Gibbs measures on permutations over \mathbb{Z}^d with random multiplicities

Nicolás Frevenza

Joint work with I. Armendáriz and P.A. Ferrari.

Universidad de Buenos Aires - CONICET - Argentina

Reunión de la Unión Matemática Argentina

• Let $\theta = \{\theta(x)\}_{x \in \mathbb{Z}^d}$ be a sequence non negative integers.

- Let $\theta = \{\theta(x)\}_{x \in \mathbb{Z}^d}$ be a sequence non negative integers.
- Our set of points is $\Omega_{\theta} = \{ s = (x, i) \colon 1 \le i \le \theta(x), x \in \mathbb{Z}^d \}.$
- X(s) is the projection on \mathbb{Z}^d .

- Let $\theta = \{\theta(x)\}_{x \in \mathbb{Z}^d}$ be a sequence non negative integers.
- Our set of points is $\Omega_{\theta} = \{ s = (x, i) \colon 1 \le i \le \theta(x), x \in \mathbb{Z}^d \}.$
- X(s) is the projection on \mathbb{Z}^d .

• Let S_{θ} be the set of permutations of Ω_{θ} .

• If $\theta(x) = 1$ for all $x \in \mathbb{Z}^d$, we recover the lattice \mathbb{Z}^d .

In general, we are interested in the case when {θ(x)}_{x∈Z^d} is an i.i.d sequence.

• For $\sigma \in S_{\theta}$, the Hamiltonian at finite volume Λ :

$$H_{\Lambda}(\sigma) := \sum_{s \colon X(s) \in \Lambda} \|X(\sigma(s)) - X(s)\|^2.$$

▶ For $\sigma \in S_{\theta}$, the Hamiltonian at finite volume Λ :

$$H_{\Lambda}(\sigma) := \sum_{s \colon X(s) \in \Lambda} \|X(\sigma(s)) - X(s)\|^2.$$

 Only the jumps in blue contribute to the Hamiltonian at Λ, so H_Λ(σ) = 19. The permutations that are compatible with boundary condition $\xi \in S_{\theta}$ are given by:

$$S_{\theta,\Lambda}^{\xi} = \{ \sigma \in S_{\theta} \colon \sigma^{n}(s) = \xi^{n}(s) \text{ for all } s \in \Lambda^{c}, \ n \in \mathbb{Z} \}.$$

The permutations that are compatible with boundary condition $\xi \in S_{\theta}$ are given by:

$$S_{\theta,\Lambda}^{\xi} = \{ \sigma \in S_{\theta} \colon \sigma^{n}(s) = \xi^{n}(s) \text{ for all } s \in \Lambda^{c}, \ n \in \mathbb{Z} \}.$$

A permutation compatible with ξ at volume Λ looks like:

The permutations that are compatible with boundary condition $\xi \in S_{\theta}$ are given by:

$$S_{\theta,\Lambda}^{\xi} = \{ \sigma \in S_{\theta} \colon \sigma^{n}(s) = \xi^{n}(s) \text{ for all } s \in \Lambda^{c}, \ n \in \mathbb{Z} \}.$$

A permutation compatible with ξ at volume Λ looks like:

A specification system is a family of conditional probabilities with respect to fixed configurations outside of bounded regions.

A specification system is a family of conditional probabilities with respect to fixed configurations outside of bounded regions.

 The specification at volume Λ corresponding to temperature α > 0 and boundary condition ξ is given by:

$$G^{\xi}_{ heta,\Lambda,lpha}(\sigma) = rac{e^{-lpha H_{\Lambda}(\sigma)}}{Z^{\xi}_{ heta,\Lambda,lpha}} \mathbf{1}\{\sigma \in S^{\xi}_{ heta,\Lambda}\}\,.$$

A specification system is a family of conditional probabilities with respect to fixed configurations outside of bounded regions.

 The specification at volume Λ corresponding to temperature α > 0 and boundary condition ξ is given by:

$$G^{\xi}_{ heta,\Lambda,lpha}(\sigma) = rac{\mathrm{e}^{-lpha H_{\Lambda}(\sigma)}}{Z^{\xi}_{ heta,\Lambda,lpha}} \mathbf{1}\{\sigma\in S^{\xi}_{ heta,\Lambda}\}\,.$$

A probability measure µ on S_θ is a Gibbs measure when for any Borel set A and any Λ ⊂ Z^d finite, we have

$$\mu(A) = \int G_{\theta,\Lambda,lpha}^{\xi}(A) \,\mathrm{d}\mu(\xi) \,.$$

The problem

We ask about:

 $1. \ \mbox{the existence of a Gibbs measure in the quenched sense.}$

The problem

We ask about:

- 1. the existence of a Gibbs measure in the quenched sense.
- 2. properties of permutations under the Gibbs measure, for example, if its decomposition has only finite cycles or not.

The problem

We ask about:

- $1. \ \mbox{the existence of a Gibbs measure in the quenched sense.}$
- 2. properties of permutations under the Gibbs measure, for example, if its decomposition has only finite cycles or not.
- 3. uniqueness in some sense.

Case: $\theta(x) = 1$ for all $x \in \mathbb{Z}^d$, so, $\Omega_{\theta} = \mathbb{Z}^d$.

Let $\sigma \sim \mu,$ where μ is a Gibbs measure corresponding to temperature $\alpha.$

Case: $\theta(x) = 1$ for all $x \in \mathbb{Z}^d$, so, $\Omega_{\theta} = \mathbb{Z}^d$.

Let $\sigma \sim \mu$, where μ is a Gibbs measure corresponding to temperature α .

► d = 1, 2: σ has only finite cycles on its decomposition, μ -a.s. for all $\alpha > 0$.

Case: $\theta(x) = 1$ for all $x \in \mathbb{Z}^d$, so, $\Omega_{\theta} = \mathbb{Z}^d$.

Let $\sigma \sim \mu$, where μ is a Gibbs measure corresponding to temperature α .

- d = 1, 2: σ has only finite cycles on its decomposition, μ -a.s. for all $\alpha > 0$.
- d ≥ 3: ∃ α_c > 0 such that σ has an infinite cycle μ-a.s. if α < α_c, but all cycles are finite μ-a.s. if α > α_c.

Case: $\theta(x) = 1$ for all $x \in \mathbb{Z}^d$, so, $\Omega_{\theta} = \mathbb{Z}^d$.

Let $\sigma \sim \mu$, where μ is a Gibbs measure corresponding to temperature α .

- d = 1, 2: σ has only finite cycles on its decomposition, μ -a.s. for all $\alpha > 0$.
- d ≥ 3: ∃ α_c > 0 such that σ has an infinite cycle μ-a.s. if α < α_c, but all cycles are finite μ-a.s. if α > α_c.
- ► d ≥ 3 and α < α_c: the scaling limit of the sorted size of cycles converges to the Poisson-Dirichlet distribution, as in the case of uniform permutations¹.

¹ Schramm, Oded; *Compositions of random transpositions*, Israel J. Math., 2005.

Related results

Case: $\Omega_{\theta} = \mathbb{Z}^d$.

- Biskup and Richthammer¹: d = 1, existence and uniqueness.
 All cycles are finite for all α > 0.
- Armendáriz, Ferrari, Groisman and Leonardi²: d ≥ 1 and α large, existence and uniqueness over finite cycle permutations.

¹ *Gibbs measures on permutations over one-dimensional discrete*, Ann. Appl. Probab., 2015.

² Finite cycle Gibbs measures on permutations of \mathbb{Z}^d , J. Stat. Phys., 2015.

Random multiplicities

Why? We want to study a model over a random discrete set of points, such as Poisson point process on \mathbb{R}^d .

Random multiplicities

Why? We want to study a model over a random discrete set of points, such as Poisson point process on \mathbb{R}^d .

Random multiplicities

Why? We want to study a model over a random discrete set of points, such as Poisson point process on \mathbb{R}^d .

Results

Let $\theta = {\theta(x)}_{x \in \mathbb{Z}^d}$ be an i.i.d. sequence of Poisson random variables with mean ρ .

Results

Let $\theta = \{\theta(x)\}_{x \in \mathbb{Z}^d}$ be an i.i.d. sequence of Poisson random variables with mean ρ .

Theorem. (Armendáriz, Ferrari, F.)

Consider $\rho \in (0, 1/2)$. If $\alpha \ge \alpha_*(\rho, d)$, then for almost every realization of θ we have:

- there exists a Gibbs measure μ_{θ} .
- μ_θ concentrates on permutations whose decomposition has only finite cycles.

It is the unique Gibbs measure with this property.

• μ_{θ} can be obtained as a weak limit of $(G_{\theta,\Lambda}^{id})_{\Lambda \in \mathbb{Z}^d}$.

Fix a realization of $\boldsymbol{\theta}.$ We will focus on identity boundary conditions.

Fix a realization of $\boldsymbol{\theta}.$ We will focus on identity boundary conditions.

• Γ_{θ} is the set of finite cycles.

Fix a realization of $\boldsymbol{\theta}.$ We will focus on identity boundary conditions.

- Γ_{θ} is the set of finite cycles.
- The support of a cycle γ is the set $\{\gamma\} = \{s \in \Omega_{\theta} : \gamma(s) \neq s\}$.

Fix a realization of θ . We will focus on identity boundary conditions.

- Γ_{θ} is the set of finite cycles.
- The support of a cycle γ is the set $\{\gamma\} = \{s \in \Omega_{\theta} : \gamma(s) \neq s\}.$
- $\Gamma_{\theta,\Lambda}$ is the set of finite cycles with support included in Λ .

Fix a realization of θ . We will focus on identity boundary conditions.

- Γ_{θ} is the set of finite cycles.
- The support of a cycle γ is the set $\{\gamma\} = \{s \in \Omega_{\theta} \colon \gamma(s) \neq s\}$.
- $\Gamma_{\theta,\Lambda}$ is the set of finite cycles with support included in Λ .
- We say that $\gamma \in \sigma$ when γ is a cycle in the decomposition of σ .

Fix a realization of $\boldsymbol{\theta}.$ We will focus on identity boundary conditions.

- Γ_{θ} is the set of finite cycles.
- The support of a cycle γ is the set $\{\gamma\} = \{s \in \Omega_{\theta} : \gamma(s) \neq s\}$.
- $\Gamma_{\theta,\Lambda}$ is the set of finite cycles with support included in Λ .
- We say that $\gamma \in \sigma$ when γ is a cycle in the decomposition of σ .

A finite cycle permutation σ can be represented as: $\eta \in \{0,1\}^{\Gamma_{\theta}}$ such that $\eta(\gamma) = \mathbf{1}\{\gamma \in \sigma\}$.

 η is called the gas of cycles of $\sigma.$

Using the gas of cycles representation we can write the set of compatible permutations with the identity b.c. as:

$$S^{\text{id}}_{\theta,\Lambda} = \{\eta \in \{0,1\}^{\Gamma_{\theta}} \colon \eta(\gamma)\eta(\gamma') = 0 \text{ if } \{\gamma\} \cap \{\gamma'\} \neq \emptyset \ \forall \gamma, \gamma' \in \Gamma_{\theta,\Lambda}\},\$$

and the specification at volume Λ :

$$G_{\theta,\Lambda}^{\mathsf{id}}(\sigma) = \frac{1}{Z_{\theta,\Lambda,\alpha}^{\mathsf{id}}} \prod_{\gamma \in \Gamma_{\theta,\Lambda}} \left(e^{-\alpha H(\gamma)} \right)^{\eta(\gamma)} \mathbf{1}\{\eta \in S_{\theta,\Lambda}^{\mathsf{id}}\}.$$

Let ν_{θ} the product measure on $\mathbb{N}_{0}^{\Gamma_{\theta}}$ such that each marginal is distributed as Poisson of mean $e^{-\alpha H(\gamma)}$.

Let ν_{θ} the product measure on $\mathbb{N}_{0}^{\Gamma_{\theta}}$ such that each marginal is distributed as Poisson of mean $e^{-\alpha H(\gamma)}$.

Lemma.

On $\mathbb{N}_0^{\Gamma_\theta}$ consider the following Birth and Death process:

- A cycle γ is born at rate $e^{-\alpha H(\gamma)}$, independently of others.
- ► A cycle \(\gamma\) (that is alive) dies at rate 1, also independently of others.

Then ν_{θ} is invariant for this dynamics.

Cycles γ, γ' are compatible when $\{\gamma\} \cap \{\gamma'\} = \emptyset$.

Cycles γ, γ' are compatible when $\{\gamma\} \cap \{\gamma'\} = \emptyset$. Lemma.

Let $\Lambda \subset \mathbb{Z}^d$ finite. On $\{0,1\}^{\Gamma_{\theta,\Lambda}}$ consider the following dynamics:

- A cycle γ tries to appear at rate e^{-αH(γ)} but it is effectively added if γ is compatible with all cycles already present.
- A cycle γ (that is alive) is removed at rate 1, also independently of others.

Then $G_{\theta,\Lambda}^{id}$ is invariant for this dynamics.

Note that the dynamics is well defined since the space state $\{0,1\}^{\Gamma_{\theta,\Lambda}}$ is finite.

Lemma.

Let $\Lambda \subset \mathbb{Z}^d$ finite. Then, ν_{θ} stochastically dominates $G_{\theta,\Lambda}^{id}$, i.e., there exists a construction such that

$$\eta^{\Lambda}(\gamma) \leq \eta^{o}(\gamma)$$
 almost surely $\forall \gamma \in \Gamma_{\theta}$,

when η^{Λ} is sampled with $G_{\theta,\Lambda}^{id}$ and η^{o} is sampled with ν_{θ} .

Let \mathcal{N} a Poisson process on $\Gamma_{\theta,\Lambda} \times \mathbb{R} \times \mathbb{R}^+$ with rate measure $e^{-\alpha H(\gamma)} \times \mathrm{d}t \times e^{-s} \mathrm{d}s$.

Let \mathcal{N} a Poisson process on $\Gamma_{\theta,\Lambda} \times \mathbb{R} \times \mathbb{R}^+$ with rate measure $e^{-\alpha H(\gamma)} \times \mathrm{d}t \times e^{-s} \mathrm{d}s$.

• Define
$$\eta_t^o = (\eta_t^o(\gamma): \gamma \in \Gamma_\theta)$$
 as:
$$\eta_t^o(\gamma) = \sum_{(\gamma, t', s') \in \mathcal{N}} \mathbf{1}\{t' \le t < t + s'\}.$$

• η_t^o has distribution ν_{θ} for all $t \in \mathbb{R}$.

Denote by $\mathcal{K}^{\Lambda} = \mathcal{K}^{\Lambda}(\eta_t)$ the set of marks (γ, t', s') of η_t that can be added.

Denote by $\mathcal{K}^{\Lambda} = \mathcal{K}^{\Lambda}(\eta_t)$ the set of marks (γ, t', s') of η_t that can be added.

We can define the process η_t^{Λ} as:

$$\eta^{\mathsf{A}}_t(\gamma) = \sum_{(\gamma, t', s') \in \mathcal{N}} \mathbf{1}\{t' \leq t < t' + s'\} \mathbf{1}\{(\gamma, t', s') \in \mathcal{K}^{\mathsf{A}}\} \mathbf{1}\{\gamma \in \mathsf{\Gamma}_{\theta, \mathsf{A}}\}.$$

The problem is, how to decide if (γ, t', s') is in \mathcal{K}^{Λ} ?

For $(\gamma, t', s') \in \mathcal{N}$ denote by $A_{\Lambda}^{(\gamma, t', s')}$ the set of marks in \mathcal{N} that were born in the past and may influence the birth of (γ, t', s') .

For $(\gamma, t', s') \in \mathcal{N}$ denote by $A_{\Lambda}^{(\gamma, t', s')}$ the set of marks in \mathcal{N} that were born in the past and may influence the birth of (γ, t', s') . Suppose that $A_{\Lambda}^{(\gamma, t', s')}$ is finite for all $(\gamma, t', s') \in \mathcal{N}$. Then we can check if (γ, t', r') is effectively added (or born) or not!

For $(\gamma, t', s') \in \mathcal{N}$ denote by $A_{\Lambda}^{(\gamma, t', s')}$ the set of marks in \mathcal{N} that were born in the past and may influence the birth of (γ, t', s') . Suppose that $A_{\Lambda}^{(\gamma, t', s')}$ is finite for all $(\gamma, t', s') \in \mathcal{N}$. Then we can check if (γ, t', r') is effectively added (or born) or not!

So, η_t^{Λ} is constructed in such a way that:

- $\eta_t^{\Lambda} \leq \eta_t^{o}$,
- η_t^{Λ} has distribution $G_{\theta,\Lambda}^{\text{id}}$ for all t.

For $(\gamma, t', s') \in \mathcal{N}$ denote by $A_{\Lambda}^{(\gamma, t', s')}$ the set of marks in \mathcal{N} that were born in the past and may influence the birth of (γ, t', s') . Suppose that $A_{\Lambda}^{(\gamma, t', s')}$ is finite for all $(\gamma, t', s') \in \mathcal{N}$. Then we can check if (γ, t', r') is effectively added (or born) or not!

So, η_t^{Λ} is constructed in such a way that:

η_t^Λ ≤ η_t^o,
η_t^Λ has distribution G_{θ,Λ}^{id} for all t.
Indeed, A_Λ^(γ,t',s') is finite for all (γ, t', s') ∈ N almost surely.

Existence and uniqueness

To p existence

- reduce to showing that there exists a compact set K ⊂ S_θ, that is a decreasing event and for which ν_θ(K^c) < ε.</p>
- A weak limit of specifications is a Gibbs measure.

Existence and uniqueness

To p existence

- reduce to showing that there exists a compact set K ⊂ S_θ, that is a decreasing event and for which ν_θ(K^c) < ε.</p>
- A weak limit of specifications is a Gibbs measure.

For the uniqueness suppose that μ and μ' are Gibbs measures. We show that:

► Almost surely w.r.t. $\mu \otimes \mu'$ there exist a sequence of finite sets $\Delta_j \nearrow \mathbb{Z}^d$ such that each Δ_j is a separating set.

Thanks for your attention!