Asymptotic Direction for Random Walk in Strong Mixing Random Environment

Enrique Guerra Aguilar

Pontificia Universidad Católica de Chile eaguerra@mat.puc.cl Joint work with Alejandro Ramírez. UMA, Argentina.

September 21, 2016

Enrique Guerra Aguilar (PUC) Random Walk in a Random Environment

Outline

Introduction of the Model

- Definition of the model
- Transient and Ballistic Behavior
- A previous result in i.i.d. random environment

2 Polynomial Conditional Criteria

- 3 The Theorem
- Proof of the Theorem

5 Previous Results in Mixing Environment

Random walk in a random environment in dimension d is a canonical Markov chain $(X)_{n\geq 0}$ with state space in \mathbb{Z}^d where the transition probabilities to nearest neighbors are random.

Random walk in a random environment in dimension d is a canonical Markov chain $(X)_{n\geq 0}$ with state space in \mathbb{Z}^d where the transition probabilities to nearest neighbors are random.

• Let
$$\kappa > 0$$
. Define $\mathcal{P}_{\kappa} := \{z \in \mathbb{R}^{2d}, z_i \ge \kappa, \sum_{i=1}^{2d} z_i = 1\}$

Random walk in a random environment in dimension d is a canonical Markov chain $(X)_{n\geq 0}$ with state space in \mathbb{Z}^d where the transition probabilities to nearest neighbors are random.

- Let $\kappa > 0$. Define $\mathcal{P}_{\kappa} := \{ z \in \mathbb{R}^{2d}, \ z_i \ge \kappa, \ \sum_{i=1}^{2d} z_i = 1 \}$
- An environment ω is an element of the set Ω := (P_κ)^{Z^d}, we use the notation ω(x, e), where x ∈ Z^d, e ∈ Z^d, |e|= 1 to mean the x coordinate evaluated at e. Further, let P be the law of the environment ω, which is a p.m. on W the canonical σ-algebra on Ω.

3/20

Random walk in a random environment in dimension d is a canonical Markov chain $(X)_{n\geq 0}$ with state space in \mathbb{Z}^d where the transition probabilities to nearest neighbors are random.

- Let $\kappa > 0$. Define $\mathcal{P}_{\kappa} := \{ z \in \mathbb{R}^{2d}, \ z_i \ge \kappa, \ \sum_{i=1}^{2d} z_i = 1 \}$
- An environment ω is an element of the set Ω := (P_κ)^{Z^d}, we use the notation ω(x, e), where x ∈ Z^d, e ∈ Z^d, |e|= 1 to mean the x coordinate evaluated at e. Further, let P be the law of the environment ω, which is a p.m. on W the canonical σ-algebra on Ω.

3/20

Definitions of Quenched and Annealed Laws

• Let ω be an environment. For $x \in \mathbb{Z}^d$ we define the quenched law $P_{x,\omega}$ as the law of the Markov chain $(X_n)_{n\geq 0}$ with state space \mathbb{Z}^d , satisfying

$$P_{x,\omega}[X_0=x]=1$$

and stationary transition probabilities

$$P_{x,\omega}[X_{n+1} = X_n + e \mid X_n] = \omega(X_n, e), \ |e| = 1$$

• Let ω be an environment. For $x \in \mathbb{Z}^d$ we define the quenched law $P_{x,\omega}$ as the law of the Markov chain $(X_n)_{n\geq 0}$ with state space \mathbb{Z}^d , satisfying

$$P_{x,\omega}[X_0=x]=1$$

and stationary transition probabilities

$$P_{x,\omega}[X_{n+1} = X_n + e \mid X_n] = \omega(X_n, e), \ |e| = 1$$

• Define the annealed law P_x via

$$P_x := \mathbb{P} \otimes P_{x,\omega}$$

The Cone $C(x, I, \alpha)$

Let $I \in \mathbb{S}^{d-1} \cap \mathbb{Q}^d$ and R a rotation on \mathbb{R}^d such that $R(e_1) = I$. Define for fixed small $\alpha > 0$, (2d - 1)-directions for integers $j \in [2, d]$.

$$I_{+j} = I + \alpha R(e_j) / |I + \alpha R(e_j)|$$
$$I_{-j} = I - \alpha R(e_j) / |I_{-j} = I - \alpha R(e_j)|$$

Then for $x \in \mathbb{R}^d$ the cone $C(x, l, \alpha)$ is the set

$$\{z \in \mathbb{Z}^d, (z - x) \cdot l_j \ge 0 \text{ for } j \in [2, d]\}$$

The Cone $C(x, I, \alpha)$

Let $I \in \mathbb{S}^{d-1} \cap \mathbb{Q}^d$ and R a rotation on \mathbb{R}^d such that $R(e_1) = I$. Define for fixed small $\alpha > 0$, (2d - 1)-directions for integers $j \in [2, d]$.

$$I_{+j} = I + \alpha R(e_j) / |I + \alpha R(e_j)|$$
$$I_{-j} = I - \alpha R(e_j) / |I_{-j} = I - \alpha R(e_j)|$$

Then for $x \in \mathbb{R}^d$ the cone $C(x, l, \alpha)$ is the set

$$\{z \in \mathbb{Z}^d, (z - x) \cdot l_j \ge 0 \text{ for } j \in [2, d]\}$$

• The cone mixing condition $CM_{\alpha,\phi}|I$ is the following requirements on the law $\mathbb P$ of the random environment

- The cone mixing condition $CM_{\alpha,\phi}|I$ is the following requirements on the law $\mathbb P$ of the random environment
 - **1** \mathbb{P} is stationary.

- The cone mixing condition $CM_{\alpha,\phi}|I$ is the following requirements on the law $\mathbb P$ of the random environment
 - **1** \mathbb{P} is stationary.
 - **2** For any sets A and B and r > 0, where $A \in \sigma\{\omega(y, \cdot), y \in I \leq 0\}, \mathbb{P}(A) > 0$ and $B \in \sigma\{\omega(y, \cdot), y \in C(rl, l, \alpha)\}$ there exists a function $\phi : [0, \infty) \to [0, \infty)$ with $\lim_{t\to\infty} \phi(t) = 0$, such that

$$|\mathbb{P}(A \cap B)/\mathbb{P}(A) - \mathbb{P}(B)| \le \phi(r \mid I \mid_1)$$

- The cone mixing condition $CM_{\alpha,\phi}|I$ is the following requirements on the law \mathbb{P} of the random environment
 - **1** \mathbb{P} is stationary.
 - **2** For any sets A and B and r > 0, where $A \in \sigma\{\omega(y, \cdot), y \in I \leq 0\}, \mathbb{P}(A) > 0$ and $B \in \sigma\{\omega(y, \cdot), y \in C(rl, l, \alpha)\}$ there exists a function $\phi : [0, \infty) \to [0, \infty)$ with $\lim_{t\to\infty} \phi(t) = 0$, such that

$$\mathbb{P}(A \cap B)/\mathbb{P}(A) - \mathbb{P}(B)| \le \phi(r \mid I \mid_1)$$

• On the other hand, we say that \mathbb{P} has a product structure or the random environment is i.i.d. if there exists some fixed law μ on \mathcal{P}_{κ} so that $\mathbb{P} = \mu^{\otimes \mathbb{Z}^d}$.

Definitions of Asymptotic Behaviors for RWRE

• We say that the RWRE is transient in direction $I \in \mathbb{S}^{d-1}$ if

 $\lim X_n \cdot I = \infty,$

 P_0 - almost surely.

Definitions of Asymptotic Behaviors for RWRE

• We say that the RWRE is transient in direction $I \in \mathbb{S}^{d-1}$ if

$$\lim X_n \cdot I = \infty,$$

 P_0 - almost surely.

• We say that the RWRE is ballistic in direction I if P_0 - almost surely

lim inf $X_n \cdot I/n > 0$.

Definitions of Asymptotic Behaviors for RWRE

• We say that the RWRE is transient in direction $I \in \mathbb{S}^{d-1}$ if

$$\lim X_n \cdot I = \infty,$$

 P_0 - almost surely.

• We say that the RWRE is ballistic in direction I if P_{0} - almost surely

lim inf $X_n \cdot I/n > 0$.

• we say that there exist an asymptotic direction $\hat{v} \neq 0$ for the RWRE if P_{0} - almost surely

$$\lim X_n / \mid X_n \mid = \hat{v}.$$

Conjecture, under $d \ge 2$

When the random environment is i.i.d. it is conjectured that any RWRE which is transient in direction *I* is ballistic in that direction.

Conjecture, under $d \ge 2$

When the random environment is i.i.d. it is conjectured that any RWRE which is transient in direction *I* is ballistic in that direction.

Asymptotic direction for i.i.d environment

In the same kind of random environment, Simenhaus has proven the existence of an asymptotic direction for RWRE under transience in a neighborhood of *I*.

Conjecture, under $d \ge 2$

When the random environment is i.i.d. it is conjectured that any RWRE which is transient in direction *I* is ballistic in that direction.

Asymptotic direction for i.i.d environment

In the same kind of random environment, Simenhaus has proven the existence of an asymptotic direction for RWRE under transience in a neighborhood of *I*.

Important example

We have got an example of RWRE when the random environment is strong mixing on cones which is transient in a neighborhood of *I* but is not ballistic in any direction.

Main purpose

Our purpose is to obtain mild conditions on the walk in order to get asymptotic laws. We want to build a bridge between i.i.d. renormalization techniques and strong mixing. A first step in the bridge construction being the result given here. Motivation

Transience in direction / implies

э

Motivation

Transience in direction / implies

The functional control of these probabilities has been successful so as to prove ballistic behavior in the i.i.d. environment case.

• For each $A \subset \mathbb{Z}^d$ we define

 $\partial A := \{ z \in \mathbb{Z}^d : z \notin A, \text{ there exists some } y \in A \text{ such that } |y-z| = 1 \}.$

• Define also the stopping time

 $T_A := \inf\{n \ge 0 : X_n \notin A\}.$

• Given L, L' > 0, $x \in \mathbb{Z}^d$ and $l \in \mathbb{S}^{d-1}$ we define the boxes $B_{L,L',l}(x) :=$

• Define the *positive boundary* of $B_{L,L',l}(x)$, denoted by $\partial^+ B_{L,L',l}(x)$, as

• Define also the half-space

$$H_{x,l} := \{ y \in \mathbb{Z}^d : y \cdot l < x \cdot l \},\$$

• And the corresponding $\sigma\text{-algebra}$ of the environment on that half-space

$$\mathcal{H}_{x,l} := \sigma(\omega(y) : y \in H_{x,l}).$$

v v

For $M \ge 1$, we say that the *non-effective polynomial* conditional criteria $(PC)_{M,c}|I$ is satisfied if there exists some c > 0 so that for $y \in H_{0,I}$ one has that

$$\lim_{L\to\infty} L^{M} \sup P_{0} \left[X_{T_{B_{L,cL,l}}(0)} \notin \partial^{+} B_{L,cL,l}(0), T_{B_{L,cL,l}(0)} < T_{H_{y,l}} | \mathcal{H}_{y,l} \right] = 0,$$
(1)
where the supremum is taken over all possible environments to the left of $v \cdot l$.

Theorem (Ramírez, G.)

Let $I \in \mathbb{S}^{d-1} \cap \mathbb{Q}^d$, M > 6d, c > 0 and $0 < \alpha \le \min\{\frac{1}{6}, \frac{1}{2c+1}\}$. Consider a d- dimensional random walk in a random environment with stationary law satisfying the the uniform ellipticity condition (UE)|I, the cone mixing condition $(CM)_{\alpha,\phi}|I$ and the non-effective polynomial condition $(PC)_{M,c}|I$. Then, there exists a deterministic $\hat{v} \in \mathbb{S}^{d-1}$ such that P_0 -a.s. one has that

$$\lim_{n\to\infty}\frac{X_n}{|X_n|}=\hat{v}.$$

Sketch of proof.

э

- 一司

æ

Sketch of proof.

• $D' := \inf\{n \ge 0, X_n \notin C(0, I, \alpha)\}$. We proved that $P_0[D' = \infty] > 0.$

Sketch of proof.

•
$$D' := \inf\{n \ge 0, X_n \notin C(0, I, \alpha)\}$$
. We proved that
 $P_0[D' = \infty] > 0.$

Prov L > 0 fixed but large, there exist a random time sequence (\(\tau_i(L))\)_{i≥1}\) so that \(\tau_1\)

and for $i \ge 2$, we define $\tau_i = \tau_1 \circ \theta_{\tau_{i-1}}$. They are finite thanks to Step 1.

Enrique Guerra Aguilar (PUC)

• We prove finiteness of the second conditional moment of the random variable $\kappa^L X_{\tau_1}$ under $(PC)_{M,C}|I$.

- We prove finiteness of the second conditional moment of the random variable κ^LX_{τ1} under (PC)_{M,C}|I.
- Output Step 1, we use the Comets and Zeitouni coupling decomposition, i.e. for n ≥ 2

$$\kappa^{L}(X_{\tau_{n}}-X_{\tau_{n-1}})=\tilde{X}_{n}+Y_{n}$$

where $(\tilde{X}_n)_{n\geq 2}$ is i.i.d. sequence and \tilde{X}_2 distributes as $\kappa^L X_{\tau_1}$ under $P_0[\cdot \mid D' = \infty]$. Then with the help of step 3 we get rid the fluctuation made by Y_n .

- We prove finiteness of the second conditional moment of the random variable κ^LX_{τ1} under (PC)_{M,C}|I.
- Osing Step 1, we use the Comets and Zeitouni coupling decomposition, i.e. for n ≥ 2

$$\kappa^{L}(X_{\tau_{n}}-X_{\tau_{n-1}})=\tilde{X}_{n}+Y_{n}$$

where $(\tilde{X}_n)_{n\geq 2}$ is i.i.d. sequence and \tilde{X}_2 distributes as $\kappa^L X_{\tau_1}$ under $P_0[\cdot \mid D' = \infty]$. Then with the help of step 3 we get rid the fluctuation made by Y_n .

So The previous step and standard arguments prove the Theorem.

Strong law under stronger assumptions

Comets and Zeitouni proved ballistic behavior when the environment is cone mixing, however under a strong assumption of integrability for the regeneration times.

18 / 20

Strong law under stronger assumptions

Comets and Zeitouni proved ballistic behavior when the environment is cone mixing, however under a strong assumption of integrability for the regeneration times.

Strong law under Dobrushin-Sloshman mixing condition

Rassoul-Agha proved ballistic behavior under a weaker condition called Kalikow's condition in a kind of mixing environments, however the strategy used there makes hard to apply renormalization techniques.

Strong law under stronger assumptions

Comets and Zeitouni proved ballistic behavior when the environment is cone mixing, however under a strong assumption of integrability for the regeneration times.

Strong law under Dobrushin-Sloshman mixing condition

Rassoul-Agha proved ballistic behavior under a weaker condition called Kalikow's condition in a kind of mixing environments, however the strategy used there makes hard to apply renormalization techniques.

- N. Berger, A. Drewitz and A.F. Ramírez. *Effective Polynomial Ballisticity Conditions for Random Walk in Random Environment.* To appear in Comm. Pure. Appl. Math. (2014).
- F. Comets and O. Zeitouni. *A law of large numbers for random walks in random mixing environments.* Ann. Probab. 32, no. 1B, 880914, (2004).
- F. Rassoul-Agha. The point of view of the particle on the law of large numbers for random walks in a mixing random environment. Ann. Probab. 31, no. 3, 14411463, (2003).
- F. Simenhaus. Asymptotic direction for random walks in random environments. Ann. Inst. H. Poincar Probab. Statist. 43 , no. 6, 751761, (2007).
- A.S. Sznitman. *Slowdown estimates and central limit theorem for random walks in random environment.*J. Eur. Math. Soc. 2, no. 2, 93143 (2000).

Thanks

Enrique Guerra Aguilar (PUC) Random Walk in a Random Environment

< □ > < ---->

2