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Introduction

I The standard interpretation of noncooperative game theory
is that the analyzed game is played exactly once by fully
rational players who know all the details of the game,
including each other�s preferences over outcomes.

I Evolutionary game theory, instead, imagines that the game
is played over and over again by biologically or socially
conditioned players who are randomly drawn from large
populations.

I More speci�cally, each player is "pre-programmed" to some
behavior formally a strategy in the game and one assumes
that some evolutionary selection process operates over time
on the population distribution of behaviors.
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Introduction

I What, if any, are the connections between the long-run
aggregate behavior in such an evolutionary process and
solution concepts in noncooperative game theory?

I Evolutionary Stable Strategy (ESS) was de�ned by
Maynard Smith and Price [1973] for symmetric bimatrix
games.

I When animals compete for limited resource ESS gives a
response for that no mutant population can invade the
population that adopt ESS.

I Samuelson [1989] extended ESS to asymmetric n�games.

ESS = Strict Nash Equilibrium
I We extend the concept of ESS for symmetric games for
n � 3 players.
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Introduction

I N = f1, ..., ng players

I Si = fsi1 , ..., sil g �nite pure strategy for players i 2 N
I S = S1 � ...,�Sn.
I πi : S! R payo¤ function π = (π1, ...,πn) .

I (N,S,π) n�person game or game
I Φ = ∏n

i=14 (Si ) mixed strategies σ = (σ1, ..., σn) 2 Φ

4 (Si ) =
(

σi 2 RI : σi (si ) � 0, ∑
si2Si

σi (si ) = 1

)
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Support

I The support of µ = (µ1, ..., µn) 2 Φ is C (µ) =
(C1 (µ1) , ...,Cn (µn)) , where

Ci (µi ) = fsi 2 Si : µi (si ) > 0g

I µ 2 Φ is said to be completely mixed strategy if for all
i 2 N, Ci (µi ) = Si .
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Notations

I σ = (σ1, ..., σn) , µ = (µ1, ..., µn) 2 Φ and t, k natural
numbers, we denote by

�
σ�[t ,k ], µ

�
=

8<:
(σ1, ..., σt�1, µt , ..., µk , σk+1, ..., σn) if t � k

(σ1, ...σn) if t > k

and (σ�i , µ) =
�

σ�[i ,i ], µ
�
, for i = 1, ..., n.

I σ = (σ1, ..., σn), σ�i = (σ1, ...σi�1, σi+1, ...σn).
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Best response and Nash equilibrium

I The best response correspondence for player i 2 N, is
Bi : [∆S ]n�1 ! ∆Si

Bi (σ�i ) =
�

µ 2 ∆S : πi (µ,σ�i ) � πi (µ
0,σ�i ), 8 µ0 2 ∆S

	
.

I The best response correspondence B : [∆S ]n ! [∆S ]n given
by

B (σ) = B (σ1, ..., σn) = B1 (σ�1)� ....� Bn (σ�n) .

I (N,S,π) a game, σ = (σ1, ..., σn) is a Nash equilibrium if
for all i 2 N, µi 2 ∆ (Si )

πi (σ) � πi (µi ,σ�i ).

I σ is a Nash equilibrium if and only if σ 2 B (σ)
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Symmetric Game

De�nition
(N,S,π) is a n�players symmetric game if for all player
i , j 2 N, Si = Sj = S and

πi (s1, ..., si , ...., sj , ..., sn) = πj (s1, ..., si�1, sj , si+1, ..., sj�1, si , sj+1, ..., sn)

for all s = (s1, ..., sn) 2 S . Note that in this case ∆Si = ∆Sj = ∆S .

I Γ = (N,S ,π) denote the n�symmetric game (N,S,π) ,
where S =S � ...� S , π = (π1, ...,πn), and π = π1

Remark
If N = 2 this de�nition coincides with the standard de�nition of
symmetric games, ie., S1 = S2 and

π1 (s1, s2) = π2 (s2, s1) .
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Symmetric Game

I N=2. π1 (s1, s2) = π2 (s2, s1)

1 2
1 1,1 3,2
2 2,3 4,4

or B = AT

I N=3. π1 (s1, s2, s3) = π2 (s2, s1, s3) ,

π1 (s1, s2, s3) = π3 (s3, s2, s1) y π2 (s1, s2, s3) = π3 (s1, s3, s2)

1 2
1 1,1,1 3,2,3
2 2,3,3 4,4,5

1 2
1 3,3,2 5,4,4
2 4,5,4 6,6,6

1 2

3 = π1 (1, 1, 2) = π3 (2, 1, 1) = π2 (2, 1, 1) = π1 (1, 2, 1) =
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Symmetric Game

I The Three-Player Prisoner�s Dilemma

C D
C 7,7,7 3,9,3
D 9,3,3 5,5,0

C D
C 3,3,9 0,5,5
D 5,0,5 6,6,6

C D



Symmetric Nash Equilibrium

I Let (N,S,π) be , σ = (σ1, ..., σn) is a symmetric strategy
if for all i , j 2 N, σi = σj , i,e., σ = (σ, ..., σ) .

I Let (N,S ,π) be a symmetric game, σ = (σ, ..., σ) is a
symmetric Nash equilibrium if σ is a Nash equilibrium,
i.e.,for all i 2 N, µ 2 ∆ (Si )

πi (σ) � πi (µ,σ�i ).

Lemma
Every symmetric game has a symmetric Nash equilibrium.

I Proof. β� : ∆S ! ∆S given by

β�(σ�i ) =
�

µ 2 ∆S : π(µ,σ�i ) � π(µ0,σ�i ), 8 µ0 2 ∆S
	
.

Satis�es all conditions of Kakutani�s Fixed Point Theorem
and, hence, it has a �xed point.
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Evolutionary stable strategy (ESS) [N=2]

De�nition
Let Γ be a 2�symmetric game, a strategy σ 2 ∆S is an
evolutionary stable strategy (ESS) if for all µ 2 ∆S , and µ 6= σ
there exists εµ 2 (0, 1) such that for all ε 2

�
0, εµ

�
we have

π(σ, (1� ε) σ+ εµ) > π(µ, (1� ε) σ+ εµ).

Proposition (N=2)
Let (N,S ,π) be, a strategy σ 2 ∆S is an ESS if and only if for
all µ 2 ∆S , and µ 6= σ

1. σ is a symmetric Nash equilibrium i.e., π (σ, σ) � π (µ, σ) ,

2. if π (σ, σ) = π (µ, σ) then π (σ, µ) > π (µ, µ).
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�
0, εµ

�
we have

π(σ, (1� ε) σ+ εµ) > π(µ, (1� ε) σ+ εµ).

Proposition (N=2)
Let (N,S ,π) be, a strategy σ 2 ∆S is an ESS if and only if for
all µ 2 ∆S , and µ 6= σ

1. σ is a symmetric Nash equilibrium i.e., π (σ, σ) � π (µ, σ) ,

2. if π (σ, σ) = π (µ, σ) then π (σ, µ) > π (µ, µ).
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Proposition (N=2)
Let (N,S ,π) be, a strategy σ 2 ∆S is an ESS if and only if for
all µ 2 ∆S , and µ 6= σ

1. σ is a symmetric Nash equilibrium i.e., π (σ, σ) � π (µ, σ) ,

2. if π (σ, σ) = π (µ, σ) then π (σ, µ) > π (µ, µ).

Example
Hawk-Dove Game

H D H D
H v�c

2 ,
v�c
2 v , 0 H -1 4

D 0, v v
2 ,
v
2 D 0 2

σ = (2/3, 1/3) is (unique) symmetric Nash equilibrium and
ESS.

π (σ, µ) > π (µ, µ) , π (σ� µ, µ) > 0,
π (σ� µ, µ) = 1

3 (2� 3µ1)
2 > 0 for all µ 6= σ, µ = (µ1, 1� µ1) .
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all µ 2 ∆S , and µ 6= σ

1. σ is a symmetric Nash equilibrium i.e., π (σ, σ) � π (µ, σ) ,

2. if π (σ, σ) = π (µ, σ) then π (σ, µ) > π (µ, µ).

Example
Hawk-Dove Game

H D H D
H v�c

2 ,
v�c
2 v , 0 H -1 4

D 0, v v
2 ,
v
2 D 0 2

σ = (2/3, 1/3) is (unique) symmetric Nash equilibrium and
ESS. π (σ, µ) > π (µ, µ) , π (σ� µ, µ) > 0,
π (σ� µ, µ) = 1

3 (2� 3µ1)
2 > 0 for all µ 6= σ, µ = (µ1, 1� µ1) .



Evolutionary stable strategy (ESS) [N=3]

De�nition
Let Γ be a 3�symmetric game, a strategy σ 2 ∆S is an
evolutionary stable strategy (ESS) if for all µ 2 ∆S , and µ 6= σ
there exists εµ 2 (0, 1) such that for all ε 2

�
0, εµ

�
we have

π(σ, (1� ε) σ+ εµ, (1� ε) σ+ εµ) > π(µ, (1� ε) σ+ εµ, (1� ε) σ+ εµ).

or
π(σ, µ (ε) , µ (ε)) > π(µ, µ (ε) , µ (ε)),

where µ (ε) = (1� ε) σ+ εµ.



Evolutionary stable strategy (ESS) [N=3]

Proposition (N=3)
Let Γ be, a strategy σ 2 ∆S is an ESS if and only if for all
µ 2 ∆S , and µ 6= σ

1. σ is a symmetric Nash equilibrium i.e.,
π (σ, σ, σ) � π (µ, σ, σ) ,

2. if π (σ, σ, σ) = π (µ, σ, σ) then π (σ, µ, σ) � π (µ, µ, σ), and

3. if π (σ, σ, σ) = π (µ, σ, σ) and π (σ, µ, σ) = π (µ, µ, σ) then
π (σ, µ, µ) > π (µ, µ, µ) .
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Evolutionary stable strategy (ESS)
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�
0, εµ
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Proposition
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�
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�
= π
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�
then, π

�
(σ�[2,k+1], µ)

�
� π1

�
(σ�[1,k+1], µ)

�
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π
�
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�
= π

�
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�
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�
(σ�[2,n], µ)

�
> π

�
(σ�[1,n], µ)

�
= π (µ) .
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Results for N=3

Lemma
If σ is a strict Nash equilibrium for the symmetric n�players game
Γ then, σ is an ESS.

Lemma (N=2)
If σ = (σ, σ) and µ = (µ, µ) are symmetric Nash equilibrium
(σ 6= µ) , and C (µ) � B (σ�1) then σ is not an ESS.

Lemma (N=3)
If σ = (σ, σ, σ) and µ = (µ, µ, µ) are symmetric Nash equilibrium
(σ 6= µ) ,(µ, µ, σ) is a Nash equilibrium, and C (µ) � B (σ�1) ,
then σ is not an ESS.
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Results for N=3

Lemma (N=3)
If σ = (σ, σ, σ) and µ = (µ, µ, µ) are symmetric Nash equilibrium
(σ 6= µ) ,(µ, µ, σ) is a Nash equilibrium, and C (µ) � B (σ�1) ,
then σ is not an ESS.

Example (False, if (µ, µ, σ) is not a NE) Consider

1 1 1 0
1 0 0 2

σ = (1, 0) and µ = (1/2, 1/2) are symmetric NE. (µ, µ, σ) is not
a NE, and C (µ) � B (σ�1) and σ is an ESS.



Results for N=3

Lemma (N=3)
If σ = (σ, σ, σ) and µ = (µ, µ, µ) are symmetric Nash equilibrium
(σ 6= µ) ,(µ, µ, σ) is a Nash equilibrium, and C (µ) � B (σ�1) ,
then σ is not an ESS.

Example (False, if (µ, µ, σ) is not a NE) Consider

1 1 1 0
1 0 0 2

σ = (1, 0) and µ = (1/2, 1/2) are symmetric NE. (µ, µ, σ) is not
a NE, and C (µ) � B (σ�1) and σ is an ESS.



Results for N=3

Lemma (Van Damme (1999), N=2)
If σ is an ESS and µ is a symmetric Nash equilibrium with
C (µ) � B (σ, σ) , the σ = µ

Example (False N=3)
Consider the following symmetric game:

0 1 1 0
0 0 0 2

σ = (1, 0) is an ESS and µ = (0, 1) is a symmetric NE with
C (µ) � B (σ, σ, σ) and σ 6= µ.



Results for N=3

Proposition (N=2)
Let Γ be a symmetric game, with jS j = 2, and a11 6= a21 or
a12 6= a22. Then Γ has an ESS.

Proposition (N=3)
Let Γ be a 3�symmetric game, with jS j = 2 and (σ, ..., σ) a Nash
equilibrium. σ is an ESS if and only if a111 > a211 or a122 < a222 or

2

∑
i3=1

(a1,1,i3 � a2,1,i3 + a2,2,i3 � a1,2,i3) σ (i3) < 0

and
2

∑
i2=1

(a1,i2,1 � a2,i2,1 + a2,i2,2 � a1,i2,2) σ (i2) < 0.
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a12 6= a22. Then Γ has an ESS.

Proposition (N=3)
Let Γ be a 3�symmetric game, with jS j = 2 and (σ, ..., σ) a Nash
equilibrium. σ is an ESS if and only if a111 > a211 or a122 < a222 or
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∑
i3=1
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2

∑
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The ESS set is �nite

Theorem
The set of ESS is �nite (but possibly zero)



The ESS set is �nite

Remark Let σ be a symmetric NE pro�le and let fσεgε#0 be a
sequence of symmetric NE pro�les such that σε ! σ,
when ε # 0. There exist ε0, such that for all ε < ε0
C (σ) � C (σε)

� B (σε, ..., σε) � B (σ, ..., σ) and
it follow that

π (σ, σε, ..., σε) = π (σε, σε, ..., σε) C (σ) � B (σε) ,
π (σε, σ, ..., σ) = π (σ, σ, ..., σ) C (σε) � B (σ) .
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The ESS set is �nite

Remark Let σ be a symmetric NE pro�le and let fσεgε#0 be a
sequence of symmetric NE pro�les such that σε ! σ,
when ε # 0. There exist ε0, such that for all ε < ε0
C (σ) � C (σε) � B (σε, ..., σε) � B (σ, ..., σ) and
it follow that

π (σ, σε, ..., σε) = π (σε, σε, ..., σε) C (σ) � B (σε) ,
π (σε, σ, ..., σ) = π (σ, σ, ..., σ) C (σε) � B (σ) .



The ESS set is �nite

Lemma (1)
Let σε be a sequence of mixed strategy such that σε ! σ, when
ε ! 0, being σε 6= σ, we de�ne

δ (ε) = maxj

8<:
���σj � σε

j

���
σj

: σj > 0

9=; . Then
1. δ (ε)! 0, when ε ! 0, and

2. µε =
σε � (1� δ (ε)) σ

δ (ε)
2 ∆ (S) i.e.,

σε = (1� δ (ε)) σ+ δ (ε) µε.



The ESS set is �nite

Lemma (2)
Let σ be ESS and let σε be a sequence of ESS such that σε ! σ,
when ε # 0, where, for all ε > 0 we have that σε 6= σ. If
π (σε, σ, σε, ..., σε) � π (σ, σ, σε, ..., σε) and there exists k 0 � 0,
such that for all 0 � k � k 0,

π

0B@µε, σ, σ, ..., σ| {z }
(n�2�k )�times

, µε, ..., µε| {z }
k�times

1CA = π

0B@σ, σ, σ, ..., σ| {z }
(n�2�k )�times

, µε, ..., µε| {z }
k�times

1CA ,
where µε and δ (ε) are as in Lemma (1) , then

π

0B@µε, σ, σ, ..., σ| {z }
(n�3�k 0)�times

, µε, ..., µε| {z }
(k 0+1)�times

1CA � π

0B@σ, σ, σ, ..., σ| {z }
(n�3�k 0)�times

, µε, ..., µε| {z }
(k 0+1)�times

1CA .



Proof. The ESS set is �nite
If not. σε ! σ ESS + Remark

π (σ, σ, ..., σ)
�
= π (σε, σ, ..., σ)

π (σε, σε, ..., σε) = π (σ, σε, ..., σε)

(*) + Lemma (1)+ σε = (1� δ (ε)) σ+ δ (ε) µε

π (σ, σ, ..., σ) = π (µε, σ, ..., σ)

k 0 := maxt ffor all k, 0 � k � t,

π(µε, σ, σ, ..., σ| {z }
(n�2�k )

, µε, ..., µε| {z }
k

) = π(σ, σ, σ, ..., σ| {z }
(n�2�k )

, µε, ..., µε| {z }
k

)

9>=>;
Lemma (2)+ k 0,

π

0B@µε, σ, σ, ..., σ| {z }
(k 0+1)�times

, µε, ..., µε| {z }
(n�3�k 0)�times

1CA > π

0B@σ, σ, σ, ..., σ| {z }
(k 0+1)�times

, µε, ..., µε| {z }
(n�3�k 0)�times

1CA ,
contradicting that σ 2 ESS .



The replicator dynamics

I Large but �nite population of individuals.

I Each individual can choose one of jS j = m di¤erent behaviors
or pure strategies.

I xi proportion of si�strategists (or i-strategist) in the
population.

I x = (x1, ..., xm) 2 ∆ (S)
I Assume that

I individuals are n-paired random,
I each individuals engages in exactly one contest,
I the payo¤ (�tness, expected number of o¤spring) to an
s1�strategist as a result of a contest with n� 1�individuals is
π (s1, s2, ..., sn)
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The replicator dynamics and Nash equilibrium

I the expected payo¤ of an si�strategist is
π (ei , x , ..., x) = π (ei , x�1)

I the average �tness of the population is
π (x , x�1) = π (x) = ∑m

i=1 xiπ (ei , x�1)
I The corresponding dynamics for the population shares xi or
replicator dynamics

ẋi = [π (ei , x�1)� π (x)] xi = π (ei � xi , x�1) xi
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If x is symmetric NE then x is stationary
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If x is stationary and x 2 int (∆ (S)) then x is symetric NE
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ẋi = π (ei � xi , x�1) xi = 0.

Proposition
If x is symmetric NE then x is stationary

Proposition
If x is stationary and x 2 int (∆ (S)) then x is symetric NE



The replicator dynamics and Nash equilibrium

I Let (N,S ,π) be a symmetric game, x 2 ∆ (S) is a
symmetric Nash equilibrium if for all i 2 C (x)

π(ei , x�1) = max
z2∆(S )

π(z , x�1).

I A population x 2 ∆ (S) is stationary if

π (ei � xi , x�1) xi = 0.
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The replicator dynamics and ESS

I A population x 2 ∆ (S) is Lyapunov stable if no small
change in the population composition can lead it away,

I A population x 2 ∆ (S) is asymptotically stable if moreover
any su¢ ciently small such change results in a movement back
toward x .

Theorem
A population state is asymptotically stable in the replicator
dynamics if and only if the corresponding mixed strategy is
evolutionarily stable.
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Muchas gracias!!
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