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Model and Gibbs setup

I Let θ = {θ(x)}x∈Zd be a sequence non negative integers.

I Our set of points is Ωθ = {s = (x , i) : 1 ≤ i ≤ θ(x), x ∈ Zd}.
I X (s) is the projection on Zd .
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I Let Sθ be the set of permutations of Ωθ.

Z

Sθ

| | | | | | | | |

I If θ(x) = 1 for all x ∈ Zd , we recover the lattice Zd .
I In general, we are interested in the case when {θ(x)}x∈Zd is an

i.i.d sequence.



Model and Gibbs setup

I For σ ∈ Sθ, the Hamiltonian at finite volume Λ:

HΛ(σ) :=
∑

s : X (s)∈Λ

‖X (σ(s))− X (s)‖2.
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I Only the jumps in blue contribute to the Hamiltonian at Λ, so
HΛ(σ) = 19.
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The permutations that are compatible with boundary condition
ξ ∈ Sθ are given by:

Sξθ,Λ = {σ ∈ Sθ : σn(s) = ξn(s) for all s ∈ Λc , n ∈ Z} .

A permutation compatible with ξ at volume Λ looks like:
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Model and Gibbs setup

A specification system is a family of conditional probabilities with
respect to fixed configurations outside of bounded regions.

I The specification at volume Λ corresponding to temperature
α > 0 and boundary condition ξ is given by:

G ξ
θ,Λ,α(σ) =

e−αHΛ(σ)

Z ξ
θ,Λ,α

1{σ ∈ Sξθ,Λ} .

I A probability measure µ on Sθ is a Gibbs measure when for
any Borel set A and any Λ ⊂ Zd finite, we have

µ(A) =

∫
G ξ
θ,Λ,α(A) dµ(ξ) .
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The problem
We ask about:

1. the existence of a Gibbs measure in the quenched sense.

2. properties of permutations under the Gibbs measure, for
example, if its decomposition has only finite cycles or not.

3. uniqueness in some sense.
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Conjectures

Case: θ(x) = 1 for all x ∈ Zd , so, Ωθ = Zd .

Let σ ∼ µ, where µ is a Gibbs measure corresponding to
temperature α.

I d = 1, 2: σ has only finite cycles on its decomposition, µ-a.s.
for all α > 0.

I d ≥ 3: ∃αc > 0 such that σ has an infinite cycle µ-a.s. if
α < αc , but all cycles are finite µ-a.s. if α > αc .

I d ≥ 3 and α < αc : the scaling limit of the sorted size of
cycles converges to the Poisson-Dirichlet distribution, as in the
case of uniform permutations1.
1 Schramm, Oded; Compositions of random transpositions, Israel J.
Math., 2005.
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Related results

Case: Ωθ = Zd .

I Biskup and Richthammer 1: d = 1, existence and uniqueness.
All cycles are finite for all α > 0.

I Armendáriz, Ferrari, Groisman and Leonardi 2: d ≥ 1 and α
large, existence and uniqueness over finite cycle permutations.

1 Gibbs measures on permutations over one-dimensional discrete, Ann. Appl.
Probab., 2015.

2 Finite cycle Gibbs measures on permutations of Zd , J. Stat. Phys., 2015.
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Why? We want to study a model over a random discrete set of
points, such as Poisson point process on Rd .
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Results

Let θ = {θ(x)}x∈Zd be an i.i.d. sequence of Poisson random
variables with mean ρ.

Theorem. (Armendáriz, Ferrari, F.)

Consider ρ ∈ (0, 1/2). If α ≥ α∗(ρ, d), then for almost every
realization of θ we have:

I there exists a Gibbs measure µθ.
I µθ concentrates on permutations whose decomposition has

only finite cycles.
It is the unique Gibbs measure with this property.

I µθ can be obtained as a weak limit of (G id
θ,Λ)ΛbZd .
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Gas of cycles

Fix a realization of θ. We will focus on identity boundary
conditions.

I Γθ is the set of finite cycles.
I The support of a cycle γ is the set {γ} = {s ∈ Ωθ : γ(s) 6= s}.
I Γθ,Λ is the set of finite cycles with support included in Λ.
I We say that γ ∈ σ when γ is a cycle in the decomposition of σ.

A finite cycle permutation σ can be represented as: η ∈ {0, 1}Γθ

such that η(γ) = 1{γ ∈ σ}.

η is called the gas of cycles of σ.
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Gas of cycles

Using the gas of cycles representation we can write the set of
compatible permutations with the identity b.c. as:

S id
θ,Λ = {η ∈ {0, 1}Γθ : η(γ)η(γ′) = 0 if {γ}∩{γ′} 6= ∅ ∀γ, γ′ ∈ Γθ,Λ},

and the specification at volume Λ:

G id
θ,Λ(σ) =

1
Z id
θ,Λ,α

∏
γ∈Γθ,Λ

(
e−αH(γ)

)η(γ)
1{η ∈ S id

θ,Λ}.



Domination by a Poisson measure

Let νθ the product measure on NΓθ
0 such that each marginal is

distributed as Poisson of mean e−αH(γ).

Lemma.

On NΓθ
0 consider the following Birth and Death process:

I A cycle γ is born at rate e−αH(γ), independently of others.
I A cycle γ (that is alive) dies at rate 1, also independently of

others.

Then νθ is invariant for this dynamics.



Domination by a Poisson measure

Let νθ the product measure on NΓθ
0 such that each marginal is

distributed as Poisson of mean e−αH(γ).

Lemma.

On NΓθ
0 consider the following Birth and Death process:

I A cycle γ is born at rate e−αH(γ), independently of others.
I A cycle γ (that is alive) dies at rate 1, also independently of

others.

Then νθ is invariant for this dynamics.



Domination by a Poisson measure

Cycles γ, γ′ are compatible when {γ} ∩ {γ′} = ∅.

Lemma.

Let Λ ⊂ Zd finite. On {0, 1}Γθ,Λ consider the following dynamics:

I A cycle γ tries to appear at rate e−αH(γ) but it is effectively
added if γ is compatible with all cycles already present.

I A cycle γ (that is alive) is removed at rate 1, also
independently of others.

Then G id
θ,Λ is invariant for this dynamics.

Note that the dynamics is well defined since the space state
{0, 1}Γθ,Λ is finite.
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Domination by a Poisson measure

Lemma.

Let Λ ⊂ Zd finite. Then, νθ stochastically dominates G id
θ,Λ, i.e.,

there exists a construction such that

ηΛ(γ) ≤ ηo(γ) almost surely ∀ γ ∈ Γθ,

when ηΛ is sampled with G id
θ,Λ and ηo is sampled with νθ.



Idea of proof

Let N a Poisson process on Γθ,Λ × R× R+ with rate measure
e−αH(γ) × dt × e−sds.

I Define ηo
t = (ηo

t (γ) : γ ∈ Γθ) as:

ηo
t (γ) =

∑
(γ,t′,s′)∈N

1{t ′ ≤ t < t + s ′}.

I ηo
t has distribution νθ for all t ∈ R.



Idea of proof

Let N a Poisson process on Γθ,Λ × R× R+ with rate measure
e−αH(γ) × dt × e−sds.

I Define ηo
t = (ηo

t (γ) : γ ∈ Γθ) as:

ηo
t (γ) =

∑
(γ,t′,s′)∈N

1{t ′ ≤ t < t + s ′}.

I ηo
t has distribution νθ for all t ∈ R.



Idea of proof

Denote by KΛ = KΛ(ηt) the set of marks (γ, t ′, s ′) of ηtthat can
be added.

We can define the process ηΛ
t as:

ηΛ
t (γ) =

∑
(γ,t′,s′)∈N

1{t ′ ≤ t < t ′+s ′} 1{(γ, t ′, s ′) ∈ KΛ} 1{γ ∈ Γθ,Λ} .

The problem is, how to decide if (γ, t ′, s ′) is in KΛ?
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Idea of proof

For (γ, t ′, s ′) ∈ N denote by A(γ,t′,s′)
Λ the set of marks in N that

were born in the past and may influence the birth of (γ, t ′, s ′).

Suppose that A(γ,t′,s′)
Λ is finite for all (γ, t ′, s ′) ∈ N .

Then we can check if (γ, t ′, r ′) is effectively added (or born) or not!

So, ηΛ
t is constructed in such a way that:

I ηΛ
t ≤ ηo

t ,
I ηΛ

t has distribution G id
θ,Λ for all t.

Indeed, A(γ,t′,s′)
Λ is finite for all (γ, t ′, s ′) ∈ N almost surely.
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Existence and uniqueness

To p existence

I reduce to showing that there exists a compact set K ⊂ Sθ,
that is a decreasing event and for which νθ(K c) < ε.

I A weak limit of specifications is a Gibbs measure.

For the uniqueness suppose that µ and µ′ are Gibbs measures. We
show that:

I Almost surely w.r.t. µ⊗ µ′ there exist a sequence of finite sets
∆j ↗ Zd such that each ∆j is a separating set.
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Thanks for your attention!


