g: \mathbb{R}_{\geq 0} \to \mathbb{R}$

$$\mathbb{E}_{x}\left(\sum_{u\in N_{t}}f(u)\right)=e^{rt}\mathbb{E}(f(X_{t})).$$

and

The many-to-few lemma

Lemma. For any pair of measurable functions $f, g: \mathbb{R}_{\geq 0} \to \mathbb{R}$

$$\mathbb{E}_{x}\left(\sum_{u\in N_{t}}f(u)\right)=e^{rt}\mathbb{E}(f(X_{t})).$$

and

$$\mathbb{E}_{x}\left(\sum_{u,v\in N_{t}}f(u)g(v)\right)=e^{2rt}\mathbb{E}(e^{E\wedge t}f(X_{t})g(X_{t}')).$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

where (X, X') is a 2-spine with splitting time $E \sim \varepsilon(2r)$.

Using the many-to-few lemma one can show that

$$\frac{\mathbb{E}_{\mathsf{X}}(\mathsf{N}_{t+h}\mathsf{N}_{t+h'})}{\mathbb{E}_{\mathsf{X}}(\mathsf{N}_{t+h})\mathbb{E}_{\mathsf{X}}(\mathsf{N}_{t+h'})} \approx 2r \int_{0}^{t} \frac{\mathbb{E}_{\mathsf{X}}(\mathsf{P}_{\mathsf{X}_{\mathsf{S}}}^{2}(\mathsf{T}_{0} > t - \mathsf{s}))}{\mathsf{P}_{\mathsf{X}}^{2}(\mathsf{T}_{0} > t)} e^{-\mathsf{rs}} d\mathsf{s}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Using the many-to-few lemma one can show that

$$\frac{\mathbb{E}_{\mathsf{x}}(\mathsf{N}_{t+h}\mathsf{N}_{t+h'})}{\mathbb{E}_{\mathsf{x}}(\mathsf{N}_{t+h})\mathbb{E}_{\mathsf{x}}(\mathsf{N}_{t+h'})} \approx 2r \int_{0}^{t} \frac{\mathbb{E}_{\mathsf{x}}(\mathsf{P}_{X_{s}}^{2}(\mathsf{T}_{0} > t - s))}{\mathsf{P}_{\mathsf{x}}^{2}(\mathsf{T}_{0} > t)} e^{-rs} ds$$

and one may control the right-hand side using the asymptotics

$$P_x(T_0 > t) = x e^{cx} t^{-\frac{3}{2}} e^{-\lambda t} (1 + \varepsilon(x, t))$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

for some error term $\varepsilon(x, t) \to 0$ as $t \to +\infty$.

Using the many-to-few lemma one can show that

$$\frac{\mathbb{E}_{\mathsf{x}}(\mathsf{N}_{t+h}\mathsf{N}_{t+h'})}{\mathbb{E}_{\mathsf{x}}(\mathsf{N}_{t+h})\mathbb{E}_{\mathsf{x}}(\mathsf{N}_{t+h'})} \approx 2r \int_{0}^{t} \frac{\mathbb{E}_{\mathsf{x}}(\mathsf{P}_{X_{s}}^{2}(\mathsf{T}_{0} > t - s))}{\mathsf{P}_{\mathsf{x}}^{2}(\mathsf{T}_{0} > t)} e^{-rs} ds$$

and one may control the right-hand side using the asymptotics

$$P_x(T_0 > t) = x e^{cx} t^{-\frac{3}{2}} e^{-\lambda t} (1 + \varepsilon(x, t))$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

for some error term $\varepsilon(x,t) \to 0$ as $t \to +\infty$.

Difficulties. There are two problems that arise:

Using the many-to-few lemma one can show that

$$\frac{\mathbb{E}_{\mathsf{x}}(\mathsf{N}_{t+h}\mathsf{N}_{t+h'})}{\mathbb{E}_{\mathsf{x}}(\mathsf{N}_{t+h})\mathbb{E}_{\mathsf{x}}(\mathsf{N}_{t+h'})} \approx 2r \int_{0}^{t} \frac{\mathbb{E}_{\mathsf{x}}(\mathsf{P}_{X_{s}}^{2}(\mathsf{T}_{0} > t - s))}{\mathsf{P}_{\mathsf{x}}^{2}(\mathsf{T}_{0} > t)} e^{-rs} ds$$

and one may control the right-hand side using the asymptotics

$$P_x(T_0 > t) = x e^{cx} t^{-\frac{3}{2}} e^{-\lambda t} (1 + \varepsilon(x, t))$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

for some error term $\varepsilon(x,t) \to 0$ as $t \to +\infty$.

Difficulties. There are two problems that arise:

i. The asymptotic formula does not hold when $s \approx t$.

Using the many-to-few lemma one can show that

$$\frac{\mathbb{E}_{\mathsf{x}}(\mathsf{N}_{t+h}\mathsf{N}_{t+h'})}{\mathbb{E}_{\mathsf{x}}(\mathsf{N}_{t+h})\mathbb{E}_{\mathsf{x}}(\mathsf{N}_{t+h'})} \approx 2r \int_{0}^{t} \frac{\mathbb{E}_{\mathsf{x}}(\mathsf{P}_{X_{s}}^{2}(\mathsf{T}_{0} > t - s))}{\mathsf{P}_{\mathsf{x}}^{2}(\mathsf{T}_{0} > t)} e^{-rs} ds$$

and one may control the right-hand side using the asymptotics

$$P_x(T_0 > t) = x e^{cx} t^{-\frac{3}{2}} e^{-\lambda t} (1 + \varepsilon(x, t))$$

for some error term $\varepsilon(x,t)
ightarrow 0$ as $t
ightarrow +\infty$.

Difficulties. There are two problems that arise:

- i. The asymptotic formula does not hold when $s \approx t$.
- ii. One has to deal with the random error terms $\varepsilon(X_s, t)$.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Define the functions

$$\eta(x) = P(N_t^{(x)} \to 0)$$
 and $\xi(x) = P(W_{\infty}^{(x)} = 0).$

Define the functions

$$\eta(x) = P(N_t^{(x)} \to 0)$$
 and $\xi(x) = P(W_{\infty}^{(x)} = 0).$

▶ Define also the MG-operator $G : [0,1]^{\mathbb{R}_+} \to [0,1]^{\mathbb{R}_+}$ by the formula

$$G(h)(x) = \mathbb{E}_{x}\left(\prod_{u\in N_{1}}h(u)\right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Define the functions

$$\eta(x) = P(N_t^{(x)} \to 0)$$
 and $\xi(x) = P(W_{\infty}^{(x)} = 0).$

▶ Define also the MG-operator $G : [0,1]^{\mathbb{R}_+} \to [0,1]^{\mathbb{R}_+}$ by the formula

$$G(h)(x) = \mathbb{E}_{x}\left(\prod_{u \in N_{1}} h(u)\right).$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

• Notice that both η and ξ are fixed points of G.

Define the functions

$$\eta(x) = P(N_t^{(x)} \to 0)$$
 and $\xi(x) = P(W_{\infty}^{(x)} = 0).$

▶ Define also the MG-operator $G : [0,1]^{\mathbb{R}_+} \to [0,1]^{\mathbb{R}_+}$ by the formula

$$G(h)(x) = \mathbb{E}_{x}\left(\prod_{u \in N_{1}} h(u)\right).$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Notice that both η and ξ are fixed points of G.
- Part III is then deduced from the following theorem:

Define the functions

$$\eta(x) = P(N_t^{(x)} \to 0)$$
 and $\xi(x) = P(W_{\infty}^{(x)} = 0).$

• Define also the MG-operator $G: [0,1]^{\mathbb{R}_+} \to [0,1]^{\mathbb{R}_+}$ by the formula

$$G(h)(x) = \mathbb{E}_x \left(\prod_{u \in N_1} h(u)\right).$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Notice that both η and ξ are fixed points of G.
- Part III is then deduced from the following theorem:

Theorem IV. η and **1** are the only fixed points of *G*.

► Theorem IV is well-known for the classical G-W process.

- ► Theorem IV is well-known for the classical G-W process.
- ► For a general branching process, though, it may be false.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

- ► Theorem IV is well-known for the classical G-W process.
- ► For a general branching process, though, it may be false.
- Theorem IV holds if the branching process survives locally,

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Sketch of proof : Part III (continued)

- ► Theorem IV is well-known for the classical G-W process.
- ► For a general branching process, though, it may be false.
- Theorem IV holds if the branching process survives locally, i.e. for any A ∈ B(ℝ₊) with ν(A) > 0 one has that

 $\limsup_{t\to+\infty} N_t(A) > 0$

on the event of survival.

Sketch of proof : Part III (continued)

- ► Theorem IV is well-known for the classical G-W process.
- ► For a general branching process, though, it may be false.
- Theorem IV holds if the branching process survives locally, i.e. for any A ∈ B(ℝ₊) with ν(A) > 0 one has that

 $\limsup_{t\to+\infty} N_t(A) > 0$

on the event of survival. In words, when the process survives, the bulk of particles cannot escape to $+\infty$ nor to 0.

Sketch of proof : Part III (continued)

- ► Theorem IV is well-known for the classical G-W process.
- ► For a general branching process, though, it may be false.
- ► Theorem IV holds if the branching process survives locally, i.e. for any A ∈ B(ℝ₊) with ν(A) > 0 one has that

```
\limsup_{t\to+\infty} N_t(A) > 0
```

on the event of survival. In words, when the process survives, the bulk of particles cannot escape to $+\infty$ nor to 0.

• We show that this is indeed the case for B-ABMD.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Consider a general branching dynamics with:

Consider a general branching dynamics with:

Evolution of particles given by a general (absorbed) process on some state space J satisfying the usual conditions.

Consider a general branching dynamics with:

Evolution of particles given by a general (absorbed) process on some state space J satisfying the usual conditions.

▶ Branching rate *r* > 0.

Consider a general branching dynamics with:

Evolution of particles given by a general (absorbed) process on some state space J satisfying the usual conditions.

- Branching rate r > 0.
- ▶ Number of children given by an offspring distribution *m*.

Consider a general branching dynamics with:

Evolution of particles given by a general (absorbed) process on some state space J satisfying the usual conditions.

- Branching rate r > 0.
- Number of children given by an offspring distribution *m*.

Then, we can extend our result to this dynamics provided that

Consider a general branching dynamics with:

- Evolution of particles given by a general (absorbed) process on some state space J satisfying the usual conditions.
- Branching rate r > 0.
- ▶ Number of children given by an offspring distribution *m*.

Then, we can extend our result to this dynamics provided that

$$P(X_t^{(x)} \in A | T^{(x)} > t) = \nu(A)(1 + \delta_A(x, t))$$

and

Consider a general branching dynamics with:

- Evolution of particles given by a general (absorbed) process on some state space J satisfying the usual conditions.
- Branching rate r > 0.
- ▶ Number of children given by an offspring distribution *m*.

Then, we can extend our result to this dynamics provided that

$$P(X_t^{(x)} \in A | T^{(x)} > t) = \nu(A)(1 + \delta_A(x, t))$$

and

$$P(T_0^{(x)} > t) = h(x) \cdot p(t) \cdot e^{-\lambda t} (1 + \varepsilon(x, t))$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

where

Consider a general branching dynamics with:

- Evolution of particles given by a general (absorbed) process on some state space J satisfying the usual conditions.
- Branching rate r > 0.
- ▶ Number of children given by an offspring distribution *m*.

Then, we can extend our result to this dynamics provided that

$$P(X_t^{(x)} \in A | T^{(x)} > t) = \nu(A)(1 + \delta_A(x, t))$$

and

$$P(T_0^{(x)} > t) = h(x) \cdot p(t) \cdot e^{-\lambda t} (1 + \varepsilon(x, t))$$

where

• δ_A and ε tend to 0 as $t \to \infty$ uniformly in compact sets of x.

Consider a general branching dynamics with:

- Evolution of particles given by a general (absorbed) process on some state space J satisfying the usual conditions.
- Branching rate r > 0.
- ▶ Number of children given by an offspring distribution *m*.

Then, we can extend our result to this dynamics provided that

$$P(X_t^{(x)} \in A | T^{(x)} > t) = \nu(A)(1 + \delta_A(x, t))$$

and

$$P(T_0^{(x)} > t) = h(x) \cdot p(t) \cdot e^{-\lambda t} (1 + \varepsilon(x, t))$$

where

• δ_A and ε tend to 0 as $t \to \infty$ uniformly in compact sets of x.

$$h(x) = 0 \Longleftrightarrow x = 0.$$

Consider a general branching dynamics with:

- Evolution of particles given by a general (absorbed) process on some state space J satisfying the usual conditions.
- Branching rate r > 0.
- ▶ Number of children given by an offspring distribution *m*.

Then, we can extend our result to this dynamics provided that

$$P(X_t^{(x)} \in A | T^{(x)} > t) = \nu(A)(1 + \delta_A(x, t))$$

and

$$P(T_0^{(x)} > t) = h(x) \cdot p(t) \cdot e^{-\lambda t} (1 + \varepsilon(x, t))$$

where

• δ_A and ε tend to 0 as $t \to \infty$ uniformly in compact sets of x.

$$h(x) = 0 \Longleftrightarrow x = 0.$$

•
$$p(t) \approx t^{-\alpha}$$
 for some $\alpha \ge 0$.

Consider a general branching dynamics with:

- Evolution of particles given by a general (absorbed) process on some state space J satisfying the usual conditions.
- Branching rate r > 0.
- ▶ Number of children given by an offspring distribution *m*.

Then, we can extend our result to this dynamics provided that

$$P(X_t^{(x)} \in A | T^{(x)} > t) = \nu(A)(1 + \delta_A(x, t))$$

and

$$P(T_0^{(x)} > t) = h(x) \cdot p(t) \cdot e^{-\lambda t} (1 + \varepsilon(x, t))$$

where

• δ_A and ε tend to 0 as $t \to \infty$ uniformly in compact sets of x.

$$h(x) = 0 \iff x = 0.$$

•
$$p(t) \approx t^{-\alpha}$$
 for some $\alpha \ge 0$.

•
$$0 < \lambda < (\mathbb{E}(m) - 1)r.$$

• In this case, the quantity $\sigma^{(x)}$ becomes

$$\sigma^{(x)} := (\mathbb{E}(m^2) - \mathbb{E}(m))r \int_0^\infty \mathbb{E}\left(\left(\frac{h(X_s^{(x)})e^{\lambda t}}{h(x)}\right)^2\right) e^{-(\mathbb{E}(m)-1)rs} ds.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

• In this case, the quantity $\sigma^{(x)}$ becomes

$$\sigma^{(x)} := (\mathbb{E}(m^2) - \mathbb{E}(m))r \int_0^\infty \mathbb{E}\left(\left(\frac{h(X_s^{(x)})e^{\lambda t}}{h(x)}\right)^2\right) e^{-(\mathbb{E}(m)-1)rs} ds.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Also, Theorem III holds whenever:

• In this case, the quantity $\sigma^{(x)}$ becomes

$$\sigma^{(x)} := (\mathbb{E}(m^2) - \mathbb{E}(m))r \int_0^\infty \mathbb{E}\left(\left(\frac{h(X_s^{(x)})e^{\lambda t}}{h(x)}\right)^2\right) e^{-(\mathbb{E}(m)-1)rs} ds.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Also, Theorem III holds whenever:

i.
$$(\mathbb{E}(m)-1)r > \lambda$$
 and $\sigma^{(x)} < +\infty$,

• In this case, the quantity $\sigma^{(x)}$ becomes

$$\sigma^{(x)} := (\mathbb{E}(m^2) - \mathbb{E}(m))r \int_0^\infty \mathbb{E}\left(\left(\frac{h(X_s^{(x)})e^{\lambda t}}{h(x)}\right)^2\right) e^{-(\mathbb{E}(m)-1)rs} ds.$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Also, Theorem III holds whenever:

- i. $(\mathbb{E}(m)-1)r>\lambda$ and $\sigma^{(x)}<+\infty$,
- ii. The branching dynamics survives locally.

• We begin with a fixed number $n \in \mathbb{N}$ of particles.

・ロト・日本・モト・モート ヨー うへぐ

- We begin with a fixed number $n \in \mathbb{N}$ of particles.
- Each particle waits for an exponential random time of rate 1 and then dies, giving birth to a random number Z of children.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

- We begin with a fixed number $n \in \mathbb{N}$ of particles.
- Each particle waits for an exponential random time of rate 1 and then dies, giving birth to a random number Z of children.

Each particle of the new generation independently imitates the stochastic behavior of its parent.

- We begin with a fixed number $n \in \mathbb{N}$ of particles.
- Each particle waits for an exponential random time of rate 1 and then dies, giving birth to a random number Z of children.

Each particle of the new generation independently imitates the stochastic behavior of its parent.

Let X_t denote the number of living individuals at time t.

- We begin with a fixed number $n \in \mathbb{N}$ of particles.
- Each particle waits for an exponential random time of rate 1 and then dies, giving birth to a random number Z of children.

- Each particle of the new generation independently imitates the stochastic behavior of its parent.
- Let X_t denote the number of living individuals at time t.
 - If $\mathbb{E}(Z) < 1$ then X almost surely dies out.

- We begin with a fixed number $n \in \mathbb{N}$ of particles.
- Each particle waits for an exponential random time of rate 1 and then dies, giving birth to a random number Z of children.

- Each particle of the new generation independently imitates the stochastic behavior of its parent.
- Let X_t denote the number of living individuals at time t.
 - If $\mathbb{E}(Z) < 1$ then X almost surely dies out.
 - ▶ It is known that X is R-positive in this case.

- We begin with a fixed number $n \in \mathbb{N}$ of particles.
- Each particle waits for an exponential random time of rate 1 and then dies, giving birth to a random number Z of children.

- Each particle of the new generation independently imitates the stochastic behavior of its parent.
- Let X_t denote the number of living individuals at time t.
 - If $\mathbb{E}(Z) < 1$ then X almost surely dies out.
 - ▶ It is known that X is R-positive in this case.

 $\blacktriangleright \ \lambda := \mathbb{E}(Z) - 1.$

- We begin with a fixed number $n \in \mathbb{N}$ of particles.
- Each particle waits for an exponential random time of rate 1 and then dies, giving birth to a random number Z of children.

- Each particle of the new generation independently imitates the stochastic behavior of its parent.
- Let X_t denote the number of living individuals at time t.
 - If $\mathbb{E}(Z) < 1$ then X almost surely dies out.
 - ▶ It is known that X is R-positive in this case.
 - $\blacktriangleright \ \lambda := \mathbb{E}(Z) 1.$

•
$$\varphi(x) = x$$
.

- We begin with a fixed number $n \in \mathbb{N}$ of particles.
- Each particle waits for an exponential random time of rate 1 and then dies, giving birth to a random number Z of children.

- Each particle of the new generation independently imitates the stochastic behavior of its parent.
- Let X_t denote the number of living individuals at time t.
 - If $\mathbb{E}(Z) < 1$ then X almost surely dies out.
 - ▶ It is known that X is R-positive in this case.
 - $\blacktriangleright \ \lambda := \mathbb{E}(Z) 1.$
 - $\varphi(x) = x$.
 - ν is not explicitly known!

- We begin with a fixed number $n \in \mathbb{N}$ of particles.
- Each particle waits for an exponential random time of rate 1 and then dies, giving birth to a random number Z of children.
- Each particle of the new generation independently imitates the stochastic behavior of its parent.

Let X_t denote the number of living individuals at time t.

- If $\mathbb{E}(Z) < 1$ then X almost surely dies out.
- ▶ It is known that X is R-positive in this case.
- $\blacktriangleright \ \lambda := \mathbb{E}(Z) 1.$
- $\varphi(x) = x$.
- ν is not explicitly known!

We show that $\sigma^{(x)} < +\infty$ if and only if $r > \lambda$ and $\mathbb{E}(Z^2) < +\infty$, and that all our results hold in this case.

• We begin with a finite configuration of infected sites σ in \mathbb{Z}^d .

・ロト・日本・モト・モート ヨー うへぐ

• We begin with a finite configuration of infected sites σ in \mathbb{Z}^d .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

 Each infected site tries to infect one of its non-infected neighbors at rate γ.

• We begin with a finite configuration of infected sites σ in \mathbb{Z}^d .

- Each infected site tries to infect one of its non-infected neighbors at rate γ.
- Each infected site recovers from the infection at rate 1.

• We begin with a finite configuration of infected sites σ in \mathbb{Z}^d .

- Each infected site tries to infect one of its non-infected neighbors at rate γ.
- Each infected site recovers from the infection at rate 1.
- Let X_t denote the configuration of infected sites at time t.

• We begin with a finite configuration of infected sites σ in \mathbb{Z}^d .

- Each infected site tries to infect one of its non-infected neighbors at rate γ.
- Each infected site recovers from the infection at rate 1.
- Let X_t denote the configuration of infected sites at time t.
 - If $\gamma < \gamma_c(d)$ then X almost surely dies out.

• We begin with a finite configuration of infected sites σ in \mathbb{Z}^d .

- Each infected site tries to infect one of its non-infected neighbors at rate γ.
- Each infected site recovers from the infection at rate 1.
- Let X_t denote the configuration of infected sites at time t.
 - If $\gamma < \gamma_c(d)$ then X almost surely dies out.
 - It is known that X is R-positive in this case.

• We begin with a finite configuration of infected sites σ in \mathbb{Z}^d .

- Each infected site tries to infect one of its non-infected neighbors at rate γ.
- Each infected site recovers from the infection at rate 1.
- Let X_t denote the configuration of infected sites at time t.
 - If $\gamma < \gamma_c(d)$ then X almost surely dies out.
 - ▶ It is known that X is R-positive in this case.
 - Neither λ, φ nor ν are known explicitly!

- We begin with a finite configuration of infected sites σ in \mathbb{Z}^d .
- Each infected site tries to infect one of its non-infected neighbors at rate γ.
- Each infected site recovers from the infection at rate 1.
- Let X_t denote the configuration of infected sites at time t.
 - If $\gamma < \gamma_c(d)$ then X almost surely dies out.
 - ▶ It is known that X is R-positive in this case.
 - Neither λ, φ nor ν are known explicitly!

We show that $\sigma^{(x)} < +\infty$ if and only if $r > \lambda$ and $\gamma < \gamma_c$, and that all our results hold in this case.