Una Versión Combinatoria de la Inversa de Drazin para Árboles

D.A. Jaume R.A. Sota

Departmento de Matemáticas. Facultad de Ciencias Físico-Matemáticas y Naturales. Universidad Nacional de San Luis.

Bahía Blanca, UMA 2016

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Motivation

Introduction

Drazin Inverse of a Matrix

The Combinatorial Drazin Inverse of a Tree

RA = AR

ARA = A

RAR = R

Motivation of Our Work

Given a tree T with singular adjacency matrix A(T)

- Assign a **pseudoinverse matrix** to A(T)
- Find information about T given by the pseudoinverse

Motivation of Our Work

Given a tree T with singular adjacency matrix A(T)

- Assign a **pseudoinverse matrix** to A(T)
- Find information about T given by the pseudoinverse

Motivation of Our Work

Given a tree T with singular adjacency matrix A(T)

- Assign a **pseudoinverse matrix** to A(T)
- Find information about T given by the pseudoinverse

Motivation

Introduction

Drazin Inverse of a Matrix

The Combinatorial Drazin Inverse of a Tree

RA = AR

ARA = A

RAR = R

In this work we give a tool to answer the following question:

How many maximum matchings in a given a tree T and a given $e \in E(T)$, have the edge e as a member?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

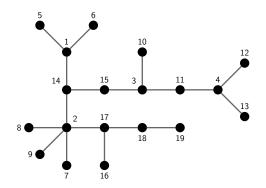


Figure: A tree T

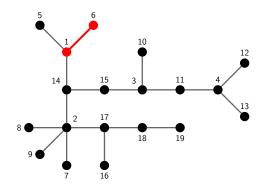


Figure: A tree T

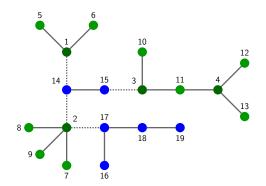


Figure: T has 30 maximum matchings

◆□> <圖> <필> < => < =>

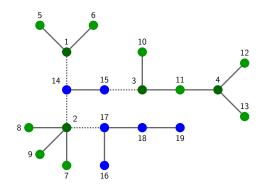


Figure: T has 30 maximum matchings

(日) (四) (三) (三) (三)

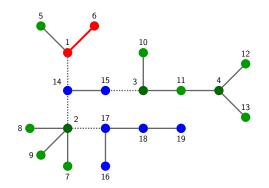


Figure: The edge $\{1, 6\}$ is in 15 maximum matchings

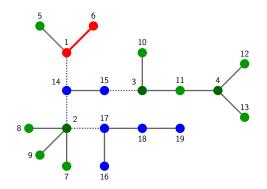


Figure: The edge $\{1,6\}$ is in 15 maximum matchings

◆□>
◆□>

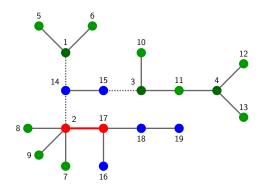


Figure: The edge $\{2, 17\}$ is not in any maximum matching

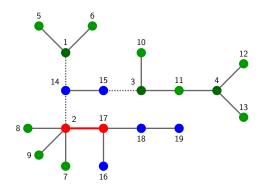


Figure: The edge $\{2, 17\}$ is not in any maximum matching

◆□>
◆□>

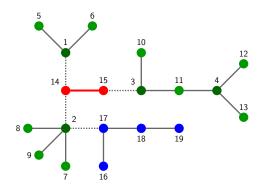


Figure: The edge $\{14, 15\}$ is in every maximum matching

<ロ> (四) (四) (日) (日) (日)

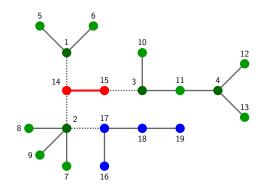


Figure: The edge $\{14, 15\}$ is in every maximum matching

◆□>
◆□>

In general we answer

In how many maximum matchings of T, a given tree T and a path P between two vertices of T, the path P is co-augmenting in these matchings?

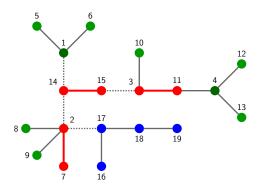


Figure: The path from 7 to 11 is co-augmenting in 4 maximum matchings

<ロ> (四) (四) (日) (日) (日)

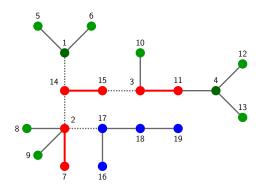


Figure: The path from 7 to 11 is co-augmenting in 4 maximum matchings

<ロ> (四) (四) (日) (日) (日)

2

Motivation

Introduction

Drazin Inverse of a Matrix

The Combinatorial Drazin Inverse of a Tree

RA = AR

ARA = A

RAR = R

The Index of a Matrix

The smallest positive integer k for which the equation

$$\mathbb{R}^n = R(A^k) \bigoplus N(A^k),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

holds is called the **index** of A. The Range-Nullspace Decomposition Theorem guarantees that this positive integer k there exists.

Core-Nilpotent Decomposition

Theorem

If A is an $n \times n$ singular matrix of index k such that $rank(A^k) = r$, then there exists a nonsingular matrix Q such that

$$Q^{-1}AQ = \left[\begin{array}{cc} C_{r\times r} & O\\ O & N\end{array}\right]$$

in which C is nonsingular, and N is nilpotent with nilpotency index k.

<ロト <四ト <注入 <注下 <注下 <

Definition

Given a square matrix A with a core-nilpotent decomposition (Q, C, N), the matrix

$$D = Q \left[egin{array}{cc} C^{-1} & O \ O & O \end{array}
ight] Q^{-1}$$

The matrix D is called the **Drazin Inverse** of A.

A characterization result

Theorem (Drazin, 1958)

Let A be any square matrix with index(A) = k and let D be the Drazin inverse of A. Then D is the only matrix such that 1. $A^{k+1}D = A^k$. 2. $D^2A = D$. 3. AD = DA.

<ロ> (四) (四) (四) (四) (四) (四) (四)

A characterization result

Theorem (Drazin, 1958)

Let A be any square matrix with index(A) = k and let D be the Drazin inverse of A. Then D is the only matrix such that 1. $A^{k+1}D = A^k$. 2. $D^2A = D$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

A characterization result

Theorem (Drazin, 1958)

Let A be any square matrix with index(A) = k and let D be the Drazin inverse of A. Then D is the only matrix such that

- 1. $A^{k+1}D = A^k$.
- 2. $D^2 A = D$.
- 3. AD = DA.

The Drazin Inverse Matrix The Symmetric Case

Theorem

For any symmetric matrix A, there is a unique matrix D such that

- 1. AD = DA.
- 2. ADA = A.
- 3. DAD = D.

- We define a matrix R(T) associated to T.
- The matrix R(T) is defined in a combinatorial way.
- We prove that R(T) fullfills all the three conditions stated in the latter result with A, the adjacency matrix of T.

(日) (문) (문) (문) (문)

- We define a matrix R(T) associated to T.
- The matrix R(T) is defined in a combinatorial way.
- We prove that R(T) fullfills all the three conditions stated in the latter result with A, the adjacency matrix of T.

(日) (문) (문) (문) (문)

- We define a matrix R(T) associated to T.
- The matrix R(T) is defined in a combinatorial way.
- We prove that R(T) fullfills all the three conditions stated in the latter result with A, the adjacency matrix of T.

- We define a matrix R(T) associated to T.
- The matrix R(T) is defined in a combinatorial way.
- We prove that R(T) fullfills all the three conditions stated in the latter result with A, the adjacency matrix of T.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Motivation

Introduction

Drazin Inverse of a Matrix

The Combinatorial Drazin Inverse of a Tree

RA = AR

ARA = A

RAR = R

Co-augmenting Path in a Matching

Definition

Given a tree T, a matching M in T and $v, w \in V(T)$, a co-augmenting path P in M, with endpoints at v and w is a path such that the edges of P incident in these vertices belong to Mand for every $x \in V(P) \setminus \{u, v\}$ and every $e \in E(P)$ with $x \in e$ exactly one these edges belongs to M.

<ロト <四ト <注入 <注下 <注下 <

Co-augmenting Path in a Matching

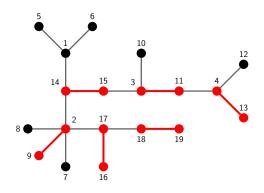


Figure: A matching M

<ロ> (四) (四) (三) (三) (三)

Co-augmenting Path in a Matching

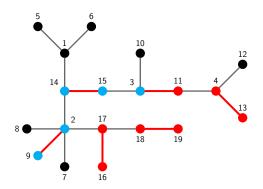


Figure: An alternating path in M

<ロ> (四) (四) (三) (三) (三)

Co-augmenting Path in a Matching

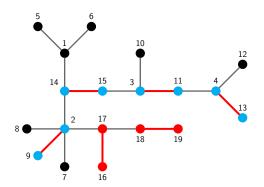


Figure: An alternating path that is co-augmenting in M

<ロ> (四) (四) (三) (三) (三)

Some Notation

The Set of Maximum Matchings of T

 $\mathcal{M}(T) := \{M \mid M \text{ is a maximum matching of } T\}$

Some Notation The Size of $\mathcal{M}(\mathcal{T})$

 $m(T) := |\mathcal{M}(T)|$

Some Notation

The Number of Maximum Matchings in which a Path is Co-augmenting

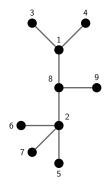
$m(T, i, j) := |\{M \in \mathcal{M}(T) \mid iP_T j \text{ is co-augmenting in } M\}|$

The Combinatorial Drazin Inverse Matrix

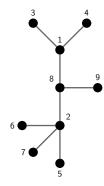
Definition

Given a tree T of order n, we define the n by n matrix $[r_{ij}]$ as:

$$r_{ij} := \left\{ egin{array}{ll} (-1)^{\lfloor rac{d(i,j)}{2}
floor} rac{m(T,i,j)}{m(T)} & : d(i,j) ext{ is odd} \ 0 & : ext{ otherwise} \end{array}
ight.$$



$(T) = \frac{1}{-}$					



	ΓO	0	3	3	0	0	0	0	0 -
	0	0	0	0	2	2	2	0	0
	3	0	0	0	0	0	0	0	-3
1	3	0	0	0	0	0	0	0	-3
$R(T) = \frac{1}{6}$	0	2	0	0	0	0	0	0	-2
6	0	2	0	0	0	0	0	0	$^{-2}$
	0	2	0	0	0	0	0	0	$^{-2}$
	0	0	0	0	0	0	0	0	6
	LΟ	0	-3	-3	$^{-2}$	$^{-2}$	$^{-2}$	6	0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

Motivation

Introduction

Drazin Inverse of a Matrix

The Combinatorial Drazin Inverse of a Tree

RA = AR

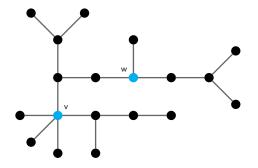
ARA = A

RAR = R

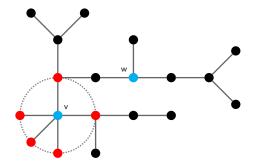
Definition

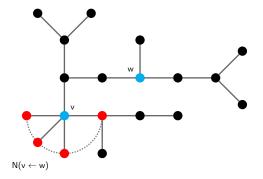
Given $v, w \in V(T)$

$$N(v \leftarrow w) := \{x \in N(v) \mid d(x,v) = d(v,w) + 1\}$$



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

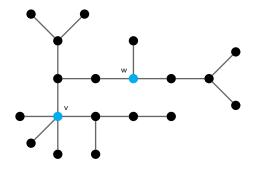




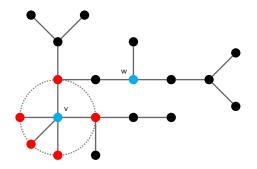
Definition

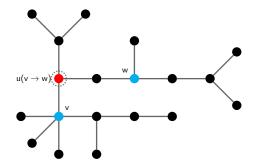
Given $v, w \in V(T)$, the vertex $u(v \rightarrow w)$ is the vertex of N(v) such that

$$d(w, u(v \to w)) = d(v, w) - 1$$



▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで



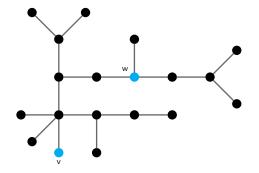


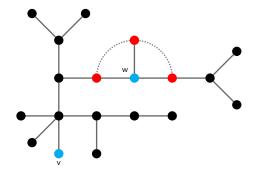
▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

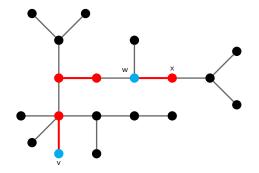
Definition

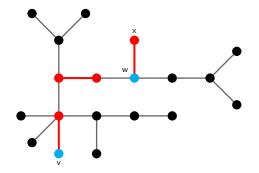
For any tree T, and any $v, w \in V(T)$, the *vw*-flower in T is

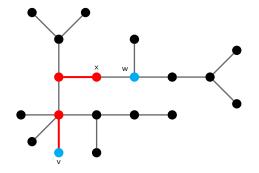
$$F_T(v,w) := m(T) \sum_{x \sim w} r_{vx}$$











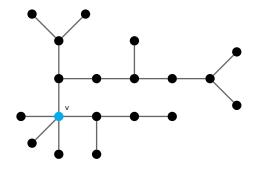
The Set of Edges Incident to a Vertex v

Definition

Given $v \in V(T)$

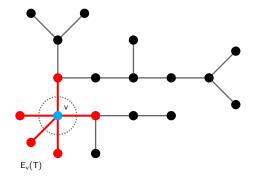
$$E_v(T) := \{e \in E(T) \mid v \in e\}$$

The Set of Edges Incident to a Vertex v



▲ロト ▲圖ト ▲画ト ▲画ト 三回 めんゆ

The Set of Edges Incident to a Vertex v



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Some properties of Flowers

Lemma

For any tree T and any $i \in V(T)$

$$F_T(i,i) = |\{M \in \mathcal{M}(T) : M \cap E_i(T) \neq \emptyset\}|$$

The Set of Matchings in Which a Path is Co-augmenting

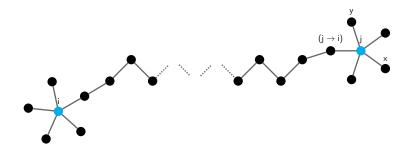
Definition

For any tree T and any $i, j \in V(T)$, if $i \neq j$ and d(i, j) is even, then

$$\mathcal{M}_{i,j}(\mathcal{T}) := \{ M \in \mathcal{M}(\mathcal{T}) \mid M \cap E_j(\mathcal{T}) = \varnothing, ext{and}$$

 $i \mathcal{P}_{\mathcal{T}} u(j \to i) ext{ is co-augmenting} \}$

The Set of Matchings in Which a Path is Co-augmenting



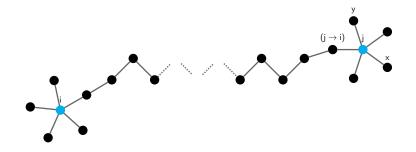
▲ロト ▲御ト ▲画ト ▲画ト 三回 - のへで

Some properties of Flowers

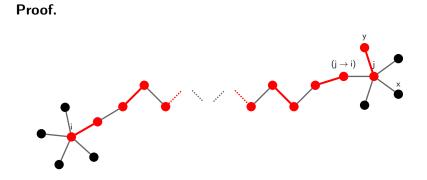
Lemma

For any tree T and any $i, j \in V(T)$, if $i \neq j$ and d(i, j) is even, then $F_T(i, j) = (-1)^{\lfloor \frac{d(i, u(j \to i))}{2} \rfloor} |\mathcal{M}_{i, i}(T)|$

Proof. Let $x, y \in N(j \leftarrow i)$



▲日▶ ▲圖▶ ▲画▶ ▲画▶ ▲国▼



• Let $x, y \in N(v \leftarrow w)$, then

- sign of r_{ix} = sign of r_{iy}
- sign of $r_{ix} = -$ sign of $r_{i \ u(j \to i)}$

• Let $M \in \mathcal{M}(T)$ and $x, y \in N(v \leftarrow w)$,

• *iPx* is co-augmenting in *M* then *iPy* is not co-augmenting in *M*

<ロ> (四) (四) (四) (四) (四) (四) (四)

• Let $x, y \in N(v \leftarrow w)$, then

- sign of r_{ix} = sign of r_{iy}
- sign of $r_{ix} = -$ sign of $r_{i \ u(j \to i)}$

• Let
$$M \in \mathcal{M}(T)$$
 and $x, y \in N(v \leftarrow w)$,

• *iPx* is co-augmenting in *M* then *iPy* is not co-augmenting in *M*

• If $M \in \mathcal{M}_{i,j}(T)$ is computed in r_{i_X} then M is computed in $r_{i,u(j \rightarrow i)}$

• Let $m = \deg(j)$, $x_m = u(j \rightarrow i)$ and $M_k \in \mathcal{M}_{i,j}(\mathcal{T})$

	r_{ix_1}	r_{ix_2}	$r_{i_{X3}}$	$r_{i \times m-1}$	r_{iXm}
M_1					
M_2					
M_3					
M_t					
M_{t+1}					
$M_{m(T)}$					

- If $M \in \mathcal{M}_{i,j}(T)$ is computed in r_{i_X} then M is computed in $r_{i,u(j \to i)}$
- Let $m = \deg(j)$, $x_m = u(j \rightarrow i)$ and $M_k \in \mathcal{M}_{i,j}(\mathcal{T})$

	r_{ix_1}	r_{ix_2}	$r_{i_{X3}}$	$r_{i \times m-1}$	r_{iXm}
M_1					
M_2					
M_3					
M_t					
M_{t+1}					
$M_{m(T)}$					

- If $M \in \mathcal{M}_{i,j}(T)$ is computed in r_{i_X} then M is computed in $r_{i,u(j \to i)}$
- Let $m = \deg(j)$, $x_m = u(j \rightarrow i)$ and $M_k \in \mathcal{M}_{i,j}(T)$

	r_{ix_1}	r_{ix_2}	r_{ix_3}		$r_{ix_{m-1}}$	r _{ixm}
M_1	+	0	0	• • •	0	_
M_2	0	+	0	•••	0	—
M_3	+	0	0	• • •	0	_
÷	÷	÷	÷	÷	÷	÷
M _t	0	0	0		+	_
M_{t+1}	0	0	0	•••	0	_
÷	÷	÷	÷	÷	÷	÷
$M_{m(T)}$	0	0	0		0	_

For any $i, j \in V(T)$ such that $i \neq j$, $F_T(i, j) = F_T(j, i)$.

Proof. For any $i, j \in V(T)$ such that $i \neq j$

$$d(i, u(j \to i)) = d(j, u(i \to j))$$

therefore, by the previous lemma, is enough to prove

 $|\mathcal{M}_{i,j}(T)| = |\mathcal{M}_{j,i}(T)|$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

For any $i, j \in V(T)$ such that $i \neq j$, $F_T(i, j) = F_T(j, i)$.

Proof. For any $i, j \in V(T)$ such that $i \neq j$

$$d(i, u(j \to i)) = d(j, u(i \to j))$$

therefore, by the previous lemma, is enough to prove

 $|\mathcal{M}_{i,j}(T)| = |\mathcal{M}_{j,i}(T)|$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

For any $i, j \in V(T)$ such that $i \neq j$, $F_T(i, j) = F_T(j, i)$.

Proof. For any $i, j \in V(T)$ such that $i \neq j$

$$d(i, u(j \to i)) = d(j, u(i \to j))$$

therefore, by the previous lemma, is enough to prove

 $|\mathcal{M}_{i,j}(T)| = |\mathcal{M}_{j,i}(T)|$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

For any $i, j \in V(T)$ such that $i \neq j$, $F_T(i, j) = F_T(j, i)$.

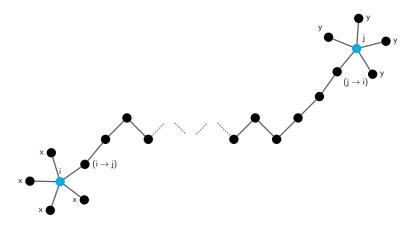
Proof. For any $i, j \in V(T)$ such that $i \neq j$

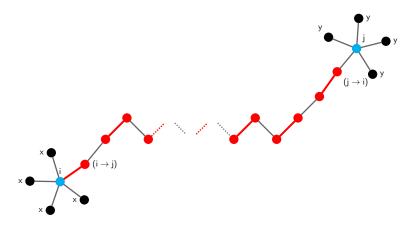
$$d(i, u(j \to i)) = d(j, u(i \to j))$$

therefore, by the previous lemma, is enough to prove

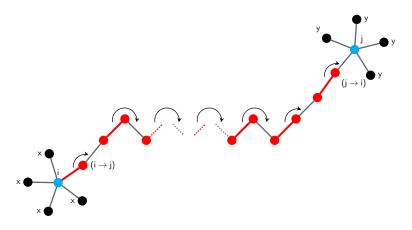
$$|\mathcal{M}_{i,j}(T)| = |\mathcal{M}_{j,i}(T)|$$

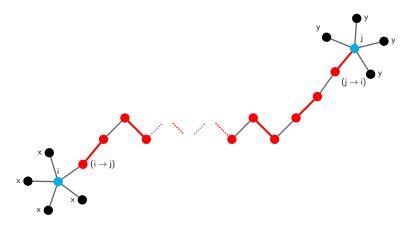
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで





In summary

Let $M \in \mathcal{M}_{i,j}(T)$, then

• $iPu(j \rightarrow i)$ is co-augmenting in M

<ロ> (四) (四) (四) (四) (四) (四) (四)

- $M \cap E_i(T) = \{\{i, u(i \to j)\}\}$
- $M \cap E_j(T) = \emptyset$

• $iPu(j \rightarrow i)$ is co-augmenting in M

◆□> ◆舂> ◆注> ◆注> 注:

•
$$M \cap E_i(T) = \{\{i, u(i \to j)\}\}$$

• $M \cap E_j(T) = \emptyset$

• $iPu(j \rightarrow i)$ is co-augmenting in M

◆□▶ ◆舂▶ ★注≯ ★注≯ 注目

- $M \cap E_i(T) = \{\{i, u(i \to j)\}\}$
- $M \cap E_j(T) = \emptyset$

• $iPu(j \rightarrow i)$ is co-augmenting in M

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

•
$$M \cap E_i(T) = \{\{i, u(i \to j)\}\}$$

• $M \cap E_j(T) = \emptyset$

• $iPu(j \rightarrow i)$ is co-augmenting in M

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

•
$$M \cap E_i(T) = \{\{i, u(i \to j)\}\}$$

• $M \cap E_j(T) = \emptyset$

We obtain a matching $ilde{M} \in \mathcal{M}_{j,i}(\mathcal{T})$ as

 $M \setminus (M \cap iPu(j \to i))$

U

$jPu(i \rightarrow j) \setminus (M \cap iPu(j \rightarrow i))$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

We obtain a matching $ilde{M} \in \mathcal{M}_{j,i}(T)$ as $M \setminus (M \cap \mathit{iPu}(j
ightarrow \mathit{i}))$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We obtain a matching $ilde{M} \in \mathcal{M}_{j,i}(\mathcal{T})$ as $M \setminus (M \cap \mathit{iPu}(j
ightarrow \mathit{i}))$

 \cup

$$jPu(i \rightarrow j) \setminus (M \cap iPu(j \rightarrow i))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

We obtain a matching $ilde{M} \in \mathcal{M}_{j,i}(\mathcal{T})$ as $M \setminus (M \cap iPu(j
ightarrow i))$

 \cup

$$jPu(i \rightarrow j) \setminus (M \cap iPu(j \rightarrow i))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Theorem

For any tree T,

AR = RA

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

$$(A(T)R(T))_{ij} = \sum_{v \sim i} r_{vj}$$
$$= \frac{1}{m(T)} F_T(i,j)$$
$$= \frac{1}{m(T)} F_T(j,i)$$
$$= \sum_{v \sim j} r_{vi}$$
$$= (R(T)A(T))_{ji}$$

(日) (部) (注) (注) (注)

$$(A(T)R(T))_{ij} = \sum_{v \sim i} r_{vj}$$
$$= \frac{1}{m(T)} F_T(i,j)$$
$$= \frac{1}{m(T)} F_T(j,i)$$
$$= \sum_{v \sim j} r_{vi}$$
$$= (R(T)A(T))_{ji}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$(A(T)R(T))_{ij} = \sum_{v \sim i} r_{vj}$$
$$= \frac{1}{m(T)} F_T(i,j)$$
$$= \frac{1}{m(T)} F_T(j,i)$$
$$= \sum_{v \sim j} r_{vi}$$
$$= (R(T)A(T))_{ij}$$

$$(A(T)R(T))_{ij} = \sum_{v \sim i} r_{vj}$$
$$= \frac{1}{m(T)} F_T(i,j)$$
$$= \frac{1}{m(T)} F_T(j,i)$$
$$= \sum_{v \sim j} r_{vi}$$
$$= (R(T)A(T))_{ij}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$(A(T)R(T))_{ij} = \sum_{v \sim i} r_{vj}$$
$$= \frac{1}{m(T)} F_T(i,j)$$
$$= \frac{1}{m(T)} F_T(j,i)$$
$$= \sum_{v \sim j} r_{vi}$$
$$= (R(T)A(T))_{ji}$$

Motivation

Introduction

Drazin Inverse of a Matrix

The Combinatorial Drazin Inverse of a Tree

RA = AR

ARA = A

RAR = R

Theorem

For any tree T,

ARA = A.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Motivation

Introduction

Drazin Inverse of a Matrix

The Combinatorial Drazin Inverse of a Tree

RA = AR

ARA = A

RAR = R

Theorem

For any tree T,

$$RAR = R.$$

Idea of proof:

- Consider R and RAR as operators.
- Construct a base for N(A(T)) introducing the notion of basic S-tree.
- Prove that N(A(T)) = N(R(T)).
- Prove that RAR = R by showing that RARb = Rb for every b in a base B of ℝⁿ.

(日) (문) (문) (문) (문)