$\forall \exists$!-classes and algebraic functions

M. Campercholi and D. Vaggione FaMAF - U.N.C.

Given a first order language \mathcal{L} , a $\forall \exists !$ -sentence in \mathcal{L} is a sentence of the form $\forall x_1, ..., x_n \exists ! y_1, ..., y_m O(\overline{x}, \overline{y})$, where O is a quantifier-free \mathcal{L} -formula, and $\exists !$ stands for "there exist unique". A $\forall \exists !$ class is the class of all models of a set of $\forall \exists !$ -sentences. A class of models \mathcal{K} has the intersection property (i.p.) if given $\mathbf{A} \in \mathcal{K}$ and $\mathbf{A} \supseteq \mathbf{A}_i \in \mathcal{K}, i \in I$, such that $\bigcap_{i \in I} A_i \neq \emptyset$, then $\bigcap_{i \in I} \mathbf{A}_i \in \mathcal{K}$. It is easy to see that every $\forall \exists !$ class has the i.p.. C.C. Chang conjectured in [1] that an elementary class \mathcal{K} has the i.p. if and only if it is a $\forall \exists !$ class. In the paper [2] M. O. Rabin disproves Chang's conjecture, and also characterizes the elementary classes with i.p. as certain $\forall \exists$ classes. It turns out that $\forall \exists !$ classes have a further property not necessarily true of every elementary class with i.p.: a class \mathcal{K} is closed under fixed point submodels if for every $\mathbf{A} \in \mathcal{K}$ and γ an automorphism of \mathbf{A} the submodel with universe $\operatorname{Fix}(\gamma) = \{a \in A : \gamma(a)\}$ is in \mathcal{K} (whenever the set $\operatorname{Fix}(\gamma)$ is non-empty). In the case that the elementary class \mathcal{K} is formed (up to isomorphism) by a finite number of finite models, we prove that this additional closure condition is enough to ensure that \mathcal{K} is a $\forall \exists !$ class.

Theorem 1 Let \mathcal{K} be a finite set of finite \mathcal{L} -models. Then $\mathbb{I}(\mathcal{K})$ is finitely axiomatizable by $\forall \exists !$ -sentences if and only if \mathcal{K} has the *i.p.* and \mathcal{K} is closed under fixed point submodels.

Given a $\forall \exists!$ -sentence $\varphi = \forall \overline{x} \exists! \overline{y} O(\overline{x}, \overline{y})$ and a model \mathbf{A} of φ we can implicitly define m functions $[\varphi]_i^{\mathbf{A}} : A^n \to A, 1 \leq i \leq m$, by $([\varphi]_1^{\mathbf{A}}(\overline{a}), ..., [\varphi]_n^{\mathbf{A}}(\overline{a})) =$ the unique \overline{b} such that $\mathbf{A} \models O(\overline{a}, \overline{b})$. The sentence φ is called an *equational function* definition sentence (*EFD*-sentence) if O is a conjunction of term equalities. A function f is algebraic on \mathbf{A} provided there is an EFD-sentence φ such that $f = [\varphi]_i^{\mathbf{A}}$. An interesting problem is: given a model \mathbf{A} characterize all algebraic functions on \mathbf{A} . In our talk we show how to apply Theorem 1 to solve this problem for certain kinds of models \mathbf{A} .

- C.C. Chang, Unions of chains of models and direct products of models, Summer Institute for, Symbolic Logic, Cornell University (1957), 141–143.
- [2] M.O. Rabin, Classes of models and sets of sentences with the intersection property, Annales de la Faculté des sciences de l'Université de Clermont (1962), no. 7, 39–53.