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D.A. Jaume R.A. Sota

Departmento de Matemáticas.
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In this work we give a tool to answer the following question:

How many maximum matchings in a given a tree T
and a given e ∈ E (T ), have the edge e as a member?
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Figure: A tree T
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Figure: T has 30 maximum matchings
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Figure: The edge {1, 6} is in 15 maximum matchings
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Figure: The edge {1, 6} is in 15 maximum matchings
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Figure: The edge {2, 17} is not in any maximum matching
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Figure: The edge {2, 17} is not in any maximum matching
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Figure: The edge {14, 15} is in every maximum matching



1

5 6

2

7

8

9

3 411

10

12

13

14 15

17

18 19

16

Figure: The edge {14, 15} is in every maximum matching



In general we answer

In how many maximum matchings of T , a given tree
T and a path P between two vertices of T , the path P is
co-augmenting in these matchings?
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Figure: The path from 7 to 11 is co-augmenting in 4 maximum matchings
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The Index of a Matrix

The smallest positive integer k for which the equation

Rn = R(Ak)
⊕

N(Ak),

holds is called the index of A. The Range-Nullspace
Decomposition Theorem guarantees that this positive integer k
there exists.



Core-Nilpotent Decomposition

Theorem

If A is an n × n singular matrix of index k such that rank(Ak) = r ,
then there exists a nonsingular matrix Q such that

Q−1AQ =

[
Cr×r O
O N

]
in which C is nonsingular, and N is nilpotent with nilpotency index
k.



The Drazin Inverse Matrix

Definition

Given a square matrix A with a core-nilpotent decomposition
(Q, C , N), the matrix

D = Q

[
C−1 O
O O

]
Q−1

The matrix D is called the Drazin Inverse of A.



The Drazin Inverse Matrix
A characterization result

Theorem (Drazin, 1958)

Let A be any square matrix with index(A) = k and let D be the
Drazin inverse of A. Then D is the only matrix such that

1. Ak+1D = Ak .

2. D2A = D.

3. AD = DA.
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The Drazin Inverse Matrix
The Symmetric Case

Theorem

For any symmetric matrix A, there is a unique matrix D such that

1. AD = DA.

2. ADA = A.

3. DAD = D.



What We Do in This Work

• We define a matrix R(T ) associated to T .

• The matrix R(T ) is defined in a combinatorial way.

• We prove that R(T ) fullfills all the three conditions stated in
the latter result with A, the adjacency matrix of T .

• Because of the uniqueness part of the Drazin’s Theorem,
R(T ) is the Drazin Inverse of A(T ).
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Co-augmenting Path in a Matching

Definition

Given a tree T , a matching M in T and v ,w ∈ V (T ), a
co-augmenting path P in M, with endpoints at v and w is a path
such that the edges of P incident in these vertices belong to M
and for every x ∈ V (P) \ {u, v} and every e ∈ E (P) with x ∈ e
exactly one these edges belongs to M.



Co-augmenting Path in a Matching
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Some Notation
The Set of Maximum Matchings of T

M(T ) := {M | M is a maximum matching of T}



Some Notation
The Size ofM(T )

m(T ) := |M(T )|



Some Notation
The Number of Maximum Matchings in which a Path is Co-augmenting

m(T , i , j) := |{M ∈M(T ) | iPT j is co-augmenting in M}|



The Combinatorial Drazin Inverse Matrix

Definition

Given a tree T of order n, we define the n by n matrix [rij ] as:

rij :=

 (−1)b
d(i,j)

2
cm(T , i , j)

m(T )
: d(i , j) is odd

0 : otherwise
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0 0 3 3 0 0 0 0 0
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The Neighborhood of v Away from w

Definition

Given v ,w ∈ V (T )

N(v ← w) := {x ∈ N(v) | d(x , v) = d(v ,w) + 1}
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The Neighbor of v Closest to w

Definition

Given v ,w ∈ V (T ), the vertex u(v → w) is the vertex of N(v)
such that

d(w , u(v → w)) = d(v ,w)− 1
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The Flower of v with Respect to w

Definition

For any tree T , and any v ,w ∈ V (T ), the vw -flower in T is

FT (v ,w) := m(T )
∑
x∼w

rvx
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The Set of Edges Incident to a Vertex v

Definition

Given v ∈ V (T )

Ev (T ) := {e ∈ E (T ) | v ∈ e}
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Some properties of Flowers

Lemma

For any tree T and any i ∈ V (T )

FT (i , i) = |{M ∈M(T ) : M ∩ Ei (T ) 6= ∅}|



The Set of Matchings in Which a Path is Co-augmenting

Definition

For any tree T and any i , j ∈ V (T ), if i 6= j and d(i , j) is even,
then

Mi ,j(T ) := {M ∈M(T ) | M ∩ Ej(T ) = ∅, and

iPTu(j → i) is co-augmenting}



The Set of Matchings in Which a Path is Co-augmenting
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Some properties of Flowers

Lemma

For any tree T and any i , j ∈ V (T ), if i 6= j and d(i , j) is even,
then

FT (i , j) = (−1)b
d(i,u(j→i))

2
c|Mi ,j(T )|



Proof. Let x , y ∈ N(j ← i)

i

j(j→ i)

x
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Proof.
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• Let x , y ∈ N(v ← w), then
• sign of rix = sign of riy
• sign of rix = - sign of ri u(j→i)

• Let M ∈M(T ) and x , y ∈ N(v ← w),
• iPx is co-augmenting in M then iPy is not co-augmenting in M
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• If M ∈Mi ,j(T ) is computed in rix then M is computed in
ri ,u(j→i)

• Let m = deg(j), xm = u(j → i) and Mk ∈Mi ,j(T )

rix1 rix2 rix3 · · · rixm−1 rixm

M1 + 0 0 · · · 0 −
M2 0 + 0 · · · 0 −
M3 + 0 0 · · · 0 −

...
...

...
...

...
...

...
Mt 0 0 0 · · · + −

Mt+1 0 0 0 · · · 0 −
...

...
...

...
...

...
...

Mm(T ) 0 0 0 · · · 0 −
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Lemma

For any i , j ∈ V (T ) such that i 6= j , FT (i , j) = FT (j , i).

Proof. For any i , j ∈ V (T ) such that i 6= j

d(i , u(j → i)) = d(j , u(i → j))

therefore, by the previous lemma, is enough to prove

|Mi ,j(T )| = |Mj ,i (T )|
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In summary
Let M ∈Mi ,j(T ), then

• iPu(j → i) is co-augmenting in M

• M ∩ Ei (T ) = {{i , u(i → j)}}
• M ∩ Ej(T ) = ∅
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We obtain a matching M̃ ∈Mj ,i (T ) as

M \ (M ∩ iPu(j → i))

∪

jPu(i → j) \ (M ∩ iPu(j → i))
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Theorem

For any tree T ,
AR = RA
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Theorem

For any tree T ,
RAR = R.

Idea of proof:

• Consider R and RAR as operators.

• Construct a base for N(A(T )) introducing the notion of basic
S-tree.

• Prove that N(A(T )) = N(R(T )).

• Prove that RAR = R by showing that RARb = Rb for every b
in a base B of Rn.
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