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What is an environment?

Random walk in a random environment in dimension d is a canonical
Markov chain (X )n≥0 with state space in Zd where the transition
probabilities to nearest neighbors are random.

Let κ > 0. Define Pκ := {z ∈ R2d , zi ≥ κ,
∑2d

i=1 zi = 1}
An environment ω is an element of the set Ω := (Pκ)Z

d
, we use the

notation ω(x , e), where x ∈ Zd , e ∈ Zd , | e |= 1 to mean the x
coordinate evaluated at e. Further, let P be the law of the
environment ω, which is a p.m. on W the canonical σ-algebra on Ω.
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Definitions of Quenched and Annealed Laws

Let ω be an environment. For x ∈ Zd we define the quenched law
Px ,ω as the law of the Markov chain (Xn)n≥0 with state space Zd ,
satisfying

Px ,ω[X0 = x ] = 1

and stationary transition probabilities

Px ,ω[Xn+1 = Xn + e | Xn] = ω(Xn, e), |e| = 1

Define the annealed law Px via

Px := P⊗ Px ,ω
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The Cone C (x , l , α)

Let l ∈ Sd−1 ∩Qd and R a rotation on Rd such that R(e1) = l . Define for
fixed small α > 0, (2d − 1)-directions for integers j ∈ [2, d ].

l+j = l + αR(ej)/ | l + αR(ej) |
l−j = l − αR(ej)/ | l−j = l − αR(ej) |

Then for x ∈ Rd the cone C (x , l , α) is the set

{z ∈ Zd , (z − x) · lj ≥ 0 for j ∈ [2, d ]}

x

β = arctan(α)

l−2l−2

l2

l

C(x, l, α)
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Cone mixing and i.i.d. conditions on the environment

The cone mixing condition CMα,φ|l is the following requirements on
the law P of the random environment

1 P is stationary.
2 For any sets A and B and r > 0, where

A ∈ σ{ω(y , ·), y · l ≤ 0},P(A) > 0 and B ∈ σ{ω(y , ·), y ∈ C (rl , l , α)}
there exists a function φ : [0,∞)→ [0,∞) with limt→∞ φ(t) = 0, such
that

|P(A ∩ B)/P(A)− P(B)| ≤ φ(r | l |1)

On the other hand, we say that P has a product structure or the
random environment is i.i.d. if there exists some fixed law µ on Pκ so
that P = µ⊗Z

d
.
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Definitions of Asymptotic Behaviors for RWRE

We say that the RWRE is transient in direction l ∈ Sd−1 if

limXn · l =∞,

P0- almost surely.

We say that the RWRE is ballistic in direction l if P0- almost surely

lim inf Xn · l/n > 0.

we say that there exist an asymptotic direction v̂ 6= 0 for the RWRE if
P0- almost surely

limXn/ | Xn |= v̂ .
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Simenhaus Theorem

Conjecture, under d ≥ 2

When the random environment is i.i.d. it is conjectured that any RWRE
which is transient in direction l is ballistic in that direction.

Asymptotic direction for i.i.d environment

In the same kind of random environment, Simenhaus has proven the
existence of an asymptotic direction for RWRE under transience in a
neighborhood of l .

Important example

We have got an example of RWRE when the random environment is
strong mixing on cones which is transient in a neighborhood of l but is not
ballistic in any direction.
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Direction of our research

Main purpose

Our purpose is to obtain mild conditions on the walk in order to get
asymptotic laws. We want to build a bridge between i.i.d. renormalization
techniques and strong mixing . A first step in the bridge construction
being the result given here.
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Motivation

Transience in direction l implies

lL

L

P0[T̃
l
−L < T l

L] →L→∞ 0

The functional control of these probabilities has been successful so as to
prove ballistic behavior in the i.i.d. environment case.
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Polynomial conditional criteria

For each A ⊂ Zd we define

∂A := {z ∈ Zd : z 6∈ A, there exists some y ∈ A such that |y−z | = 1}.

Define also the stopping time

TA := inf{n ≥ 0 : Xn 6∈ A}.
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Given L, L′ > 0, x ∈ Zd and l ∈ Sd−1 we define the boxes
BL,L′,l(x) :=

x l

L

L′

Define the positive boundary of BL,L′,l(x), denoted by ∂+BL,L′,l(x), as

x l

L

L′
∂+BL,L′,l(x)
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Polynomial Conditional Criteria

Define also the half-space

Hx ,l := {y ∈ Zd : y · l < x · l},
And the corresponding σ-algebra of the environment on that
half-space

Hx ,l := σ(ω(y) : y ∈ Hx ,l).
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Polynomial Conditional Criteria

For M ≥ 1, we say that the non-effective polynomial conditional criteria
(PC )M,c |l is satisfied if there exists some c > 0 so that for y ∈ H0,l one
has that

lim
L→∞

LM supP0

[
XTBL,cL,l

(0) 6∈ ∂+BL,cL,l(0),TBL,cL,l (0) < THy,l
|Hy ,l

]
= 0,

(1)
where the supremum is taken over all possible environments to the left of
y · l .
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Main Result

Theorem (Raḿırez, G.)

Let l ∈ Sd−1 ∩Qd , M > 6d, c > 0 and 0 < α ≤ min{1
9 ,

1
2c+1}. Consider

a d- dimensional random walk in a random environment with stationary
law satisfying the the uniform ellipticity condition (UE )|l , the cone mixing
condition (CM)α,φ|l and the non-effective polynomial condition (PC )M,c |l .
Then, there exists a deterministic v̂ ∈ Sd−1 such that P0-a.s. one has that

lim
n→∞

Xn

|Xn|
= v̂ .
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Proof of Theorem

Sketch of proof.

1 D ′ := inf{n ≥ 0, Xn 6∈ C (0, l , α)}. We proved that

P0[D ′ =∞] > 0.

2 For L > 0 fixed but large, there exist a random time sequence
(τi (L))i≥1 so that τ1

Cone Cone

Cone

The walk stays forever

l0

τ1

L

LL

and for i ≥ 2, we define τi = τ1 ◦ θτi−1 . They are finite thanks to Step
1.
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Proof of the Theorem

3 We prove finiteness of the second conditional moment of the random
variable κLXτ1 under (PC )M,C |l .

4 Using Step 1, we use the Comets and Zeitouni coupling
decomposition, i.e. for n ≥ 2

κL(Xτn − Xτn−1) = X̃n + Yn

where (X̃n)n≥2 is i.i.d. sequence and X̃2 distributes as κLXτ1 under
P0[· | D ′ =∞]. Then with the help of step 3 we get rid the
fluctuation made by Yn.

5 The previous step and standard arguments prove the Theorem.
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Known results in mixing random environment

Strong law under stronger assumptions

Comets and Zeitouni proved ballistic behavior when the environment is
cone mixing, however under a strong assumption of integrability for the
regeneration times.

Strong law under Dobrushin-Sloshman mixing condition

Rassoul-Agha proved ballistic behavior under a weaker condition called
Kalikow’s condition in a kind of mixing environments, however the strategy
used there makes hard to apply renormalization techniques.
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