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The ABMD process

I ABMD = absorbed Brownian motion with drift.

I Given any initial condition x > 0 and c > 0, the ABMD(c) is
given by

X
(x)
t =


x + Bt − ct if t < T

(x)
0

0 if t ≥ T
(x)
0

where B = (Bt)t≥0 is a standard Brownian motion and

T
(x)
0 = inf{t ≥ 0 : X

(x)
t = 0}.

I Problem. Understand the asymptotic behavior of X .
I All trajectories of X are almost surely absorbed.
I ¿What can we say about those which survive until time t � 1?
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The maximal eigenvalue of Lc

Let Lc be the generator of ABMD(c) defined by the formula

Lc(f )(x) =
1

2
f ′′(x)− cf ′(x)

for f : [0,+∞)→ R sufficiently regular with f (0) = 0.

One can show that:
I −λ := − c2

2 is the maximal non-zero eigenvalue of Lc .
I h(x) := xecx is the right eigenvector of Lc associated to −λ,

which satisfies

P(T
(x)
0 > t) � h(x) · p(t) · e−λt .

for p(t) = t−
3
2 .

I The left eigenvector of Lc is a finite measure ν on R≥0

which satisfies

lim
t→+∞

P(X
(x)
t ∈ A|T (x)

0 > t) = ν(A)

for all x > 0 and any Borel set A ⊆ R≥0.

Goal. Understand ν.
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The B-ABMD(c,r) process

Consider the following branching dynamics:

i. The dynamics starts with a single particle located at x > 0
whose position evolves according to an ABMD(c).

ii. After a random exponential time of parameter r , this particle
dies and gives birth at his current location to 2 new particles.

iii. These two particles now evolve independently, imitating the
stochastic behavior of its parent.

I We call this dynamics the B-ABMD(c,r) process.

I If r > λ then the dynamics is supercritical, i.e. for all x > 0

P(N
(x)
t 9 0) > 0

where N
(x)
t denotes the amount of particles above 0 at time t.
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Kesten’s theorem

I Kesten stated that the following result holds:

Theorem. If r > λ then for all x > 0 there exists a r.v. W
(x)
∞

such that:
i. For any Borel set A ⊆ R≥0

N
(x)
t (A)

E(N
(x)
t )

a.s.−→ ν(A) ·W (x)
∞ ,

where N
(x)
t (A) is the amount of particles in A at time t.

ii. W
(x)
∞ > 0 a.s. on the event of non-absorption {N(x)

t 9 0}.

iii. Conditionally on the event of non-absorption, for any A ⊆ R≥0

N
(x)
t (A)

N
(x)
t

a.s.−→ ν(A).

I However, he claimed to have an “ugly and complicated” proof
and so chose not to share it.

I No other proof has been obtained since.



Kesten’s theorem

I Kesten stated that the following result holds:

Theorem. If r > λ then for all x > 0 there exists a r.v. W
(x)
∞

such that:
i. For any Borel set A ⊆ R≥0

N
(x)
t (A)

E(N
(x)
t )

a.s.−→ ν(A) ·W (x)
∞ ,

where N
(x)
t (A) is the amount of particles in A at time t.

ii. W
(x)
∞ > 0 a.s. on the event of non-absorption {N(x)

t 9 0}.
iii. Conditionally on the event of non-absorption, for any A ⊆ R≥0

N
(x)
t (A)

N
(x)
t

a.s.−→ ν(A).

I However, he claimed to have an “ugly and complicated” proof
and so chose not to share it.

I No other proof has been obtained since.



Kesten’s theorem

I Kesten stated that the following result holds:

Theorem. If r > λ then for all x > 0 there exists a r.v. W
(x)
∞

such that:
i. For any Borel set A ⊆ R≥0

N
(x)
t (A)

E(N
(x)
t )

a.s.−→ ν(A) ·W (x)
∞ ,

where N
(x)
t (A) is the amount of particles in A at time t.

ii. W
(x)
∞ > 0 a.s. on the event of non-absorption {N(x)

t 9 0}.
iii. Conditionally on the event of non-absorption, for any A ⊆ R≥0

N
(x)
t (A)

N
(x)
t

a.s.−→ ν(A).

I However, he claimed to have an “ugly and complicated” proof
and so chose not to share it.

I No other proof has been obtained since.



Kesten’s theorem

I Kesten stated that the following result holds:

Theorem. If r > λ then for all x > 0 there exists a r.v. W
(x)
∞

such that:
i. For any Borel set A ⊆ R≥0

N
(x)
t (A)

E(N
(x)
t )

a.s.−→ ν(A) ·W (x)
∞ ,

where N
(x)
t (A) is the amount of particles in A at time t.

ii. W
(x)
∞ > 0 a.s. on the event of non-absorption {N(x)

t 9 0}.
iii. Conditionally on the event of non-absorption, for any A ⊆ R≥0

N
(x)
t (A)

N
(x)
t

a.s.−→ ν(A).

I However, he claimed to have an “ugly and complicated” proof
and so chose not to share it.

I No other proof has been obtained since.



Some previous results - Part I

Let X be a Markov process on some state space J such that:

1. X has an absorbing set ∂J.

2. If T (x) denotes the hitting time of ∂J, then

P(T
(x)
0 > t) � ϕ(x) · p(t) · e−λt

where:

I −λ < 0 is the maximal non-zero eigenvalue of its generator L.
I ϕ is the right eigenvector associated to −λ.
I Its left eigenvector is a finite measure ν which satisfies

lim
t→+∞

P(X
(x)
t ∈ A|T (x)

0 > t) = ν(A)

for all x > 0 and any A ⊆ R≥0.
I p(t) ≈ t−α for some α ≥ 0.

To abbreviate, we shall say that X satisfies the usual conditions
whenever it fulfills this description.
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Some previous results - Part 2

Suppose that X is a process satisfying the usual conditions above.

Then:

I We say that X is R-positive if ν(h) < +∞.

I If X is R-positive then, conditioned on non-absorption,
we have that X is ergodic with invariant density h(x)dν(x).

I Kesten’s result has been shown under R-positivity. However:

i. Some further additional assumptions are needed.

ii. No results on whether W
(x)
∞ is always strictly positive on

the event of non-absorption {N(x)
t 9 0}.

I ABMD is not R-positive. In fact, it is R-transitive.
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Our main results (I)
Theorem I. Given x > 0, define for each t ≥ 0 the random variable

W
(x)
t :=

N
(x)
t

E(N
(x)
t )

.

Then, we have:

i. (W
(x)
t )t≥0 converges in L2 ⇐⇒ (W

(x)
t )t≥0 is bounded in L2.

ii. The latter occurs if and only if r > λ and σ(x) < +∞, where
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Our main results (II)
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(x)
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(x)
t

−→ ν(A)

in probability and in Lp for every p ≥ 1, on the event {N(x)
t 9 0}.
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I. Define for each t ≥ 0 the random variable

W
(x)
t :=

N
(x)
t

E(N
(x)
t )

and show that

a) r > λ and σ(x) < +∞ =⇒ (W
(x)
t )t≥0 is a Cauchy in L2.
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t )t≥0 is unbounded in L2.

II. Show that if r > λ and σ(x) < +∞ then
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∥∥∥∥∥N(x)
t (A)

E(N
(x)
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− ν(A) ·W (x)
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= 0

for all A ∈ B(R≥0).

III. Show that if r > 2λ then P(W
(x)
∞ = 0) = P(N
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Sketch of proof : Part I

Note that for any t, h ≥ 0

‖W (x)
t+h −W

(x)
t ‖2

L2 =
Ex(N2

t+h)

E2
x(Nt+h)

− 2
Ex(Nt+hNt)

Ex(Nt+h)Ex(Nt)
+

Ex(N2
t )

E2
x(Nt)

.

Thus, the idea to prove Part I is to show the following:

• If t is very large then, independently of h, h′ ≥ 0, we have

Ex(Nt+hNt+h′)

Ex(Nt+h)Ex(Nt+h′)
≈ σ(x).

We do this with the help of the many-to-few lemma.
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The many-to-few lemma

Lemma. For any pair of measurable functions f , g : R≥0 → R

Ex

∑
u∈Nt

f (u)

 = ertE(f (Xt)).

and

Ex

 ∑
u,v∈Nt

f (u)g(v)

 = e2rtE(eE∧t f (Xt)g(X ′t)).

where (X ,X ′) is a 2-spine with splitting time E ∼ ε(2r).
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Sketch of proof : Part I (continued)

Using the many-to-few lemma one can show that

Ex(Nt+hNt+h′)

Ex(Nt+h)Ex(Nt+h′)
≈ 2r

∫ t

0

Ex(P2
Xs

(T0 > t − s))

P2
x (T0 > t)

e−rsds

and one may control the right-hand side using the asymptotics

Px(T0 > t) = xecx t−
3
2 e−λt(1 + ε(x , t))

for some error term ε(x , t)→ 0 as t → +∞.

Difficulties. There are two problems that arise:

i. The asymptotic formula does not hold when s ≈ t.

ii. One has to deal with the random error terms ε(Xs , t).
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Sketch of proof : Part III

I Define the functions

η(x) = P(N
(x)
t → 0) and ξ(x) = P(W (x)

∞ = 0).

I Define also the MG-operator G : [0, 1]R+ → [0, 1]R+

by the formula

G (h)(x) = Ex

∏
u∈N1

h(u)

 .

I Notice that both η and ξ are fixed points of G .

I Part III is then deduced from the following theorem:

Theorem IV. η and 1 are the only fixed points of G .
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Sketch of proof : Part III (continued)

I Theorem IV is well-known for the classical G-W process.

I For a general branching process, though, it may be false.

I Theorem IV holds if the branching process survives locally, i.e.
for any A ∈ B(R+) with ν(A) > 0 one has that

lim sup
t→+∞

Nt(A) > 0

on the event of survival. In words, when the process survives,
the bulk of particles cannot escape to +∞ nor to 0.

I We show that this is indeed the case for B-ABMD.
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Kesten’s theorem for general (absorbed) processes (I)
Consider a general branching dynamics with:

I Evolution of particles given by a general (absorbed) process on
some state space J satisfying the usual conditions.

I Branching rate r > 0.

I Number of children given by an offspring distribution m.

Then, we can extend our result to this dynamics provided that
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Kesten’s theorem for general (absorbed) processes (II)

I In this case, the quantity σ(x) becomes

σ(x) := (E(m2)−E(m))r

∫ ∞
0

E

(h(X
(x)
s )eλt

h(x)

)2
 e−(E(m)−1)rsds.

I Also, Theorem III holds whenever:

i. (E(m)− 1)r > λ and σ(x) < +∞,

ii. The branching dynamics survives locally.
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Example I : Subcritical Galton-Watson process

I We begin with a fixed number n ∈ N of particles.

I Each particle waits for an exponential random time of rate 1
and then dies, giving birth to a random number Z of children.

I Each particle of the new generation independently imitates
the stochastic behavior of its parent.

Let Xt denote the number of living individuals at time t.

I If E(Z ) < 1 then X almost surely dies out.

I It is known that X is R-positive in this case.

I λ := E(Z )− 1.

I ϕ(x) = x .

I ν is not explicitly known!

We show that σ(x) < +∞ if and only if r > λ and E(Z 2) < +∞,
and that all our results hold in this case.
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Example II : Subcritical contact process

I We begin with a finite configuration of infected sites σ in Zd .

I Each infected site tries to infect one of its non-infected
neighbors at rate γ.

I Each infected site recovers from the infection at rate 1.

Let Xt denote the configuration of infected sites at time t.

I If γ < γc(d) then X almost surely dies out.

I It is known that X is R-positive in this case.

I Neither λ, ϕ nor ν are known explicitly!

We show that σ(x) < +∞ if and only if r > λ and γ < γc ,
and that all our results hold in this case.
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