Un teorema de Lipschitz-Picard fraccionario para ecuaciones diferenciales sobre un espacio de Banach y sus aplicaciones

Demian Goos, Eduardo Santillan Marcus

20 a 23 de septiembre - 2015

Reunión anual de la Unión Matemática Argentina 2016

Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Contexto físico y aplicaciones de ecuaciones diferenciales fraccionarias:

- Modelado del flujo de neutrones en un reactor nuclear
- Modelado de relaciones humanas y búsqueda de equilibrio
- Modelado del comportamiento de medios viscoelásticos
- Modelado de la dinámica y la propagación ondas sísmicas
- Modelado de la evolución del mercado financiero

Definición

Sea $\alpha \in \mathbb{R}^+$. El operador integral fraccionaria de Riemann–Liouville de orden α , que será denotado I_0^{α} , está definido en $L^1([a,b])$ por

$$I_0^{\alpha}f(t)=rac{1}{\Gamma(lpha)}\int\limits_0^t(t- au)^{lpha-1}f(au)d au.$$

Definición

Sea $\alpha \in \mathbb{R}^+$. El operador integral fraccionaria de Riemann–Liouville de orden α , que será denotado I_0^{α} , está definido en $L^1([a,b])$ por

$$I_0^{\alpha}f(t)=rac{1}{\Gamma(\alpha)}\int\limits_0^t(t- au)^{lpha-1}f(au)d au.$$

Definición

Sea $\alpha \in \mathbb{R}^+$ y $n = \lceil \alpha \rceil$. El operador derivada fraccionaria de Caputo de orden α , que será denotado $^CD_0^{\alpha}$, se define sobre $W^{n,1}([a,b])$ como

$${}^{C}D_{0}^{\alpha}f(t)=I_{0}^{n-\alpha}f^{(n)}(t)=\frac{1}{\Gamma(n-\alpha)}\int\limits_{0}^{t}\left(t-\tau\right)^{n-\alpha-1}f^{(n)}\left(\tau\right)d\tau.$$

Teorema de Lipschitz-Picard fraccionario

Sea E un espacio de Banach y sea $F: E \mapsto E$ un operador Lipschitziano:

$$||Fu - Fv|| \le L||u - v||, \quad \forall u, v \in E$$

con L>0 y sea $\alpha\in(0,1)$. Entonces para todo $u_0\in E$ existe $u\in C^1([0,\infty)\,;E)$ único de modo que resuelve el problema de Cauchy

$$(PC_{\alpha}) \begin{cases} \frac{\partial^{\alpha}}{\partial t^{\alpha}} u(t) = Fu(t) & \text{si } t \in \mathbb{R}_{0}^{+} \\ u(0) = u_{0}. \end{cases}$$

Prueba:

Existencia:

Una función verifica (PC_{α}) si y sólo si verifica la ecuación integral de Volterra

$$u(t) = u_0 + I_0^{\alpha}(F(u)) = u_0 + \frac{1}{\Gamma(\alpha)} \int_0^t (t-\tau)^{\alpha-1} F(u(\tau)) d\tau.$$

Prueba:

Existencia:

Una función verifica (PC_{α}) si y sólo si verifica la ecuación integral de Volterra

$$u(t) = u_0 + I_0^{\alpha}(F(u)) = u_0 + \frac{1}{\Gamma(\alpha)} \int_0^t (t-\tau)^{\alpha-1} F(u(\tau)) d\tau.$$

Consideramos el espacio de funciones

$$X = \left\{ u \in C\left([0,\infty); E\right) : \sup_{t \geq 0} \mathcal{E}_{\alpha}(-kt) \|u(t)\| < \infty \right\},\,$$

donde k se definirá luego y

$$\mathcal{E}_{\alpha}(t) = \sum_{i=0}^{\infty} \frac{t^i}{\Gamma(\alpha i + 1)}$$

es la función de Mittag-Leffler, generalización fraccionaria de la función exponencial.

Se dota X de la norma

$$||u||_X = \sup_{t\geq 0} \mathcal{E}_{\alpha}(-kt)||u(t)||$$

y se prueba que $(X, \|\cdot\|_X)$ es un espacio de Banach.

Se dota X de la norma

$$||u||_X = \sup_{t\geq 0} \mathcal{E}_{\alpha}(-kt)||u(t)||$$

y se prueba que $(X, \|\cdot\|_X)$ es un espacio de Banach. Se fija k de manera tal que el operador

$$\Phi: X \mapsto X$$

$$u \mapsto (\Phi u)(t) = u_0 + \frac{1}{\Gamma(\alpha)} \int_0^t (t - \tau)^{\alpha - 1} F(u(\tau)) d\tau$$

es Lipschitziano y se utiliza el teorema de punto fijo de Banach para concluir la existencia de soluciones de (PC_{α}) .

Unicidad: Se supone la existencia de dos soluciones, u y v. Se considera

$$\Psi(t) = \|u(t) - v(t)\|.$$

Con lo que

$$\Psi(t) = \left\| \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t - \tau)^{\alpha - 1} F(u(\tau) - v(\tau)) d\tau \right\|$$

$$\leq \frac{L}{\Gamma(\alpha)} \int_{0}^{t} (t - \tau)^{\alpha - 1} \|u(\tau) - v(\tau)\| d\tau$$

$$= \frac{L}{\Gamma(\alpha)} \int_{0}^{t} (t - \tau)^{\alpha - 1} \Psi(\tau) d\tau$$

Del lema de Gronwall surge que $\Psi = 0$.

Continuidad con respecto al orden de derivación

Sea u_{α} la solución del problema de Cauchy fraccionario (PC_{α}) y sea u_1 la solución del problema de Cauchy clásico

$$(PC_1)$$
 $\begin{cases} \frac{\partial}{\partial t}u(t) = Fu(t) & \text{si } t \in \mathbb{R}_0^+ \\ u(0) = u_0. \end{cases}$

Entonces se tiene que $u_{\alpha} \rightarrow u_1$ cuando $\alpha \rightarrow 1$.

Continuidad con respecto al orden de derivación

Sea u_{α} la solución del problema de Cauchy fraccionario (PC_{α}) y sea u_1 la solución del problema de Cauchy clásico

$$(PC_1)$$
 $\begin{cases} \frac{\partial}{\partial t}u(t) = Fu(t) & \text{si } t \in \mathbb{R}_0^+ \\ u(0) = u_0. \end{cases}$

Entonces se tiene que $u_{\alpha} \rightarrow u_1$ cuando $\alpha \rightarrow 1$.

Aplicaciones del teorema de Lipschitz-Picard fraccionario

1) Sea $E = \mathbb{R}^n$ y sea $f : \mathbb{R}^n \mapsto \mathbb{R}^n$ una función Lipschitziana. Entonces el problema de Cauchy

$$\begin{cases} \frac{\partial}{\partial t} u(t) = f(u(t)) & \text{si } t \in \mathbb{R}_0^+ \\ u(0) = u_0. \end{cases}$$

tiene solución y es única.

2) Sea H un espacio de Hilbert, sea A : H → H un operador maximal monótono, es decir

$$(Av, v) \ge 0$$
 $\forall v \in H$ $\forall v \in H$ $\exists u \in H \text{ tal que } u + Au = v.$

Sea el problema

$$(PC_{\alpha})$$
 $\begin{cases} \frac{\partial^{\alpha}}{\partial t^{\alpha}}u + Au = 0 & \text{si } t \in \mathbb{R}_{0}^{+} \\ u(0) = u_{0}. \end{cases}$

2) Sea H un espacio de Hilbert, sea $A: H \mapsto H$ un operador maximal monótono, es decir

$$(Av, v) \ge 0 \quad \forall v \in H$$

$$\forall v \in H \ \exists u \in H \ tal \ que \ u + Au = v.$$

Sea el problema

$$(PC_{\alpha}) \begin{cases} rac{\partial^{\alpha}}{\partial t^{\alpha}} u + Au = 0 & \text{si } t \in \mathbb{R}_{0}^{+} \\ u(0) = u_{0}. \end{cases}$$

Para probar existencia y unicidad de (PC_{α}) , se considera la regularización Yosida de A de parámetro λ ,

$$A_{\lambda} = \frac{1}{\lambda} \left(I - (I + \lambda A)^{-1} \right),$$

que verifica $A_{\lambda} \to A$ cuando $\lambda \to 0$.

Se considera la sucesión de problemas auxiliares

$$(PC_{\alpha,\lambda})\begin{cases} \frac{\partial^{\alpha}}{\partial t^{\alpha}}u + A_{\lambda}u = 0 & \text{si } t \in \mathbb{R}_{0}^{+} \\ u(0) = u_{0}. \end{cases}$$

Como A_{λ} es Lipschitziano para todo λ , por el teorema de Lipschitz-Picard fraccionario se sabe que $(PC_{\alpha,\lambda})$ tiene solución única, u_{λ} .

Finalmente se prueba que u_{λ} es convergente cuando $\lambda \to 0$ y que el límite u es solución del problema original.

Se considera la sucesión de problemas auxiliares

$$(PC_{\alpha,\lambda}) \begin{cases} \frac{\partial^{\alpha}}{\partial t^{\alpha}} u + A_{\lambda} u = 0 & \text{si } t \in \mathbb{R}_{0}^{+} \\ u\left(0\right) = u_{0}. \end{cases}$$

Como A_{λ} es Lipschitziano para todo λ , por el teorema de Lipschitz-Picard fraccionario se sabe que $(PC_{\alpha,\lambda})$ tiene solución única, u_{λ} .

Finalmente se prueba que u_{λ} es convergente cuando $\lambda \to 0$ y que el límite u es solución del problema original.

3) Considerando en **2)** $H = L^2(\mathbb{R})$ y $A = -\Delta$, se puede probar que el Laplaciano es maximal monótono y que entonces

$$(PC_{\alpha}) \begin{cases} \frac{\partial^{\alpha}}{\partial t^{\alpha}} u(x,t) = \Delta u(x,t) & \text{si } x \in \mathbb{R}, t \in \mathbb{R}_{0}^{+} \\ u(x,0) = u_{0}(x) & \text{si } x \in \mathbb{R} \end{cases}$$

tiene solución única.

K. Li, J. Pengo, J. Gao, *Nonlocal Fractional Semilinear Differential Equations in Separable Banach Spaces*, Electronic Journal of Differential Equations, Vol. 2013 No. 07, 2013.

J. Wang, X. Dong, W. Wei, *On the Existence of Solutions for a Class of Fractional Differential Equations*, Stud. Univ. Babes-yai Math, Vol 57 No. 01, 2012.

A. Heibig, L. Palade, *On the Existence of Solutions to the fractional derivative equations, of relevance to diffusion in complex sistems,* Nonlinear Analysis: Modelling and Contro, Vol. 17 No. 2, 2012.

M. Benchohra, J. Graef, F. Mostefai, *Weak Solutions for Nonlinear Fractional Differential Equations on Reflexive Banach Spaces*, Electronic Journal of Qualitative Theory of Differential Equations, Vol. 2010 No. 54, 2010.

Brezis, H., Analyse Fonctionnelle, Dunod, 2005.

 $\operatorname{DIETHELM},\ K.,\ \textit{The Analysis of Fractional Differential Equations},\ Springer,\ 2004.$