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Outline

A finite number n ≥ 2 of individuals (agents) make consumption and saving
decisions over an infinite horizon

Preferences over nonnegative consumption sequences c i := {c it}∞t=0 are
represented by

w i
0(c i ) = u(c i0) + δiu(c i1) + (δi )2u(c i2) + · · ·+ (δi )tu(c it) + · · ·

where u is increasing and concave, and 0 < δi < 1 for all i

Pareto optimal allocations

Under suitable separability conditions, n agents can be aggregated into a
single agent solving a simple dynamic programming problem

Aggregate preferences can also be interpreted as stochastic variational
preferences with Bayesian updating of beliefs

Aggregate preferences satisfy dynamic consistency

Luis A. Alcalá (UNSL-CONICET) Aggregate Dynamic Preferences UMA–2016 2 / 18



Outline

A finite number n ≥ 2 of individuals (agents) make consumption and saving
decisions over an infinite horizon

Preferences over nonnegative consumption sequences c i := {c it}∞t=0 are
represented by

w i
0(c i ) = u(c i0) + δiu(c i1) + (δi )2u(c i2) + · · ·+ (δi )tu(c it) + · · ·

where u is increasing and concave, and 0 < δi < 1 for all i

Pareto optimal allocations

Under suitable separability conditions, n agents can be aggregated into a
single agent solving a simple dynamic programming problem

Aggregate preferences can also be interpreted as stochastic variational
preferences with Bayesian updating of beliefs

Aggregate preferences satisfy dynamic consistency
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Set up and Aggregation

Discrete time, infinite horizon t ∈ T = {0, 1, . . .}

Set of agents N = {1, . . . , n}
A single good which can be consumed or saved

Savings transformed one-to-one into capital (k)

Instantaneous utility u : R+ → R := R ∪ {−∞}, where u is strictly
increasing, strictly concave and C 2(0,∞)

Discount factors 0 < δi < 1, i ∈ N, such that

1 > δ1 > δ2 ≥ · · · ≥ δn > 0

For each agent i ∈ N, intertemporal preferences over nonnegative sequences
c i := {c it}∞t=0 represented by

w i
0(c i ) =

∞∑
t=0

(δi )tu(c it) (1)
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Luis A. Alcalá (UNSL-CONICET) Aggregate Dynamic Preferences UMA–2016 3 / 18



Set up and Aggregation

Discrete time, infinite horizon t ∈ T = {0, 1, . . .}
Set of agents N = {1, . . . , n}
A single good which can be consumed or saved

Savings transformed one-to-one into capital (k)

Instantaneous utility u : R+ → R := R ∪ {−∞}, where u is strictly
increasing, strictly concave and C 2(0,∞)

Discount factors 0 < δi < 1, i ∈ N, such that

1 > δ1 > δ2 ≥ · · · ≥ δn > 0

For each agent i ∈ N, intertemporal preferences over nonnegative sequences
c i := {c it}∞t=0 represented by

w i
0(c i ) =

∞∑
t=0

(δi )tu(c it) (1)
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Setup and Aggregation

Technology is given by a production function f : R+ → R+, f is strictly
increasing, strictly concave and C 2(0,∞).

There exists km > 0, so the state space can be defined in terms of a closed
interval K := [0, km].

Consumption profile ĉ t := (c1
t , . . . , c

n
t ) ∈ Rn

+.

For k0 ≥ 0 given, the set of all feasible capital paths

Π(k0) := {k ∈ K∞ : 0 ≤ kt+1 ≤ f (kt), t ∈ T}

Given k0, the set of all feasible consumption paths is given by

Ω(k0) :=
{
ĉ ∈ `n+ : 0 ≤

∑
i c

i
t ≤ f (kt), for some k ∈ Π(k0), t ∈ T

}
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Pareto Problem with Heterogeneous Discounting

Utility possibility set U(k)

U(k) :=
{
z ∈ Rn : z i = w i

0(c i ), i = 1, . . . , n, for some ĉ ∈ Π(k)
}

Pareto weights: θ := (θ1, . . . , θn) in the (n − 1)-dimensional simplex,

Θn :=
{
θ ∈ Rn

+ : θi ≥ 0, i = 1, . . . , n; and
∑

i θ
i = 1

}
. (2)

Value function is the support function of the set U(k)

V (k, θ) := sup
z∈U(k)

∑
i θ

iz i

where V is strictly increasing and strictly concave in k, strictly convex in θ,
twice continuously differentiable
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Main Aggregation Result

Theorem
There exist maps U : X×Θn → R, µ : Θn → R+, and F : Θn → Θn, such that
the value of the Pareto problem (PP) satisfies the following functional equation

V (k , θ) = sup
y∈Γ(k)

[
U(f (k)− y , θ) + µ(θ)V (y ,F (θ))

]
, (3)

for all (k, θ) in the interior of K ×Θn.
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Aggregation

Assumptions on preferences and technology imply that optimization problem
may be reduced into a two-period recursive problem

Framework developed by Lucas and Stokey (1984) and Dana and Le Van
(1990, 1991)

Let V : K ×Θn be the value of the following program

sup
ĉ,y≥0, z∈U

inf
τ∈Θn

n∑
i=1

θi
[
u(c i ) + δiz i

]
, (PP)

s.t.
n∑

i=1

c i + y ≤ f (k),

n∑
i=1

τ iz i − V (y , τ) ≤ 0.
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Aggregation

Lagrange multiplier method augmented for inequality constraints,
Karush-Kuhn-Tucker (KKT) optimality conditions

Lagrangian

L (ĉ , y , z , τ, λ, µ|k, θ) :=∑
i θ

i [u(c i )+δiz i ] + λ [f (k)−
∑

i c
i− y ]− µ [

∑
i τ

iz i−V (τ, y)],

where λ, µ ≥ 0 are Lagrange multipliers

A solution to (PP) is obtained by solving

V (k, θ) = sup
(ĉ,y ,z,λ)∈Φ

inf
(τ,µ)∈Ψ

L (ĉ , y , z , τ, λ, µ|k, θ),

where Φ := X̂ × R+ × U × R+ and Ψ := Θn × R+
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KKT Optimality Conditions (interior solution)

Given (k0, θ0) ∈ K ×Θn, an optimal path is a sequence{(
c it ,w

i
t+1, θ

i
t+1

)n
i=1

, kt+1, λt , µt

}∞
t=0

that satisfies for each t

θitu
′(c it) = λt , i ∈ N,

w i
t = u(c it) + δiw i

t+1, i ∈ N,

θitδ
i = µtθ

i
t+1, i ∈ N,∑

i θ
i
t+1 = 1,∑

i c
i
t + kt+1 = f (kt),

λt = µtλt+1f
′(kt+1).
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Dynamics

The Lagrange multiplier µt can be interpreted as an aggregate discount
factor which is time-dependent

µt =
n∑

i=1

θitδ
i , t = 0, 1, . . . , (4)

Aggregate consumption ct :=
∑

i c
i
t

Aggregate instantaneous utility function U(ct , θt) obtained from Pareto
optimal allocations and feasibility constraints

The Lagrange multiplier λt is the marginal utility of aggregate consumption

λt =
∂U(ct , θt)

∂ct
t = 0, 1, . . .
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Aggregate Preferences

Aggregate utility index defined as Wt :=
∑

i θ
i
tw

i
t , then

Wt = U(ct , θt) + µ(θt)Wt+1, t = 0, 1, . . . (5)

Transition of vector of weights is completely known

θt+1 = F (θt), t = 0, 1, . . .

Individual allocation rules zi : R+×Θn that satisfy for every t

n∑
i=1

zi (ct , θt) = ct , and U(ct , θt) =
n∑

i=1

θit u (zi (ct , θt)) .

Separability of aggregate instantaneous utility function

U(ct , θt) = G (ct)H(θt)
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Separability of aggregate instantaneous utility function

U(ct , θt) = G (ct)H(θt)
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Separability

Definition
A utility function u : R+ → R satisfies linear absolute tolerance to consumption
fluctuation (LATCF) if

u(c it) = γ
1−γ

[(
φ+ ρ

γ c
i
t

)1−γ
− 1

]
, 0 < γ < +∞, γ 6= 1

with φ+ (ρ/γ) c ≥ 0, 0 < ρ < +∞, and φ ∈ R.

Proposition

If each agent has an instantaneous utility function in the LATCF class, then the
sharing rule is linear in aggregate consumption ct , i.e.,

zi (ct , θt) = ai (θt) ct + bi (θt),

where ai (θt) ≥ 0,
∑

i ai (θt) = 1 and
∑

i bi (θt) = 0, for all θt and for all t.
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Bayesian Decision Model

Dynamic programming and statistical decision theory: Blackwell and Girshick
(1954), Rieder (1975) and Schäl (1979)

Dynamic consistency, multiple-prior dynamic models, Bayesian updating of
beliefs: Epstein and Le Breton (1993), Epstein and Schneider (2003), Epstein
and Schneider (2007)

Single decision-maker

State space S = {1, . . . , n} with typical element s

Action space Γ(kt) =
{
cst ∈ Rn

+ : 0 ≤
∑

s c
s
t ≤ f (kt)

}
A sequence π = (πt) of transition probabilities πt : Γt × St → Pt

Prior distribution π0 := (π1
0 , . . . , π

n
0 ) ∈ ∆n
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Luis A. Alcalá (UNSL-CONICET) Aggregate Dynamic Preferences UMA–2016 13 / 18



Bayesian Decision Model

Dynamic programming and statistical decision theory: Blackwell and Girshick
(1954), Rieder (1975) and Schäl (1979)

Dynamic consistency, multiple-prior dynamic models, Bayesian updating of
beliefs: Epstein and Le Breton (1993), Epstein and Schneider (2003), Epstein
and Schneider (2007)

Single decision-maker

State space S = {1, . . . , n} with typical element s

Action space Γ(kt) =
{
cst ∈ Rn

+ : 0 ≤
∑

s c
s
t ≤ f (kt)

}

A sequence π = (πt) of transition probabilities πt : Γt × St → Pt

Prior distribution π0 := (π1
0 , . . . , π

n
0 ) ∈ ∆n
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Bayesian Decision Model

Posterior distribution: Bayesian sequential update

πs
t+1 =

πs
t δ

s∑
s π

s
t δ

s
, s ∈ S

where πs
t+1 := P(Xt+1 = s|Xt = s), for each s ∈ S .

Let {νt}∞t=0 be a sequence of discount rates over (0, 1)∞

“Before uncertainty is resolved”

V0 = π1
0

[
u(c1

0 ) + ν̂0 z
1
1

]
+ · · ·+ πn

0

[
u(cn0 ) + ν̂0 z

n
1

]
“After uncertainty is resolved”

V s
π = u(cs0) + ν0

∑
s∈S

πs
1z

s
1 = u(cs0) + ν0

∑
s∈S

πs
1

[
u(cs1) + ν̂1 z

s
2

]
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Luis A. Alcalá (UNSL-CONICET) Aggregate Dynamic Preferences UMA–2016 14 / 18



Bayesian Decision Model

Posterior distribution: Bayesian sequential update

πs
t+1 =

πs
t δ

s∑
s π

s
t δ

s
, s ∈ S

where πs
t+1 := P(Xt+1 = s|Xt = s), for each s ∈ S .

Let {νt}∞t=0 be a sequence of discount rates over (0, 1)∞

“Before uncertainty is resolved”

V0 = π1
0

[
u(c1

0 ) + ν̂0 z
1
1

]
+ · · ·+ πn

0

[
u(cn0 ) + ν̂0 z

n
1

]
“After uncertainty is resolved”

V s
π = u(cs0) + ν0

∑
s∈S

πs
1z

s
1 = u(cs0) + ν0

∑
s∈S

πs
1

[
u(cs1) + ν̂1 z

s
2

]
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Bayesian Decision Model

Dynamic consistency is the requirement that ex-ante contingent choices are
respected by updated preferences

Let νt :=
∑

s π
s
t δ

s , then

V = π1
0 u(c1

0 ) + ν0 π
1
1 u(c1

1 ) + ν0 ν1 π
1
2 u(c1

2 ) + · · ·

+ · · ·+

+ πn
0 u(cn0 ) + ν0 π

n
1 u(cn1 ) + ν0 ν1 π

n
2 u(cn2 ) + · · ·

Stochastic recursive preferences with Bayesian updating imply that optimal
choices of (c it , z

i
t+1), i = 1, . . . , n, t = 0, 1, . . . are dynamically consistent
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