Eingenvector descomposition of trees

Daniel A. Jaume¹ Gonzalo Molina¹

¹Universidad Nacional de San Luis

UMA. 22 de Septiembre, 2016

Contents

- Support
 - Introduction
 - New results
- S-trees
 - Introduction
 - Results
- N-trees
- 4 Descomposition
 - Introduction
 - Results
 - Aplications

Supp(x)

Supp(x)

$$x = (0, 1, 0, -2, -5, 10)^T$$

Supp(x)

$$x = (0, 1, 0, -2, -5, 10)^T$$

Known results

Lemma (Sander and Sander, 2009)

Given a graph G, and an eigenvalue λ of G, let $\mathcal{B} := \{b_i, \dots, b_k\}$ a base of \mathcal{E}_{λ} , then

$$Supp(\mathcal{E}_{\lambda}) = Supp(\mathcal{B})$$

Supp(T)

Supp(T)

$$\mathcal{B}_{\mathcal{N}(\mathcal{T}))} = \left\{ \left(egin{array}{c} 0 \ 1 \ 0 \ -1 \ 0 \ 0 \end{array}
ight), \left(egin{array}{c} 0 \ 0 \ 1 \ -1 \ 0 \ 0 \end{array}
ight)
ight\}$$

Supp(T)

$$\mathcal{B}_{\mathcal{N}(\mathcal{T}))} = \left\{ \left(egin{array}{c} 0 \ 1 \ 0 \ -1 \ 0 \ 0 \end{array}
ight), \left(egin{array}{c} 0 \ 0 \ 1 \ -1 \ 0 \ 0 \end{array}
ight)
ight\}$$

New results

Lemma

Let T be a tree, and $v \in Supp(T)$, then

$$N(v) \cap Supp(T) = \emptyset$$

New results

Lemma

Let T be a tree, and $v \in Supp(T)$, then

$$N(v) \cap Supp(T) = \emptyset$$

Corollary

Let T be a tree, then Supp(T) is an independent set of T.

$$Supp(T) = \{2, 3, 4, 5, 7, 8\}$$

$$Supp(T) = \{2, 3, 4, 5, 7, 8\}$$

$$Supp(T) = \{2, 3, 4, 5, 7, 8\}$$

$$N(Supp(T)) = \{1, 6\} = Core(T)$$

$$Supp(T) = \{2, 3, 4, 5, 7, 8\}$$

$$N(Supp(T)) = \{1, 6\} = Core(T)$$

$$Supp(T) = \{2, 3, 4, 5, 7, 8\}$$
 $N(Supp(T)) = \{1, 6\} = Core(T)$
 $N\left[Supp(T)\right] = V(T)$

Results

Aplications

Theorem

Let T be a S-tree, then $\alpha(T) = |Supp(T)|$ and Supp(T) is the unique maximum independent set of T.

Theorem

Let T be a S-tree, then $\alpha(T) = |Supp(T)|$ and Supp(T) is the unique maximum independent set of T.

Theorem

If T is a S-Tree, then $\nu(T) = \tau(T) = |Core(T)|$. Furthermore Core(T) is the unique minimum vertex cover of T, and for all $M \in \mathcal{M}(T)$, and for all $e \in M$ we have that $|e \cap Core(T)| = 1$.

Introduction

Definition

A tree T is an N-tree if T is non-singular

Introduction

Definition

A tree T is an N-tree if T is non-singular

Lemma

A tree T is an N-tree if and only if T has a perfect matching.

Introduction

Definition

A tree T is an N-tree if T is non-singular

Lemma

A tree T is an N-tree if and only if T has a perfect matching.

S forest

N forest

Conection edges

$\mathcal{F}_{S}(T)$

Theorem

For any tree T, the S-forest, $\mathcal{F}_S(T)$, is a forest of S-trees.

$\mathcal{N}(T)$

Lemma

For any tree T, and $H \in \mathcal{F}_S(T)$

- 2 $Core(H) = N(Supp(T)) \cap V(H)$
- **3** If $x \in \mathcal{N}(T)$, then $x \mid_{H}^{\tau} \in \mathcal{N}(H)$.

Lemma

For any tree T, and $H \in \mathcal{F}_S(T)$

- 2 $Core(H) = N(Supp(T)) \cap V(H)$
- **3** If $x \in \mathcal{N}(T)$, then $x \downarrow_{H}^{T} \in \mathcal{N}(H)$.
- **1** If $x \in \mathcal{N}(H)$, then $x \downarrow_{H}^{\tau} \in \mathcal{N}(T)$.

Corollary

For any tree T

$$\mathcal{N}(T) = \bigoplus_{S \in \mathcal{F}_H(T)} \mathcal{N}(H)$$

Conection edges

Lemma

For any tree T there exists a maximum matching M of T such that $M \cap CE(T) = \emptyset$.

Conection edges

Lemma

For any tree T there exists a maximum matching M of T such that $M \cap CE(T) = \emptyset$.

Lemma

Given a tree T, and any $e \in CE(T)$, for each $u \in Core(S_e)$ and for each $v \in V(N_e)$ we have that $rank(T) = rank(T_{uv})$.

N-forest

Theorem

For any tree T, the N-forest, $\mathcal{F}_N(T)$, is a forest of N-trees.

Corollary

Let T be a tree, then

$$\alpha(T) = \frac{|V(\mathcal{F}_N(T))|}{2} + |\operatorname{Supp}(T)|$$

Corollary

Let T be a tree, then

$$\alpha(T) = \frac{|V(\mathcal{F}_N(T))|}{2} + |\operatorname{Supp}(T)|$$

Corollary

For any tree T, and any maximum matching M of T, $M \cap CE(T) = \emptyset$.

Corollary

Let T be a tree, then

$$\alpha(T) = \frac{|V(\mathcal{F}_N(T))|}{2} + |\operatorname{Supp}(T)|$$

Corollary

For any tree T, and any maximum matching M of T, $M \cap CE(T) = \emptyset$.

Corollary

For any tree T:

$$m(T) = \prod_{H \in \mathcal{F}_S(T)} m(H)$$

¡Gracias!