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Here we analyze the semilinear parabolic equation

(Q✏)

(

w✏
t ��w✏ + w✏ = f (w✏) in R✏,

@N✏w✏ = 0 on @R✏,
t > 0

in a thin domain R✏

R✏ = {(x , y) 2 R2 : x 2 (0, 1), �✏ b✏(x) < y < ✏G✏(x)}.

b✏ and G✏ are uniformly bounded, smooth and positive in (0, 1).

f 2 C2(R) is a dissipative nonlinearity: lim sup|s|!1
f (s)

s < 0.

Under these conditions (Q✏) defines a nonlinear semigroup

T✏(t) : H1(R✏) 7! H1(R✏)

which is gradient and has a compact global attractor

A✏ ⇢ H1(R✏) for each ✏ > 0.
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We recall that:
1 A nonlinear semigroup is a map T (t) : X 7! X , t � 0, X being a

complete metric space, which satisfies

i) T (0) = I.
ii) T (t + s) = T (t)T (s), t and s � 0.

iii) T (t)x is a continuous function in (t , x).
2 T defines a gradient system if

a) Each bounded positive orbit is precompact.
b) It possesses a Lyapunov function V : X 7! R such that

1 V is bounded below.
2 V (x) ! 1 as kxk ! 1.
3 V (T (t)x) is not increasing in t for each x .
4 If V (T (t)x) = V (x) for all t , then x is an equilibrium point.

3 An attractor is a maximal compact invariant set which attracts
all bounded sets of the phase space. It contains all the
asymptotic dynamics of the system, and all global bounded
solutions lie in the attractor.
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Here we are interested in the behavior of the nonlinear
semigroup T✏ and the attractors A✏ as ✏ ! 0.

Since we are in a thin domain situation we would like to get a
1D-parabolic equation in order to approximate (Q✏).

Driven by 1D-equations
The dynamics of one-dimensional parabolic equations is much better
understood than that ones in high dimensional euclidean spaces.a

aJ. K. Hale, Math. Surveys Monograph (1998). P. Polacik, Handbook on
Dynamical Systems (2002).

As we will see, the profile and dependence on ✏ play an
important role here.
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Examples of thin domains

Standard thin domain

Re

b✏(x) = b(x) and G✏(x) = g(x)

Parabolic problems: J. K. Hale, G. Raugel JMPA (1992); M.
Prizzi, K. P. Rybakowski JDE (2001); T. Elsken TMNA (2005); R.
P. Silva Monatshefte fur Mathematik (2016).

Nonlocal problems: J. D. Rossi, M. C. Pereira Submitted.
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Examples of thin domains

Resonant and oscillating thin domain

Re

b✏(x) ⌘ 0 and G✏(x) = g(x/✏)

Parabolic problems: A. N. Carvalho, J. M. Arrieta, M. C. Pereira,
R. P. Silva Nonlinear Anal. (2011).

Elliptic problems: T. A. Mel’nyk, A. V. Popov J. Math. Sci. (2009).
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Examples of thin domains

Thin domain with double oscillatory behavior

Re

b✏(x) = b(x/✏�) with � > 1 and G✏(x) = g(x/✏)

Parabolic problems: M. C. Pereira AMPA (2015).

Elliptic problems: J. M. Arrieta, M. Villanueva-Pesquera MMAS
(2014).
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The class of thin domains
Variable profile and double oscillatory behavior

Re

b✏(x) = m(x) + n(x)h(x/✏�) G✏(x) = j(x) + k(x)g(x/✏�)
h and g, lh and lg-periodic functions

� and � positive constants.

? Variable period and more: J. M. Arrieta, M. Villanueva-Pesquera
SIAM (2016) and PhD Thesis UCM (2016).

? Reaction terms concentrated on boundary: S. Barros, M. C.
Pereira JMAA (2016).

marcone@ime.usp.br UMA 2016 - Bahía Blanca, Argentina



One approach is perform the change

x1 = x , x2 = y/✏,

which stretches R✏ in the y -direction by a factor 1/✏ transforming into

⌦✏ = {(x1, x2) 2 R2 : x1 2 (0, 1) and � b✏(x1) < x2 < G✏(x1)}.

Thus (Q✏) becomes

(P✏)

8

>

>

<

>

>

:

u✏
t �

@2u✏

@x1
2 � 1

✏2
@2u✏

@x2
2 + u✏ = f (u✏) in ⌦✏

@u✏

@x1
N✏

1 +
1
✏2

@u✏

@x2
N✏

2 = 0 on @⌦✏

t > 0,

where N✏ = (N✏
1,N

✏
2) is the outward normal to the boundary of ⌦✏.

⌦✏ is no longer a thin domain but can oscillate.

By the factor 1/✏2 is expected that solutions become
homogeneous in x2-direction. Hence the limiting solution will not
depend on x2 setting a 1D-limiting problem.
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We rewrite problem (P✏) in an abstract form
(

u✏
t + L✏u✏ = f̂✏(u✏)

u✏(0) = u✏
0 2 Z↵

✏

.

L✏ : D(L✏) ⇢ L2(⌦✏) 7! L2(⌦✏) is self adjoint, positive linear
operator with compact resolvent

L✏u = � @2u
@x1

2 � 1
✏2

@2u
@x2

2 + u,

D(L✏) =

⇢

u 2 H2(⌦✏) : @x1u N✏
1 +

1
✏2 @x1u N✏

2 = 0 on @⌦✏

�

.

Z↵
✏ is the fractional power scale from L✏ with 0 6 ↵ 6 1.

Z 1
✏ = D(L✏), Z 1/2

✏ = H1(⌦✏) and Z 0
✏ = L2(⌦✏) := Z✏.

f̂✏ : Z↵
✏ 7! Z✏ : u✏ ! f (u✏) is the Nemitskı̆i operator.
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Under the growth and dissipative conditions (P✏) define a
nonlinear semigroups for all 0  ↵  1/2 and t > 0

{T✏(t) : t � 0} in Z↵
✏ .

These dynamical systems are gradient and possess a family of
compact global attractors

{A✏ ⇢ Z↵
✏ : ✏ 2 (0, 1]}

which lie in more regular spaces, namely L1(⌦✏).
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Getting the limit problem.a

aArrieta, Carvalho and Lozada-Cruz, JDE (2006) and (2009).

? First we study the family of resolvent operators

L�1
✏ : L2(⌦✏) 7! L2(⌦✏).

We pass to the limit in the elliptic problem
8

>

>

<

>

>

:

� @2u✏

@x1
2 � 1

✏2
@2u✏

@x2
2 + u✏ = f ✏ in ⌦✏

@u✏

@x1
N✏

1 +
1
✏2

@u✏

@x2
N✏

2 = 0 on @⌦✏

assuming kf ✏kL2(⌦✏)  C for some C independent of ✏ to obtain

the limit equation, and then, the limit operator L0.
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Since the spaces can depend on ✏
we need an approach to compare them.

Here we introduce the following operators

i) E✏ : Z0 = L2(0, 1) 7! Z✏ = L2(⌦✏)

(E✏u)(x1, x2) = u(x1), (x1, x2) 2 ⌦✏.

ii) M✏ : Z✏ 7! Z0

(M✏u✏)(x) =
1

p✏(x)

Z G✏(x)

�b✏(x)
u✏(x , s) ds, x 2 (0, 1)

where
p✏ = b✏ + G✏ ! p weakly⇤ in L1(0, 1)

as ✏ ! 0.
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Indeed, if we have a family of adjoint, positive linear operators

{L�1
✏ }✏2[0,1]

with compact resolvent satisfying

kL�1
✏ � E✏L�1

0 M✏kL(Z✏)  ⌫(✏) 8✏ 2 (0, ✏0)

for some ✏0 > 0 with ⌫(✏) ! 0 as ✏ ! 0 we get

I) Upper and lower semicontinuity of eigenvalues and
eigenfunctions of L✏ at ✏ = 0.

II) Continuity of the semigroup: for some 0 6 ↵ < 1/2 and
! 2 (0, 1), there exists ⌫↵(✏)

✏!0�! 0, such that

ke�L✏t � E✏e�L0tM✏kL(Z✏,Z↵
✏ ) 6 ⌫↵(✏)e�!t t↵�1

for all t > 0.
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III) Continuity of the nonlinear semigroup in bounded intervals by
the variation of constants formula

T✏(t)u✏
0 = e�L✏t u✏

0 +

Z t

0
e�L✏(t�s) f̂✏(T✏(s)u✏

0) ds.

IV) Upper semicontinuity of attractors at ✏ = 0 in Z↵
✏

sup
'✏2A✏

h

inf
'2A0

�

k'✏ � E✏'kZ↵
✏

 

i

! 0, as ✏ ! 0

also as a consequence of the uniformly bounds given by Arrieta,
Carvalho, Rodríguez-Bernal, Comm. Part. Diff. Eq. (2000).
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Note that our abstract limit problem is
(

ut + L0u = f̂0(u)
u(0) = u0 2 Z↵

0
.

Until here, we need to identify the limit operator L0 in such way that

kL�1
✏ � E✏L�1

0 M✏kL(Z✏)  ⌫(✏) 8✏ 2 (0, ✏0).

We remember that Z✏ = L2(⌦✏).
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Let us analyze the elliptic problem.

Its variational formulation is find u✏ 2 H1(⌦✏) such that
Z

⌦✏

n@u✏

@x1

@'

@x1
+

1
✏2

@u✏

@x2

@'

@x2
+u✏'

o

dx1dx2 =

Z

⌦✏

f ✏'dx1dx2, 8' 2 H1(⌦✏).

Taking ' = u✏ we get
�

�

�

@u✏

@x1

�

�

�

2

L2(⌦✏)
+

1
✏2

�

�

�

@u✏

@x2

�

�

�

2

L2(⌦✏)
+ ku✏k2

L2(⌦✏)  kf ✏kL2(⌦✏)ku✏kL2(⌦✏).

Since kf ✏kL2(⌦✏)  C we have for ✏ 2 (0, 1]

ku✏kH1(⌦✏) uniformly bounded and
�

�

�

@u✏

@x2

�

�

�

L2(⌦✏)
 ✏C.

? The dependence on ✏ plays an important role here.
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Hale and Raugel, J. Math. Pures et Appl. (1992).

Re

b✏(x) = b(x) and G✏(x) = g(x).

Strong convergence to the limit problem
8

<

:

� 1
c(x)

(c(x)ux(x))x + u(x) = f (x) x 2 (0, 1)

ux(0) = ux(1) = 0,

c(x) = g(x) + b(x).
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Passing to the limit

Here ⌦✏ = ⌦ does not depende on ✏

⌦ = {(x1, x2) 2 R2 | x1 2 (0, 1) and � b(x1) < x2 < g(x1)}.

kf ✏kL2(⌦)  C we have ku✏kH1(⌦) uniformly bounded, thus,

u✏ ! u0 weakly in H1(⌦)

for some u0 2 H1(⌦).

Since
�

�

�

@u✏

@x2

�

�

�

L2(⌦)
 ✏C we have u0(x1, x2) = u0(x1)

Z

⌦
u0

@'

@x2
dx1dx2 = lim

✏!0

Z

⌦
u✏ @'

@x2
dx1dx2

= � lim
✏!0

Z

⌦

@u✏

@x2
'dx1dx2 = 0.
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We pass to the limit in the variational formulation
Z

⌦

⇢

@u✏

@x1

@'

@x1
+

1
✏2

@u✏

@x2

@'

@x2
+ u✏'

�

dx1dx2 =

Z

⌦
f ✏ 'dx1dx2

taking '(x1, x2) = '(x1) 2 H1(⌦)

Z

⌦

⇢

@u0

@x1

@'

@x1
+ u0'

�

dx1dx2 =

Z 1

0
f̂ 'dx1

where f̂ 2 L2(0, 1) is the weak limit of

f̂ ✏(x1) =

Z g(x1)

�b(x1)
f ✏(x1, x2) dx2 x1 2 (0, 1).
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Since u0 and ' do not depend on x2

Z 1

0

 

Z g(x1)

�b(x1)
dx2

!

✓

@u0

@x1

@'

@x1
+ 'u0

◆

dx1

=

Z 1

0
c(x1)

⇢

@u0

@x1

@'

@x1
+ u0'

�

dx1 =

Z 1

0
f̂ 'dx1.

That is, u0 is solution of
8

>

<

>

:

� 1
c(x)

(c(x)ux(x))x + u(x) =
f̂ (x)
c(x)

x 2 (0, 1)

ux(0) = ux(1) = 0,

where

c(x) = g(x) + b(x) and f =
f̂ (x)
c(x)

.
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Z 1

0
c

du0

dx

2

dx =

Z

⌦
|ru0|2 dx1dx2

 lim inf
✏2(0,1)

Z

⌦
|ru✏|2 dx1dx2  lim sup

✏2(0,1)

Z

⌦
|ru✏|2 dx1dx2

 lim sup
✏2(0,1)

Z

⌦

(

@u✏

@x1

2
+

1
✏2

@u✏

@x2

2
)

dx1dx2

 �
Z 1

0
c u2

0 dx +

Z 1

0
c f u0 dx =

Z 1

0
c

du0

dx

2

dx .

Hence ku✏kH1(⌦) ! ku0kH1(⌦), and then

u✏ ! u0 strongly in H1(⌦).
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In the abstract form

u✏ = L�1
✏ f ✏ and u0 = L�1

0 f

with
L0u = � 1

c(x)
(c(x) ux)x + u

D(L0) =
�

u 2 H2(0, 1) | u0(0) = u0(1) = 0
 

.

For this case can be proved

kL�1
✏ � E✏L�1

0 M✏kL(L2(⌦),H1(⌦)) = O(✏).
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Arrieta, Ph.D. Thesis, Georgia Tech (1991).

Re

G✏(x) = m(x) + n(x)g(x/✏�) and
b✏(x) ⌘ 0 with 0 < � < 1.
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The limit problem is
8

>

<

>

:

� 1
r(x)

✓

1
s(x)

ux(x)
◆

x
+ u(x) = f (x) x 2 (0, 1)

ux(0) = ux(1) = 0

where

i) G✏(x) * r(x), w � L2(0, 1)

ii) 1
G✏(x) * s(x), w � L2(0, 1).

As observed by Bensoussan, Lions and Papanicolaou (1978)
H1-strong convergence is actually false.
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Now let us consider the case

b✏(x) ⌘ 0 and G✏(x) = g(x/✏), � = 1

⌦✏ = {(x , y) 2 R2 : 0 < x < 1, 0 < y < g(x/✏)}

where g : R 7! R is a smooth periodic function with period L.

Re

In order to do that we need the following ingredients:

• The Multiple Scale method.2

• Extension operators P✏.

• Oscillatory test functions method of Tartar.3
2Bensoussan, Lions, Papanicolaou, (1978).
3D. Cioranescu and J. Paulin, (1998).
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We obtain:

A. Weak convergence with P✏ : H1(⌦✏) 7! H1(⌦)

P✏u✏ ! u0 weakly in H1(⌦) as ✏ ! 0.

where u0 satisfies the homogenized equation given by
(

�q u00(x) + u(x) = f (x), x 2 (0, 1)
u0(0) = u0(1) = 0

with
q =

1
|Y ⇤|

Z

Y⇤

n

1 � @X
@y

(y , z)
o

dydz

Y ⇤ = {(y , z) : y 2 (0, L), 0 < z < g(y)}

and X is given by
8

<

:

��y,zX = 0 in Y ⇤

@NX = N1 on B
X L � periodic in y

where B is the upper and lower boundary of @Y ⇤.
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B. Using corrector approach we also get strong convergence in
H1(R✏) with an appropriated norm:

✏�1/2 kw✏ � w0 � ✏w1kH1(R✏)  C ✏1/2, for ✏ ⇡ 0

where w0 is the solution of the homogenized equation and

w1(x1, x2) = �X (x1/✏, x2/✏)
dw0

dx
(x1) for (x1, x2) 2 R✏.

is the first order corrector.4

4M. Pereira and R. Silva, DCDS (2013).
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For this case setting

u✏ = L�1
✏ f ✏ and u0 = L�1

0 f

with
L0u = �q uxx + u

D(L0) =
�

u 2 H2(0, 1) | u0(0) = u0(1) = 0
 

we get

kL�1
✏ � E✏L�1

0 M✏kL2(⌦✏) ! 0 as ✏ ! 0.

Note that it is enough to guarantee continuity of the nonlinear
semigroup in bounded time, as well as the upper semicontinuity
of the attractors.
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Other elliptic cases with oscillating boundary.

a) b✏ ⌘ 0 and � = 1.

T. Mel’nik and A. Popov, J. Math. Scien. (2009).
J. Arrieta, A. Carvalho, M. Pereira, R. Silva, N. Anal. (2011).
J. Arrieta and M. Pereira, J.M.P.Appl. (2011).
J. Arrieta and Villanueva-Pesquera, SIAM J. Math. Anal.
(2016). (Variable period.)

b) b✏ ⌘ 0 and � > 1.

N. Ansini and A. Braides, J.d’Anal. Math. (2001).
J. Arrieta and M. Pereira, JMAA (2013).
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c) � = 1 and � > 1.

J. Arrieta and M. Villanueva-Pesquera, MMAS (2014).
M. Pereira, Ann. Mat. P. Appl. (2015).

d) � < 1 and � > 1; � and � > 1; � and � < 1.

M. Villanueva-Pesquera, PhD Thesis UCM (2016).
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Lower semicontinuity of the attractors:

sup
'2A0

h

inf
'✏2A✏

�

k'✏ � E✏'kZ↵
✏

 

i

! 0, as ✏ ! 0.

According to

[J. K. Hale and G. Raugel, Ann. Mat. Pura Appl. (1989)]

If the limiting equation is gradient, has a finite number of equilibria, all
of them hyperbolic, the perturbed nonlinear semigroups vary
continuously, the sets of equilibria have fixed finite cardinality and
vary continuously with the parameter, and the local unstable
manifolds of the perturbed problems are lower semicontinuous, then
the family of attractors behaves lower semicontinuously.a

aSee also Arrieta, Carvalho, Langa, Rodríguez-Bernal, J. of Dyn. Syst.
and P. Diff. Eq. (2012).
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a) Without oscillatory boundary.

J. Hale and G. Raugel, JMPA (1992).
J. Arrieta and E. Santamaría, PhD Thesis UCM (2013).
Here they prove

distH1(˙) (A0,A✏)  C ✏ | ln(✏)|

where distH is the symmetric distance of Hausdorff.

Re
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b) With oscillatory boundary: b ⌘ 0 and G✏(x) = g(x/✏).

J. Arrieta, A. Carvalho, M. Pereira, R. Silva, Non. Analysis
(2011).

Re

The other cases and estimate to the attractors
are still being investigated.
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’Apesar de você,

Amanhã há de ser

outro dia.’

Chico Buarque

5

THANK YOU.

5Pela democracia.
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