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Dirac structures

Dirac structures on a vector space.
Let V be a n-dimensional vector space and V ∗ be its dual
space. Define the (non-degenerate) symmetric pairing � ·, · �
on V ⊕ V ∗ by

� (v1, α1), (v2, α2)�= 〈α1, v2〉+ 〈α2, v1〉 ,

for (v1, α1), (v2, α2) ∈ V ⊕ V ∗, where 〈·, ·〉 is the natural pairing
between V ∗ and V . A (linear) Dirac structure on V is a
subspace D ⊂ V ⊕ V ∗ such that D = D⊥, where D⊥ is the
orthogonal subspace of D relative to the pairing � ·, · �. Note
that according to the definition the condition D = D⊥ implies
that 〈α, v〉 = 0 for each (v, α) ∈ D.
A vector subspace D ⊂ V ⊕ V ∗ is a Dirac structure on V if and
only if it is maximally isotropic with respect to the symmetric
pairing � ·, · �, or equivalently, dimD = n and
� (v1, α1), (v2, α2)�= 0 for all (v1, α1), (v2, α2) in D.
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Dirac structures

We have the following basic examples of Dirac structures.

(a) Let F be a subspace of V and
F ◦ = {α ∈ V ∗〈α, v〉 = 0 for all v ∈ F}. Then
DV = F ⊕ F ◦ is a Dirac structure on V .

(b) On a presymplectic vector space (V, ω), a Dirac structure is
given by

Dω = {(v, α) ∈ V ⊕ V ∗ | α = ω[(v)}

(c) A bivector π : V ∗ × V ∗ → R defines the Dirac structure

Dπ = {(v, α) ∈ V ⊕ V ∗ | v = π](α)}.
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Dirac structures

Lemma. Let D be a Dirac structure on V . Define the subspace
FD ⊂ V to be the projection of D on V . Define the 2-form ωD
on FD by ωD(u, v) = α(v) where u⊕ α ∈ D. Then ωD is a skew
form on FD. Conversely, given a vector space V , a subspace
F ⊂ V and a skew form ω on F ,

D(F,ω) = {u⊕ α | u ∈ F, α(v) = ω(u, v) for all v ∈ F}

is the only Dirac structure D on V such that FD = F and
ωD = ω. In other words, a Dirac structure D on V is uniquely
determined by a subspace FD ⊂ V and a 2-form ωD on it.
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Push-Forward and Pull-Back

When a linear map L : V →W between vector spaces is given
and we have a Dirac structure DW on W , it is possible to
induce a Dirac structure DV on V , the pull-back of DW by L,
denoted by DV = BL(DW ) and defined as follows.

BL(DW ) = {(v, L∗w∗) ∈ V⊕V ∗ | v ∈ V, w∗ ∈W ∗, (Lv,w∗) ∈ DW }.

In a similar way, if we have a Dirac structure DV on V , we can
construct a Dirac structure DW = FL(DV ) on W , called the
push-forward of DV by L, as follows.

FL(DV ) = {(Lv,w∗) ∈W⊕W ∗ | v ∈ V, w∗ ∈W ∗, (v, L∗w∗) ∈ DV }.

The composition rules, F(L1 ◦ L2) = F(L1) ◦ F(L2) and
B(L1 ◦ L2) = B(L2) ◦ B(L1), hold.
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Push-Forward and Pull-Back

The Forward-Dirac category denoted FD has objects (U,DU ),
where DU is a Dirac structure on U , and morphisms
fF : (U,DU )→ (V,DV ) where f : U → V is linear and satifies
Ff(DU ) = DV . The composition rule (g ◦ f)F = gF ◦ fF holds.
In a similar way we define the Backward-Dirac category denoted
BD whose objects are the same as the objects of FD while the
morphisms fB : (U,DU )→ (V,DV ) satisfy Bf(DV ) = DU . The
composition rule (g ◦ f)B = gB ◦ fB holds.
The map (U,DU )→ (U∗, (DU )◦) where (DU )◦ is the annhilator
of DU in U∗ ⊕ U∗∗ = (U ⊕ U∗)∗ is a functor from FD into BD
which establishes an isomorphism of categories between its
image as a subcategory of BD and FD. An entirely similar
statement holds interchanging the roles of BD and FD.
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Dirac structures on tangent bundles

A Dirac structure D on a manifold M , is a vector subbundle of
the Whitney sum D ⊂ TM ⊕ T ∗M such that for each x ∈M ,
Dx ⊂ TxM ⊕ T ∗xM is a Dirac structure on the vector space
TxM at each point x ∈M . A Dirac manifold is a manifold M
with a Dirac structure D on M .
A Dirac structure on M yields a distribution FDx ⊂ TxM whose
dimension is not necessarily constant, carrying a presymplectic
form ωD(x) : FDx × FDx → R for all x ∈M .
The fundamental integrability condition that the space of
sections of D is closed under the Courant bracket unifies the
Jacobi identity for a bivector and the closedness of a 2-form.
The integrability condition will not be used in this talk.
The following result describes a situation which is useful in
many examples.
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Dirac structures on tangent bundles

Theorem Let M be a manifold, ω be a 2-form on M and F be
a regular distribution on M . Define the skew-symmetric bilinear
form ωF on F by restricting ω to F ×F . For each x ∈M , define

DωF (x) = {(vx, αx) ∈ TxM ⊕ T ∗xM |vx ∈ Fx, αx(ux) = ωF (x)(vx, ux)

for all ux ∈ Fx} .

Then DωF ⊂ TM ⊕ T ∗M is a Dirac structure on M . In fact, it
is the only Dirac structure D on M satisfying Fx = FDx and
ωF (x) = ωD(x) for all x ∈M .
As usual, we have used the terminology regular distribution to
mean that F has constant rank. Examples of this Theorem are
the case ω = 0, then DωF = F ⊕F ◦ ⊂ TM ⊕ T ∗M , and the case
F = TM , then Dω is the graph of ω.
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Push-Forward and Pull-back

We now turn to the definition of backward and forward Dirac
structures for manifolds in the cases of interest for this work.
Let us assume that we have a smooth map f : M → N between
two manifolds M and N , and that DN ⊂ TN ⊕ T ∗N is a Dirac
structure. At each point x ∈M , one can use the backward of
the map Tmf to construct a subspace on TmM ⊕ T ∗mM . When
this construction, carried out pointwise for all x ∈M results in
a new Dirac structure DM on M , we will say that DM is the
backward of DN by the map Tf , and we will write
DM = (Tf) (DN ). It should be noted that, in general, defining
DM in this way one does not get a smooth a subbundle of
TM ⊕ T ∗M . One can use the following sufficient conditions.
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Push-Forward and Pull-back

i) If Txf is surjective for each x ∈M , then
DM = B(Tf) (DN ) is a Dirac structure on M .

ii) If iM : M ↪→ N is a submanifold, then DM = B(TiM ) (DN )
is a Dirac structure if DN ∩ TM◦ has constant rank (the
clean-intersection condition).

iii) If DN is given by the graph of a 2-form ω, then
DM = B(Tf) (DN ) is a Dirac structure on M .
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Push-Forward and Pull-back

Let now f : M → N be a smooth surjective submersion, and a
Dirac structure DM on M be given. When we aim at defining
the push-forward, we first need to ask for Tf -invariance of DM ,
meaning that

F(Txf)(DM (x)) = F(Tx′f)(DM (x′)), whenever f(x) = f(x′).

The sufficient condition we will use to ensure that F(Tf)(DM )
defines a Dirac structure is the following:

iv) Let f : M → N be a surjective submersion and DM be a
Dirac structure on M . If DM is Tf -invariant and
ker(Tf) ∩DM has constant rank, then
DN = F(Tf) (DM ) defines a forward structure.
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Dirac systems

A Dirac system is an differential relation of the type

(x, ẋ)⊕ dE(x) ∈ D,

where D is a Dirac structure on M and E is a given function on
M called the Energy.
Nonholonomic mechanics Dirac dynamical systems in the
not necessarily integrable case may be viewed as a synthesis and
a generalization of nonholonomic mechanics, as we will show
next.
Define a Dirac structure D∆ ⊆ TM ⊕ T ∗M on M = TQ⊕ T ∗Q
associated to a given distribution ∆ ⊆ TQ on a manifold Q by
the local expression

D∆(q, v, p) = {(q, v, p,q̇, v̇, ṗ, α, γ, β) |
q̇ ∈ ∆(q), α+ ṗ ∈ ∆◦(q), β = q̇, γ = 0}

which has an intrinsic meaning.
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Dirac systems.

It is straightforward to check that for E(q, v, p) = pv − L(q, p)
the Dirac system

(x, ẋ)⊕ dE(x) ∈ D∆,

where x = (q, v, p), is equivalent to the Lagrange d‘Alembert
equations,

ṗ− ∂L
∂q
∈ ∆◦

q̇ = v

p =
∂L
∂v

q̇ ∈ ∆,
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LC circuits

An LC circuit can be approached as a nonholonomic system as
described before, where the charge space is a vector space
E = Q, then M = TE ⊕ T ∗E and defining D̄∆ and E as before
with the Lagrangian

L(q, v) =
1

2

n∑
i=1

Liv
2
i −

1

2

n∑
i=1

1

Ci
q2
i .

Define the linear maps ϕ : E → E∗ and ψ : E → E∗ by

ϕ(v) =
∂L
∂v

= (L1v1, . . . , Lnvn) ,

ψ(q) =
∂L
∂q

= − (q1/C1, . . . , qn/Cn) .
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LC circuits

The evolution equations for an LC circuit become

ṗ− ψ(q) ∈ ∆◦

q̇ = v

p = ϕ(v)

q̇ ∈ ∆.

In this simple case one can apply a generalization of the Dirac
algorithm to find equations of motion in Hamiltonian form.
The last two examples show how the notion of Dirac system
encompass nonholonomic systems in mechanics and the theory
of LC circuits in an unique formalism.

16/31



Closed and open port-Dirac structures

Closed and open Port-Dirac structures. We will describe
the notions of closed forward-port-Dirac structures and also
open forward-port-Dirac structures. The dual notions of closed
backward-port-Dirac structures and also open
backward-port-Dirac structures can be defined essentially by
reversing arrows. They are all extensions of the notion of Dirac
structures. We will consider two important issues, namely,
interconnection and dynamics.
Statements related to backward are dual from those related to
forward and could be obtained one from each other directly by
duality or by direct proof.
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Closed forward port-Dirac structures

A closed forward-port-Dirac structure is a 5-uple

A = (π(U1,M), π(U2,M), DU1 , DU2 , gU2,U1)

where π(Ui,M) : Ui −→M is a vector bundle and DUi is a Dirac
structure on Ui , i = 1, 2, gU2U1 : U2 −→ U1 is a vector bundle
map over the identity 1M and the following diagram commutes.

U2 U1

M

gU2U1

π(U2,M) π(U1,M)
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Closed forward port-Dirac structures

The Dirac structure DA on U1 is defined by

DA = F(ΦA)(DU1 ⊕DU2)

where ΦA : U1 ⊕ U2 −→ U1 is given by
ΦA(u1 ⊕ u2) = u1 + gU2,U1(u2). In other words, DA is the set of
all (u1, α1) ∈ U1 ⊕ U∗1 such that there exists (u2, α2) ∈ U2 ⊕ U∗2
such that

(u1 − gU2,U1(u2), α1) ∈ DU1

(u2, α2) ∈ DU2

g∗U2U1
α1 = α2
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Closed forward port-Dirac structures

Example Consider the particular case in which DU1 is the
Dirac structure associated to a bivector π and DU2 = U2 ⊕ {0}
and assume that Im gU2,U1 is a subbundle of U1. Then (??)
becomes

u1 − gU2,U1(u2), α1) = π]α1

g∗U2U1
α1 = 0.

We can recognize this equation as being related to some
questions in control theory.
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Closed forward port-Dirac structures

Let B = (π(V1,N), π(V2,N), DV1 , DV2 , gV2,V1).
A forward morphism f : A −→ B is determined by two vector
bundle morphisms fi : Ui −→ Vi, i = 1, 2, over a surjective
submersion f(M,N) : M −→ N , that satisfy F(fi)DUi = DVi ,
i = 1, 2 and the following diagram commutes.

U2 V2

U1 V1

M N

f2

π(U2,M)

gU2U1

π(V2,N)

gV2V1

f1

π(U1,M) π(V1,N)

f(M,N)
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Closed forward port-Dirac structures

Then the closed forward-port-Dirac structures form a category
and one can prove that if f : A −→ B, f = (f1, f2), is a forward
morphism, then F(f1)DA = DB. This implies that the
assignment A 7→ (U1, DA) and f 7→ F(f1) is a functor from the
category of closed-forward-port-Dirac structures to the category
FD.
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Open forward port-Dirac structures

Open forward-port-Dirac structures. We will call open
forward-port-Dirac structurs objects obtained by replacing in
the definition of a closed forward-Dirac system A the Dirac
structure DU2 by the coisotropic structure U2 ⊕ U∗2 , and we will
denote them

A = (π(U1,M), π(U2,M), DU1 , U2 ⊕ U∗2 , gU2,U1).

Note that the vector bundle U1 ⊕ U2 carries the coisotropic
structure Σ = DU1 ⊕ (U2 ⊕ U∗2 ). The coisotropic structure ΣA

on U1 is defined by

ΣA = F(ΦA)(DU1 ⊕ (U2 ⊕ U∗2 )).
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Open forward port-Dirac structures

We can deduce that DA is the set of all (u1, α1) ∈ U1 ⊕ U∗1 such
that there exists (u2, α2) ∈ U2 ⊕ U∗2 such that

(u1 − gU2,U1(u2), α1) ∈ DU1

g∗U2U1
α1 = α2,

Since (u2, α2) ∈ U2 ⊕ U∗2 are arbitrary the previous equations
are in a sense equivalent to

(u1 − gU2,U1(u2), α1) ∈ DU1 .
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Dynamics on closed or open forward-port-Dirac structures

Dynamics on closed or open forward-port-Dirac
structures Let us consider a closed or open forward-port-Dirac
structure A where U1 = TM . Then by definition the dynamics
is given by the Dirac system (x, ẋ)⊕ dE(x) ∈ DA or the
coisotropic system (x, ẋ)⊕ dE(x) ∈ ΣA, respectively, where
E : M → R is an energy function.
In the case of closed forward-port-Dirac system equation we
obtain

((x, ẋ)− gU2,U1(u2), dE(x)) ∈ DU1

(u2, α2) ∈ DU2

g∗U2,U1
dE(x) = α2.

Particularly interesting is the case in which DU1 is the graph of
a Poisson bracket π on M and DU2 is the trivial fiberwise
presymplectic structure U2 ⊕ {0} on U2, which gives
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Dynamics on closed or open port-Dirac structures

(x, ẋ) = π]dE(x) + gU2,U1(u2)

g∗U2,U1
dE(x) = 0,

If gU2,U1(u2) = 0 then one obtains Hamilton’s equations.
In the case of an open forward-port-Dirac system one obtains

((x, ẋ)− gU2,U1(u2), α1) ∈ DU1 ,

and if DU1 is given by a Poisson structure π] one obtains

(x, ẋ) = π]dE(x) + gU2,U1(u2)

which is simply a system with control parameters u2.
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Interconnection of a closed forward port-Dirac structure.

Interconnection of a closed forward port-Dirac
structure. Let

A =
(
π(U1,M), π(U2,M), DU1 , DU2 , gU2U1

)
be a given closed forward port-Dirac structure and let
D′Ui
⊂ Ui ⊕ U∗i be given Dirac structures on Ui, i = 1, 2, called

the interconnecting Dirac structures. We define the backward
interconnected Dirac structures

IB(DUi , D
′
Ui

) = B(dUi)(DUi ×D′Ui
), i = 1, 2,

where dUi : Ui → Ui ×Ui, i = 1, 2, is the fiberwise diagonal map.
Note that for any Dirac structure D we have: IB(D1, D1) = D1.
The backward interconnected closed forward port-Dirac
structure is, by definition the following.

IB(A,D′U1
, D′U2

) =
(
π(U1,M), π(U2,M), IB(DU1 , D

′
U1

),

IB(DU2 , D
′
U2

), gU2U1

)
.
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Interconnection of two closed forward port-Dirac structures.

Interconnection of two given closed forward port-Dirac
structures. Let

A =
(
π(U1,M), π(U2,M), DU1 , DU2 , gU2U1

)
B =

(
π(V1,M), π(V2,M), DV1 , DV2 , gV2V1

)
be given. The product structure is by definition

A×B =
(
π(W1,K), π(W2,K), DW1 , DW2 , gW2W1

)
with K = M ×N , Wi = Ui × Vi, DWi = DUi ×DVi ,
gW2W1 = gU2U1 × gV2V1 .
We can now interconnect the structures in the way described
before, that is, given interconnecting Dirac structures D′Wi

,
i = 1, 2, we have the interconnected structure:

IB(A×B,D′W1
, D′W2

).
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Interconnection of open forward port-Dirac structures.

Interconnection of open forward port-Dirac systems.
Some backward interconnection of open forward port-Dirac
systems can also be described by a similar formalism. Consider
an open system

A =
(
π(U1,M), π(U2,M), DU1 , U2 ⊕ U∗2 , gU2U1

)
.

Given interconnecting structures D′Ui
⊂ Ui ⊕ U∗i , i = 1, 2, we

define the backward interconnected system of A via D′Ui
as

follows.

IB(A,D′U1
, D′U2

) =
(
π(U1,M), π(U2,M), IB(DU1 , D

′
U1

), D′U2
, gU2U1

)
.

Note that D′U2
= IB(U2 ⊕ U∗2 , D′U2

), defined with the same
formalism used for closed forward port-Dirac systems but with
D′U2

replaced by U2 ⊕ U∗2 . If we choose D′U1
= DU1 we get

IB(A,DU1 , D
′
U2

) =
(
π(U1,M), π(U2,M), DU1 , D

′
U2
, gU2U1

)
,

which corresponds to the notion of closing the ports.
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More general interconnections.

More general interconnections. Many more general types of
interconnections can be defined by changing in the previous
definitios backward by forward and also considering some other
interconnecting Dirac structures. As a whole they cover a class
of interconnections of interest in physical systems.
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