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Motivation of Our Work

Given a tree T with singular adjacency matrix A(T)
e Assign a pseudoinverse matrix to A(T)

e Find information about T given by the pseudoinverse



Introduction



In this work we give a tool to answer the following question:

How many maximum matchings in a given a tree T
and a given e € E(T), have the edge e as a member?
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Figure: The edge {1,6} is in 15 maximum matchings
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Figure: The edge {2,17} is not in any maximum matching
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Figure: The edge {14,15} is in every maximum matching



In general we answer

In how many maximum matchings of T, a given tree
T and a path P between two vertices of T, the path P is
co-augmenting in these matchings?
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Figure: The path from 7 to 11 is co-augmenting in 4 maximum matchings



Drazin Inverse of a Matrix



The Index of a Matrix

The smallest positive integer k for which the equation

R" = R(A*) P N(AY),

holds is called the index of A. The Range-Nullspace

Decomposition Theorem guarantees that this positive integer k
there exists.



Core-Nilpotent Decomposition

Theorem

If A'is an n x n singular matrix of index k such that rank(AK) = r,
then there exists a nonsingular matrix Q such that

G @)

-1 _ rxr

in which C is nonsingular, and N is nilpotent with nilpotency index
k.



The Drazin Inverse Matrix

Definition
Given a square matrix A with a core-nilpotent decomposition
(Q, C, N), the matrix

=i
o-o[§" g

The matrix D is called the Drazin Inverse of A.



The Drazin Inverse Matrix

A characterization result

Theorem (Drazin, 1958)

Let A be any square matrix with index(A) = k and let D be the
Drazin inverse of A. Then D is the only matrix such that

1. AKH1p = Ak,



The Drazin Inverse Matrix

A characterization result

Theorem (Drazin, 1958)
Let A be any square matrix with index(A) = k and let D be the
Drazin inverse of A. Then D is the only matrix such that

1. AKFID = Ak,

2. D°’A=D.



The Drazin Inverse Matrix

A characterization result

Theorem (Drazin, 1958)
Let A be any square matrix with index(A) = k and let D be the
Drazin inverse of A. Then D is the only matrix such that

1. AKFID = Ak,

2. D°’A=D.

3. AD = DA.



The Drazin Inverse Matrix
The Symmetric Case

Theorem

For any symmetric matrix A, there is a unique matrix D such that
1. AD = DA.
2. ADA = A.
3. DAD =D.
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What We Do in This Work

We define a matrix R(T) associated to T.
The matrix R(T) is defined in a combinatorial way.

We prove that R(T) fullfills all the three conditions stated in
the latter result with A, the adjacency matrix of T.

Because of the uniqueness part of the Drazin's Theorem,
R(T) is the Drazin Inverse of A(T).



The Combinatorial Drazin Inverse of a Tree



Co-augmenting Path in a Matching

Definition

Given a tree T, a matching M in T and v,w € V(T), a
co-augmenting path P in M, with endpoints at v and w is a path
such that the edges of P incident in these vertices belong to M
and for every x € V(P) \ {u, v} and every e € E(P) with x € e
exactly one these edges belongs to M.



Co-augmenting Path in a Matching
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Figure: An alternating path in M



Co-augmenting Path in a Matching
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Figure: An alternating path that is co-augmenting in M



Some Notation
The Set of Maximum Matchings of T

M(T) :={M | M is a maximum matching of T}



Some Notation
The Size of M(T)



Some Notation

The Number of Maximum Matchings in which a Path is Co-augmenting

m(T,i,j):=|{M e M(T) | iPrj is co-augmenting in M}|



The Combinatorial Drazin Inverse Matrix

Definition
Given a tree T of order n, we define the n by n matrix [r;] as:

(1! aip | m(T,i,j)

- m(T) 2 d(i,j) is odd
0

. otherwise
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The Neighborhood of v Away from w

Definition
Given v,w € V(T)

N(v < w) :={x e N(v) | d(x,v) =d(v,w) + 1}
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The Neighborhood of v Away from w




The Neighbor of v Closest to w

Definition
Given v, w € V(T), the vertex u(v — w) is the vertex of N(v)

such that
dw,u(v—>w))=d(v,w)—1



The Neighbor of v Closest to w
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The Neighbor of v Closest to w




The Flower of v with Respect to w

Definition
For any tree T, and any v,w € V(T), the vw-flower in T is

Fr(v,w):=m(T) Z Fox

X~W
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The Flower of v with Respect to w




The Set of Edges Incident to a Vertex v

Definition
Given v € V(T)

E(T):={ecE(T)|vee}



The Set of Edges Incident to a Vertex v




The Set of Edges Incident to a Vertex v

E/(T)



Some properties of Flowers

Lemma
For any tree T and any i € V(T)

Fr(i,iy={M e M(T): MNE(T) # o}|



The Set of Matchings in Which a Path is Co-augmenting

Definition
For any tree T and any i,j € V(T), if i # j and d(i,j) is even,
then

M,‘J(T) ={M e M(T) | MﬂEj(T) = @,and

iPru(j — i) is co-augmenting}



The Set of Matchings in Which a Path is Co-augmenting




Some properties of Flowers

Lemma

For any tree T and any i,j € V(T), ifi # j and d(i,j) is even,
then Ao
Fr(ij) = (=)L IM(T)]



Proof. Let x,y € N(j < i)




Proof.




o Let x,y € N(v < w), then
e sign of ri = sign of ry
e sign of ry = - sign of r; (i)



o Let x,y € N(v < w), then
e sign of ri = sign of ry
e sign of ry = - sign of r; (i)
o Let M e M(T) and x,y € N(v < w),

e /Px is co-augmenting in M then Py is not co-augmenting in M



e If M e M;;(T) is computed in ry then M is computed in



e If M e M;;(T) is computed in ry then M is computed in
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e If M e M;;(T) is computed in ry then M is computed in

o Let m =deg(j), xm = u(j — i) and My € M;;(T)

lixgy Tixo Tixs *°°  Tixme1  Fixm

Mi |+ 0o 0 -~ 0o -
M, |0 + 0 --- 0 -
My |+ 0o 0 -~ 0 -
M; 0 0 0 + —
Mar | 0 0 0 0o -
Mwry| 0 0 0 0 -




Lemma
For any i,j € V(T) such that i # j, Fr(i,j) = Fr(j, ).
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Lemma
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Lemma
For any i,j € V(T) such that i # j, Fr(i,j) = Fr(j, ).

Proof. For any i,j € V(T) such that i # j
d(i,u(j = 1)) = d{, u(i —J))
therefore, by the previous lemma, is enough to prove

M (T = [M;,i(T)]



Proof.




Proof.




Proof.




Proof.
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In summary
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In summary
Let M € M;;(T), then

e Pu(j — i) is co-augmenting in M
e MNE(T)={{i,u(i = Jj)}}
e MNE(T)=2



We obtain a matching M € M, ;(T) as



We obtain a matching M € M, ;(T) as
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We obtain a matching M € M, ;(T) as

M\ (M N iPu(j — 1))



We obtain a matching M € M, ;(T) as

M\ (M N iPu(j — 1))

JPu(i = j))\ (M N iPu(j — 1))



Theorem

For any tree T,
AR = RA



Proof.

(ADR(T)G =) _ry

v



Proof.




Proof.




Proof.




Proof.
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Theorem

For any tree T,
RAR = R.

Idea of proof:

e Consider R and RAR as operators.

e Construct a base for N(A(T)) introducing the notion of basic
S-tree.

e Prove that N(A(T)) = N(R(T)).

e Prove that RAR = R by showing that RARb = Rb for every b
in a base B of R".
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