Sobre conexiones discretas y la Sucesión de Atiyah Discreta

Javier Fernandez ¹, Marcela Zuccalli², Mariana Juchani^{2,3}

> ¹Instituto Balseiro, UNCu-CNEA ²Dto. de Matemática, UNLP ³CONICET

> > $\begin{array}{c} {\rm EAMGyFM} \\ {\rm Septiembre} \ 2017 \end{array}$

Conexiones sobre fibrados principales

- Sea G un grupo de Lie actuando sobre una variedad Q por $l^Q: G \times Q \to Q$ tal que,
- $\pi: Q \longrightarrow Q/G$ un G-fibrado principal.
- Sea \mathfrak{g} el álgebra de Lie de G. El fibrado vertical \mathcal{V} está definido para cada $q \in Q$ por $\mathcal{V}(q) := T_q l_C^Q(q) = \{\xi_Q(q) : \xi \in \mathfrak{g}\}$

Conexión sobre fibrados principales

Definición

Definición

Una conexión A sobre un G-fibrado principal π consiste en una elección de un subespacio $Hor_A(q) \subset T_qQ$ tal que:

- (1) $T_qQ = \mathcal{V}(q) \oplus Hor_{\mathcal{A}}(q)$
- (2) $Hor_{\mathcal{A}}(q)$ es G-equivariante.
- (3) $Hor_{\mathcal{A}}(q)$ depende de q de forma diferenciable.

1-forma de conexión

Es decir, cada $v_q \in T_qQ$ se descompone de manera única como:

$$v_q = \underbrace{\xi_Q(q)}_{\in \mathcal{V}(q)} + \underbrace{v_q - \xi_Q(q)}_{\in Hor_{\mathcal{A}}(q)}$$

Definición

Asociada a una conexión sobre un G-fibrado principal, se tiene una 1-forma de conexión con valores en g

$$\begin{array}{ccc} \mathcal{A}: TQ & \longrightarrow & \mathfrak{g} \\ v_q & \mapsto & \xi \end{array}$$

donde $v_q - \xi_Q(q) \in Hor_{\mathcal{A}}(q)$

Teorema

La forma de conexión \mathcal{A} de una conexión satiface las siguientes propiedades:

- (1) $\mathcal{A}(\xi_Q(q)) = \xi$, para todo $\xi \in \mathfrak{g}$
- (2) A es G-equivariante.

equivalentemente, dada una aplicación $\mathcal{A}: TQ \to \mathfrak{g}$ que cumple con las propiedades (1) y (2) define una única conexión cuya 1-forma de conexión es \mathcal{A} .

Conexión discreta

- $Q \times Q$ una versión discreta TQ.
- Sea la acción diagonal $l_g^{Q \times Q}(q_0, q_1) := (l_g^Q(q_0), l_g^Q(q_1))$ sobre $Q \times Q$.
- $\mathcal{V}_d(q) := \{ (q, l_g^Q(q)) \in Q \times Q : g \in G \}$
- Para un par $(q_0, q_1) \in Q \times Q$,

$$(q_0, q_1) = \underbrace{(q_0, l_g^Q(q_0))}_{\in \mathcal{V}_d} \cdot \underbrace{(q_0, q_1)}_{horizontal}$$

Donde la composición de un vertical y un par arbitrario (con base en el mismo punto q_0) esta definido por

$$(q_0, l_q^Q(q_0)) \cdot (q_0, q_1) := (q_0, l_q^Q(q_1)).$$

Conexión discreta

Definición

Definición

Sea $Hor \subset Q \times Q$ una subvariedad $l^{Q \times Q}$ -invariante que contiene la diagonal $\Delta_Q \subset Q \times Q$.

Hor define una una conexión discreta \mathcal{A}_d sobre el fibrado principal $\pi: Q \longrightarrow Q/G$ si $(id_Q \times \pi)|_{Hor}: Hor \longrightarrow Q \times Q/G$ es un difeomorfismo local inyectivo.

Forma de conexión discreta

Para cualquier $(q_0, q_1) \in \mathfrak{U}$, existe un único $g \in G$ tal que

$$(q_0, q_1) = \underbrace{(q_0, l_g^Q(q_0))}_{\in \mathcal{V}_{\mathcal{A}_d}} \cdot \underbrace{(q_0, l_{g^{-1}}^Q(q_1))}_{\in Hor_{\mathcal{A}_d}}$$

Definición

Dada una conexión discreta A_d con dominio $\mathfrak U$ sobre el G-fibrado principal $\pi:Q\to Q/G$, se define su **forma de conexión disreta asociada** como

$$\mathcal{A}_d: \mathfrak{U} \subset Q \times Q \longrightarrow G$$

$$(q_0, q_1) \mapsto g$$

Teorema

Sea A_d una conexión discreta sobre el G-fibrado principal $\pi: Q \to Q/G$ con dominio \mathfrak{U} . Entonces, $\forall (q_0, q_1) \in \mathfrak{U} \ y \ g_0, g_1 \in G$,

$$\mathcal{A}_d(l_{g_0}^Q(q_0), l_{g_1}^Q(q_1)) = g_1 \mathcal{A}_d(q_0, q_1) g_0^{-1}$$
(1)

Además, $Hor_{\mathcal{A}_d} = \{(q_0, q_1) \in \mathfrak{U} : \mathcal{A}_d(q_0, q_1) = e\}.$ Inversamete, dada una función suave $\mathcal{A} : \mathcal{U} \to G$ con $\mathcal{U} \subset Q \times Q$ un conjunto abierto que contiene a la diagonal $\Delta_Q \subset Q \times Q$ y es invariante bajo la acción producto de $G \times G$ en $Q \times Q$, tal que la función \mathcal{A} cumple (1), entonces

$$Hor := \{(q_0, q_1) \in \mathcal{U} : \mathcal{A}(q_0, q_1) = e\}$$

define una conexión discreta con dominio \mathcal{U} y con forma de conexión discreta asociada A.

Existencia de conexiones discretas

Sobre variedades de Riemann

Teorema

Sea (Q, \langle,\rangle_Q) una variedad de Riemann donde el grupo de Lie G actua por isometrías y $\pi:Q\to Q/G$ es un G-fibrado principal. Entonces, existe una conexión discreta $\mathcal{A}_d^{\langle,\rangle_Q}$ sobre π .

Conexión discreta trivial

- Sea $Q := M \times G$, M variedad diferencial conexa y G un grupo de Lie.
- \bullet Sea la G-acción sobre Q definida por $l_g^Q(x,g')=(x,gg')$
- Entonces $p_1: Q \longrightarrow M$ es el G-fibrado principal trivial.

 $\mathcal{A}_d^e:Q\times Q\longrightarrow G$ dada por

$$\mathcal{A}_d^e((x_0, g_0), (x_1, g_1)) = g_1 g_0^{-1}$$

define una conexión discreta sobre el G-fibrado principal trivial, \mathcal{A}_d^e es llamada conexión discreta trivial.

Curvatura

Definición

Definición

Sea $\pi: Q \longrightarrow Q/G$ un fibrado principal con una conexión \mathcal{A} . La curvatura asociada a la conexión \mathcal{A} , se define como:

$$\mathcal{B}(u_q, v_q) = \mathbf{d}\mathcal{A}(Hor_{\mathcal{A}}(u_q), Hor_{\mathcal{A}}(v_q))$$

para $u_q, v_q \in T_qQ$.

Donde d denota la derivada exterior.

Conexiones discretas simétricas

Definición

Una conexión A_d definida por $Hor \subset Q \times Q$ es simétrica si y solo si $(q_0, q_1) \in Hor \iff (q_1, q_0) \in Hor$.

Curvatura de una conexión discreta

Definición

Sea \mathcal{A}_d una conexión discreta simétrica con dominio \mathfrak{U} sobre el fibrado principal $\pi: Q \longrightarrow Q/G$. Sea

$$\mathfrak{U}^3 := \{ (q_0, q_1, q_2) \in Q^3 : (q_i, q_j) \in \mathfrak{U} \forall i, j = 0, 1, 2 \}$$

Definimos la curvatura de A_d como $B_d: \mathfrak{U}^{(3)} \longrightarrow G$ por

$$\mathcal{B}_d(q_0, q_1, q_2) := \mathcal{A}_d(q_2, q_0) \mathcal{A}_d(q_1, q_2) \mathcal{A}_d(q_0, q_1)$$

 \mathcal{A}_d es plana si $\mathcal{B}_d = e$ sobre \mathfrak{U}^3 .

Curvatura de la conexión discreta trivial Ejemplo

- Sea $Q := M \times G$, M variedad diferencial conexa y G un grupo de Lie actuando de manera trivial sobre Q.
- Entonces $p_1: Q \longrightarrow M$ es el G-fibrado principal trivial.

La conexión discreta trivial sobre el G-fibrado principal

$$\mathcal{A}_d^e((x_0, g_0), (x_1, g_1)) = g_1 g_0^{-1}$$

Tiene curvatura:

$$\mathcal{B}_{d}(q_{0}, q_{1}, q_{2}) := \mathcal{A}_{d}^{e}(q_{2}, q_{0}) \mathcal{A}_{d}^{e}(q_{1}, q_{2}) \mathcal{A}_{d}^{e}(q_{0}, q_{1})$$

$$= (g_{0}g_{2}^{-1})(g_{2}g_{1}^{-1})(g_{1}g_{0}^{-1})$$

$$= e$$

Sucesión de Atiyah

Dado un G-fibrado principal $\pi:Q\longrightarrow Q/G$ se tiene la siguiente sucesión exacta de fibrados vectoriales sobre Q/G

$$0 \longrightarrow \widetilde{\mathfrak{g}} \stackrel{i}{\rightarrow} TQ/G \stackrel{\pi_*}{\longrightarrow} T(Q/G) \longrightarrow 0,$$

llamada Sucesión de Atiyah .

Donde $\widetilde{\mathfrak{g}} = (Q \times \mathfrak{g})/G$.

Una conexión \mathcal{A} sobre el G-fibrado principal induce un splitting,

$$0 \longrightarrow \widetilde{\mathfrak{g}} \overset{i}{\underset{(\pi_1,\mathcal{A})}{\longleftarrow}} TQ/G \overset{\pi_*}{\underset{X^h}{\longleftarrow}} T(Q/G) \longrightarrow 0$$

Sean las acciones a izquierda de G sobre $Q \times G$ y $Q \times Q$ de la siguiente forma,

$$l_g^{Q\times G}(q,h):=(l_g^Q(q),ghg^{-1})\ y\ l^{Q\times Q}(q_0,q_1):=(l_g^Q(q_0),l_g^Q(q_1))$$

La sucesión de fibrados sobre Q/G

$$(Q\times G)/G \xrightarrow{F_1} (Q\times Q)/G \xrightarrow{F_2} Q/G\times Q/G$$

Es llamada Sucesión de Atiyah Discreta.

$$F_1(\pi^{Q \times G/G}(q_0, g_0)) = \pi^{Q \times Q/G}(q_0, l_{g_0}^Q q_1)$$
$$F_2(\pi^{Q \times Q}(q_0, q_1)) = (\pi(q_0), \pi(q_1))$$

Proposición

Proposición

Sea A_d una conexión discreta sobre $\pi:Q\longrightarrow Q/G$ un G-fibrado principal existe una función

 $\sigma_2: Q/G \times Q/G \longrightarrow (Q \times Q)/G$ con las siguientes propiedades

- (i) $\check{p}_1 \circ \sigma_2 = p_1$
- (ii) $F_2 \circ \sigma_2 = Id_{Q/G \times Q/G}$
- (iii) $\sigma_2(\Delta_{Q/G \times Q/G}) \subset \pi^{(Q \times Q)/G}(\Delta_{Q \times Q})$

Inversamente, dada una $\sigma_2 : Q/G \times Q/G \longrightarrow (Q \times Q)/G$ tales que (i), (ii), (iii) se satifacen, entonces existe una conexión discreta \mathcal{A}_d .

Sea A_d una conexión discreta entonces se define,

$$\sigma_2: Q/G \times Q/G \longrightarrow (Q \times Q)/G$$

$$\sigma_2(\pi(q_0), \pi(q_1)) := \pi^{Q \times Q/G}(q_0, \mathcal{A}_d(q_0, q_1)^{-1}q_1)$$

Grupoides de Lie

Definición

Un grupoide sobre M es un conjunto \mathcal{G} con las aplicaciones:

- origen y final $\alpha, \beta : \mathcal{G} \longrightarrow M$ proyectiones.
- Una multiplicación $m: \mathcal{G}_2 \longrightarrow \mathcal{G}$, con $\mathcal{G}_2 := \{(g_1, g_2) \in \mathcal{G} \times \mathcal{G} : \beta(g_1) = \alpha(g_2)\}$
- Un mapa identidad $\epsilon: M \longrightarrow \mathcal{G} \ \epsilon(\alpha(g))g = g \ y$ $g\epsilon(\beta(g)) = g$
- Un mapa inversión $i: \mathcal{G} \longrightarrow \mathcal{G}$.

Sujeto a ciertas condiciones...

Un grupoide $\mathcal{G} \rightrightarrows M$ es un grupoide de Lie si M y \mathcal{G} son variedades suaves, α y β son submersiones suaves y los mapas m, ϵ, i son suaves.

 $(Q \times G)/G$ tiene estructura de grupoide de Lie sobre Q/G

• Las aplicaciones origen y final,

$$\alpha(\pi^{Q \times G/G}(q, g)) = \pi(q) \text{ y } \beta(\pi^{Q \times G/G}(q, g)) = \pi(q),$$

$$((Q \times G)/G)_2 = \{(\pi^{Q \times G/G}(q_0, g_0), \pi^{Q \times G/G}(q_1, g_1)) : \pi(q_0) = \pi(q_1)\}$$

$$= \{(\pi^{Q \times G,G}(q_0, g_0), \pi^{Q \times G,G}(q_0, h_0)) : q_0 \in Q, g_0, h_0 \in G\}$$

La multiplicación,

$$m(\pi^{Q \times G,G}(q_0, g_0)), (\pi^{Q \times G,G}(q_0, h_0)) := \pi^{Q \times G,G}(q_0, g_0 h_0)$$

 \bullet La aplicación identidad $\epsilon:(Q/G)\to (Q\times G)/G$

$$\epsilon(\pi(q)) := \pi^{Q \times G, G}(q, e)$$

e elemento neutro de el grupo de Lie G.

• La inversión $i: (Q \times G)/G \to (Q \times G)/G$

$$i(\pi^{Q\times G,G}(q,g)):=\pi^{Q\times G,G}(q,g^{-1})$$

 $(Q \times Q)/G$ tiene una estructura de grupoide de Lie sobre Q/G.

• Las aplicaciones origen y final son

$$\begin{split} \alpha(\pi^{Q\times Q,G}(q_0,q_1)) &:= \pi(q_0) \text{ y } \beta(\pi^{Q\times Q,G}(q_0,q_1)) := \pi(q_1) \\ (Q\times Q/G)_2 &= \{(\pi^{Q\times Q,G}(q_0,q_1),\pi^{Q\times Q,G}(q_1',q_2')) : \pi(q_1) = \pi(q_1')\} \\ &= \{(\pi^{Q\times Q,G}(q_0,q_1),\pi^{Q\times Q,G}(q_1,q_2)) : g \in G, q_0,q_1,q_2 \in Q\} \end{split}$$

La multiplicación,

$$m(\pi^{Q \times Q,G}(q_0, q_1), \pi^{Q \times Q,G}(q_1, q_2)) := \pi^{Q \times Q,G}(q_0, q_2)$$

• Las aplicaciones identidad,

$$\epsilon(\pi(q_0)) := \pi^{Q \times Q, G}(q_0, q_0)$$

• La inversión,

$$i(\pi^{Q \times Q,G}(q_0, q_1)) := \pi^{Q \times Q,G}(q_1, q_0)$$

Definición

Dado dos grupoides de Lie $\mathcal{G} \rightrightarrows M$ y $\mathcal{G}' \rightrightarrows M'$, un morfismo de grupoides de Lie consiste en un par de aplicaciones suaves, $F: \mathcal{G} \longrightarrow \mathcal{G}'$ y $F_0: M \longrightarrow M'$ tales que $\alpha' \circ F = F_0 \circ \alpha$, $\beta' \circ F = F_0 \circ \beta$ y además $F(g_1g_2) = F(g_1)F(g_2)$ para todo $g_1, g_2 \in \mathcal{G}_2$.

Definición

Sean los grupoides de Lie $\mathcal{G} \rightrightarrows M$ y $\mathcal{G}' \rightrightarrows M'$. $F : \mathcal{G} \longrightarrow \mathcal{G}'$ y $F_0 : M \longrightarrow M'$ un morfismo de grupoides de Lie. Se define el núcleo de F como

$$Nuc(F) := \{ g \in \mathcal{G} : F(g) = \epsilon'(m') para \ algún \ m' \in M' \}$$

$$(Q \times G)/G \xrightarrow{F_1} (Q \times Q)/G \xrightarrow{F_2} Q/G \times Q/G$$

- F_1 y F_2 junto a $Id: Q/G \longrightarrow Q/G$ resultan ser morfismo de grupoides de Lie.
- $F_2 \circ F_1(\pi^{Q \times G/G}(q,g)) = (\pi(q), \pi(q))$
- y también,

$$\begin{aligned} Nuc(F_2) &= \{ \pi^{Q \times Q, G}(q_0, q_1) : (\pi(q_0), \pi(q_1)) = (\pi(q), \pi(q)), \text{ para algún } q \in Q \} \\ &= \{ \pi^{Q \times Q, G}(q, gq) : q \in Q, g \in G \} \\ &= Im(F_1) \end{aligned}$$

Teorema

Sea \mathcal{A}_d una conexión discreta simétrica con dominio \mathfrak{U} sobre un G-fibrado principal $\pi: Q \to Q/G$. Entonces $\sigma_2: Q/G \times Q/G \to (Q \times Q)/G$ es un morfismo de grupoides de lie local si y sólo si $\mathcal{B}_d(q_0, q_1, q_2) = e$ localmente.

$$\sigma_2((\pi(q_0), \pi(q_1)) \circ (\pi(q_1), \pi(q_2))) = \pi^{Q \times Q, G}(q_0, \mathcal{A}_d(q_0, q_2)^{-1} q_2)$$

$$\sigma_2((\pi(q_0), \pi(q_1)) \circ \sigma_2((\pi(q_1), \pi(q_2))) = \pi^{Q \times Q, G}(q_0, \mathcal{A}_d(q_0, q_1)^{-1} \mathcal{A}_d(q_1, q_2)^{-1} q_2)$$
Entonces,
$$\mathcal{A}_d(q_0, q_2)^{-1} = \mathcal{A}_d(q_0, q_1)^{-1} \mathcal{A}_d(q_1, q_2)^{-1}$$

$$\mathcal{B}_d(q_0, q_1, q_2) = \mathcal{A}_d(q_2, q_0) \mathcal{A}_d(q_1, q_2) \mathcal{A}_d(q_0, q_1) = e$$

GRACIAS!!