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Abstract: The assessment of the effects of minor perturbations of dataon corrected score estimators in functional
measurement error models is considered by using a differential-geometrical framework proposed by Zhu et al. [Ann.
Statist.35 (2007) 2565-2588]. Ann-dimensional Riemannian manifold, called the perturbation manifold is defined.
The metric tensor can be used to choose an appropriate perturbation vector. First and second-order terms on a covariant
version of the Taylor’s theorem, based on the Levi-Civita connection, are used to define influence measures for the
corrected score estimator. To illustrate the calculation of the geometrical quantities of interest, the simple linear
measurement error model is examined.
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1 INTRODUCTION

Local influence analysis is an important statistical tool because it can provide indication of bad model
fitting or of influential observations that could somewhat distort the parameter estimates leading in some
cases to erroneous inference. The study of influence diagnostics hasbeen an active area of statistical re-
search since the seminal work of Cook ([6]), where a perturbation scheme is introduced into the postulated
model through a perturbation vector, and the influence is studied via the normal curvatures on the graph of
the likelihood displacement versus the perturbation vector. A generalizationof Cook’s approach and the
influence on the maximum likelihood estimate of any parameter in a regression model is presented by [22].
Recently, [26] developed a differential-geometrical framework of a perturbation model (called the perturba-
tion manifold). This method extends Cook’s approach in several aspects.First, it is showed that the metric
tensor of the perturbation manifold provides important information about selecting an appropriate perturba-
tion of a model. Second, new influence measures are defined for smooth objective functions, that avoid the
scale dependence of normal curvature for objective functions at points with a nonzero first derivative ([8]).
In addition, the proposed second-order influence measures reducesto normal curvature under an appropriate
perturbation scheme for objective functions that have zero first derivative at the critical point.

Influence diagnostic for measurement error models have received attention in the literature. Most works
derive influence functions or apply the local influence method of [6], that is, the so-called first order ap-
proach ([22]). [11] gave an influence function for the structural models. [7] defined the hat matrix using the
estimated predictor variable values and [21] proposed a one-step approximation to Cook’s distance. [23] and
[24] derived the influence functions for generalized linear and non-linear measurement error models. [13]
obtained some useful diagnostics based on the likelihood displacement functions for generalized linear mea-
surement models. [25] presented a unified diagnostic method for linear measurement error models based
upon the corrected likelihood of [15]. [9] considered influence and diagnostic methods in homoscedas-
tic comparative calibration models in functional and structural versions using Cook’s approach based on
the likelihood displacement. [18] considered the construction and properties of influence functions in the
context of functional measurement error models with replicated data.

In functional measurement error models we are typically concerned with structural parameter estimation
in the presence of incidental parameters. The failure of the likelihood approach for some models in such
situations ([16], [17], [20]) has motivated researchers to seek for alternative methods of estimation. One of
these is the corrected score approach ([15], [10]), which yields unbiased estimating equations independent of
the incidental parameters. Under convenient regularity conditions, corrected score estimators are consistent
and asymptotically normally distributed.

The aim of this paper is to assess the effects of minor perturbations of data on corrected score estimators
in functional measurement error models. Following the approach of [26] we obtain the perturbation manifold



for these models and the geometrical quantities associated for checking appropriate choice of a perturbation
vector and calculating influence measures.

The paper is organized as follows. Section 2 presents the functional measurement error model and
review estimation by using the corrected score approach. Section 3 considers local influence analysis.
Different perturbation schemes on the corrected score function are included. The density of the perturbed
model which yields the perturbed corrected score and the statistical perturbation manifold is obtained. The
associated metric tensor and affine connection are calculated. In Section 4first and second-order influence
measures for the corrected score estimator are defined. Section 5 illustrates the calculation of the geometrical
quantities of interest in the simple linear regression model. Numerical computations from a small data set is
also included. Concluding remarks are made in Section 6.

2 FUNCTIONAL MEASUREMENT ERROR MODELS

A measurement error model is a linear or non-linear regression model with (substantial) measurement
error in the variables, above all in the explanatory variable. Disregarding these measurement errors in
estimating the regression parameters results in asymptotically biased, i.e. inconsistent estimators. This is
the motivation for investigating measurement error models.

On the other hand, most studies in the life sciences, biology, ecology and economics involve variables
that cannot be recorded exactly. In engineering, the calibration of measuring instruments deals with mea-
surement errors by definition ([3]). Recently measurement error methods have been applied in the masking
of data to assure anonymity ([2]). Many more examples and contribution to thisfield can be found in the
literature, in particular in [7], [4] and [5].

Suppose that we wish to estimate ap × 1 vector of parametersθθθ in an open subsetΘ of R
p, governing

the density functionp(y; z, θθθ) of a r × 1 random vector of responsesy, depending on ak × 1 vector of
covariatesz, unobservable because it is measured with error. Instead, we observe a surrogatex = z + u,
independent ofy, where the measurement erroru is normally distributed with mean zero and covariance
matrixΣ2

u, which we suppose known.
Inference is based on a sample ofn independent observations(y1,x1), . . . , (yn,xn). If the unobserved

covariatesz1, . . . , zn are unknown constants, then the model is referred to as a functional model and
z1, . . . , zn are nuisance parameters whose number increases with the sample size, called incidental param-
eters. Ifz1, . . . , zn are considered as a random sample from some distribution, then the model is referred
to as a structural model. The terminalogy “functional” and “structural” is dueto [12]. In practice it is hard
to decide which of these models is more relevant. In this paper we consider functional measurement error
models with normal measurement error. The parameterθθθ is the parameter of interest or structural parameter
and the unobserved covariateszj , j = 1, . . . , n are incidental parameters pertaining to the observationxj ,
j = 1, . . . , n. Let p(xj ; zj , θθθ) denote the density function ofxj depending onzj .

Let Y be then × r matrix with yT
j as itsj-th row,X andZ then × k matrices withxT

j andzT
j as its

j-th rows, respectively. The density of the postulated model is given by

p(Y,X;Z, θθθ) = p(Y;Z, θθθ)p(X;Z, θθθ) =
n

∏

j=1

p(yj ; zj , θθθ)
n

∏

j=1

p(xj ; zj , θθθ),

whereZ is part of the parameters.
The log-likelihood, givenY andX is

ℓ(θθθ,Z;Y,X) =
n

∑

j=1

ℓ(θθθ, zj ;yj) +
n

∑

j=1

ℓ(θθθ, zj ;xj), (1)

whereℓ(θθθ, zj ;yj) = log p(yj ; zj , θθθ) andℓ(θθθ, zj ;xj) = log p(xj ; zj , θθθ).

2.1 ESTIMATION BY THE CORRECTED SCORE APPROACH

It is not generally true that maximizing (1) produces consistent estimators ofθθθ ([20]). The problem is due
to the large number of nuisance parameters. The unwieldy functional likelihood and its failure to produce



consistent estimators has motivated the search of alternative methods of estimation.
[15], [19] and [10] consider the use of corrected score functions inmeasurement error models. The

approach depends on the existence of a functionU∗(θθθ;Y,X), called a corrected score function, such that

E[U∗(θθθ;Y,X)|Y,Z] = U(θθθ;Y,Z) (2)

for all Y, Z andθθθ, whereU(θθθ;Y,Z) =
∂

∂θθθ
log p(Y;Z, θθθ) is the unobserved score function, that is, the

usual score if there were no measurement error. From (2), with the helpof the iterative expectation principle
and the fact that the unobserved score is unbiased,U∗ can be seen as an unbiased estimating function, and
so, under appropriate regularity conditions ([10]), it existsθ̂θθ solving

U∗(θ̂θθ;Y,X) =
n

∑

j=1

U∗(θ̂θθ;yj ,xj) = 0

which is a consistent and asymptotically normal estimator, called the corrected score estimator.
The corrected score method effectively estimates the estimator one would useif there were no mea-

surement error. The corrected score function is independent of the incidental parametersZ, so one can
directly find estimators of the parameters of interestθθθ avoiding the problem of estimating the incidental
parametersZ. However, corrected score function do not always exists. Existencedepends critically on the
assumed normality of the measurement error. [15] derived corrected score for some common generalized
linear models.

3 LOCAL INFLUENCE ANALYSIS

We are interested on the assessment of effects of minor perturbations of data on the corrected score
estimator ofθθθ.

Let ωωω = (ω1, . . . , ωn)T be a perturbation vector,ωωω ∈ Ω ⊂ R
n, which is introduced to perturb

U∗(θθθ;Y,X). If ωωω has a large effect, then it is important to know the cause (e.g. influential observations or
invalid model assumptions) of such large effect.

Let U∗(θθθ;Y,X, ωωω) denote the perturbed corrected score andωωω0 a vector representing no perturbation,
that is,U∗(θθθ;Y,X, ωωω0) = U∗(θθθ;Y,X). The perturbed corrected score estimatorθ̂θθ(ωωω) solves the equation
U∗(θθθ;Y,X, ωωω) = 0. We study each component of the vectorθ̂θθ(ωωω) separately. As pointed out by [22], this
approach is sometimes more informative than studying mixed effects, which, from different sources, may
cancel out each other. In the following,θ̂(ωωω) denotes a particular component of the vectorθ̂θθ(ωωω).

We need to know how the perturbationωωω affects the postulated model. This implies to find the density of
the perturbed modelp(Y,X;Z, θθθ,ωωω) such that

∫

p(Y,X;Z, θθθ,ωωω) dY dX = 1, from which we can obtain
U∗(θθθ;Y,X, ωωω), havingp(Y,X;Z, θθθ,ωωω0) = p(Y,X;Z, θθθ).

Note that we begin perturbing the corrected score, which is independentof the incidental parametersZ,
while the density of the postulated model includes them. If we were interested in the assessment of the local
influence on some objective function based on maximum likelihood approach (e.g. maximum likelihood
estimator, likelihood displacement, etc.) we first would consider perturbation of the log-likelihood function
of the postulated model (1) and then obtaining the density of the perturbated model would be direct.

Following [26], the perturbed modelp(Y,X;Z, θθθ,ωωω), characterized by a set of perturbationsωωω can be
regarded as ann-dimensional manifoldM . Considerinĝθ(ωωω) : R

n → R as the objective function andωωω(t)

a smooth curve onM , first and second-order terms from a Taylor expansion ofθ̂θθ(ωωω(t)) are used to define
influence measures.

3.1 PERTURBED CORRECTED SCORE AND PERTURBED LOG- LIKELIHOOD OF THE MODEL

Let U∗(θθθ;Y,X, ωωω) be the perturbed corrected score and

ℓ(θθθ,Z;Y,X, ωωω) = ℓ(θθθ,Z;Y, ωωω) + ℓ(θθθ,Z;X, ωωω) (3)

be the perturbed log-likelihood of the model.



Perturbationωωω introduced inU∗ primarily affects the first term on the right hand of (3) since

E[U∗(θθθ;Y,X, ωωω)|Y,Z, ωωω] = U(θθθ;Y,Z, ωωω) =
∂

∂θθθ
ℓ(θθθ,Z;Y, ωωω),

whereU(θθθ;Y,Z, ωωω) is the perturbed unobserved score.
We consider some commonly used perturbation schemes on corrected scoreand then find the perturbed

log-likelihood of the model.

1. Case weights perturbation

The case weights are often the basis for the study of influence. We defineann × 1 vector of weights
ωωω = (ω1, . . . , ωn)T to perturb the contribution of each case to the corrected scoreU∗(θθθ;Y,X),
resulting in the perturbed corrected score

U∗(θθθ;Y,X, ωωω) =
n

∑

j=1

ωjU
∗(θθθ;yj ,xj), (4)

which generalizes the inclusion (ωj = 1) or the exclusion (ωj = 0) of an observation from the
estimation ofθθθ, so that this device enables us to learn about the relative importance of the observation
to the estimation process.

In this caseωωω0 = 1n, where1n is then × 1 vector of ones.

It can be seen easily that (4) can be obtained from

ℓ(θθθ,Z;Y,X, ωωω) =
n

∑

j=1

ωjℓ(θθθ, zj ;yj) +
n

∑

j=1

ωjℓ(θθθ, zj ;xj).

2. Perturbation of the observed covariatex

Consider perturbing the data for thei-th observed covariate, by modifyingxj as

xj(ωj) = xj + ωjδδδi, j = 1, . . . n,

whereδδδi is ank × 1 vector with 1 at thei-th position and zeros elsewhere.

The perturbed corrected score can be written as

U∗(θθθ;Y,X, ωωω) =
n

∑

j=1

U∗(θθθ;yj ,xj + ωjδδδi).

Hereωωω0 = 0n, where0n is then × 1 vector of zeros.

In this case

ℓ(θθθ,Z;Y,X, ωωω) =
n

∑

j=1

ℓ(θθθ, zj + ωjδδδi;yj) +
n

∑

j=1

ℓ(θθθ, zj + ωjδδδi;xj).

Note that perturbing the observed covariatexj asxj(ωj) = xj + ωjδδδi on the corrected score is
equivalent to perturbing the unobserved covariatezj aszj(ωj) = zj + ωjδδδi on the log-likelihood
sincexj(ωj) = zj(ωj) + uj and

E[U∗(θθθ;yj ,xj(ωj))|yj , zj , ωj ] = U(θθθ;yj , zj(ωj)) =
∂

∂θθθ
ℓ(θθθ, zj(ωj);yj).



3. Perturbation of the response variabley

We perturb the data for thei-th response variable, leading to

yj(ωj) = yj + ωjδδδi, j = 1, . . . n,

whereδδδi is anr × 1 vector with 1 at thei-th position and zeros elsewhere. The perturbed corrected
score is given by

U∗(θθθ;Y,X, ωωω) =
n

∑

j=1

U∗(θθθ;yj + ωjδδδi,xj)

and the perturbed log-likelihood can be written as

ℓ(θθθ,Z;Y,X, ωωω) =
n

∑

j=1

ℓ(θθθ, zj ;yj + ωjδδδi) +
n

∑

j=1

ℓ(θθθ, zj ,xj),

whereωωω0 = 0n.

Moreover, some perturbation on model assumptions could be introduced, for instance, to consider an
heterogeneous variance ofY.

3.2 PERTURBATION MANIFOLD

To assess the local influence of a data perturbation, we are primarily interested in the behavior of the
density of the perturbed modelp(Y,X;Z, θθθ,ωωω) as a function ofωωω aroundωωω0. Here the parametersθθθ andZ

are assumed to be known or be fixed at a given value.
Givenℓ(θθθ,Z;Y,X, ωωω), obtained in Section 3.1, the density of the perturbed modelp(Y,X;Z, θθθ,ωωω) can

be written as

p(Y,X;Z, θθθ,ωωω) =
n

∏

j=1

{exp{ℓ(θθθ, zj ;yj ,xj , ωj)}[cj(θθθ, zj , ωj)]
−1},

where

cj(θθθ, zj , ωj) =

∫

exp{ℓ(θθθ, zj ;yj ,xj , ωj)}dyj dxj .

Moreover, we assume thatp(Y,X;Z, θθθ,ωωω) satisfies the following regularity conditions, considered on page
16 of [1]:

1. All the p(Y,X;Z, θθθ,ωωω)’s have a common support, so thatp(Y,X;Z, θθθ,ωωω) > 0 for all (Y,X) in the
support.

2. Letℓ(ωωω;Y,X,Z, θθθ) = log p(Y,X;Z, θθθ,ωωω). For every fixedωωω, n functions in(Y,X)

∂

∂ωj
ℓ(ωωω;Y,X,Z, θθθ), j = 1, . . . , n

are linearly independent.

3. The moments of random variables
∂

∂ωj
ℓ(ωωω;Y,X,Z, θθθ) exist up to necessary orders.

4. The partial derivatives∂
∂ωj

and the integration with respect to the Lebesgue measureλ can always be
interchanged as

∂

∂ωj

∫

f(ωωω;Y,X,Z, θθθ) dλ =

∫

∂

∂ωj
f(ωωω;Y,X,Z, θθθ) dλ

for any functionf(ωωω;Y,X,Z, θθθ) that we treat in the following.



The perturbed model
M = {p(Y,X;Z, θθθ,ωωω) : ωωω ∈ Ω}

can be regarded as ann-dimensional manifold (see [1]).
When a coordinate systemωωω is given,∂j = ∂/∂ωj , (j = 1, . . . , n) are the natural basis of the tangent

spaceTω at pointωωω of the manifoldM , associated with the coordinate system. But, there is a more familiar
representation of the tangent space in the case of the manifoldM of a statistical model, that is,T (1)

ω , the so
called 1-representation of the tangent space ofM atωωω, which is spanned byn functions∂jℓ(ωωω;Y,X,Z, θθθ).

We can identifyTω with T
(1)
ω considering that

h =
n

∑

j=1

hj∂j ∈ Tω ↔ h(Y,X) =
n

∑

j=1

hj∂jℓ(ωωω;Y,X,Z, θθθ) ∈ T (1)
ω

(see [1]).

3.2.1 Metric tensor and appropriate perturbation

The inner product of two basis operators∂i and∂j is

gij(ωωω) = Eω[∂iℓ(ωωω;Y,X,Z, θθθ)∂jℓ(ωωω;Y,X,Z, θθθ)],

where Eω denotes the expectation taken with respect top(Y,X;Z, θθθ,ωωω). Then2 quantitiesgij(ωωω), i, j =
1 . . . n, form the metric tensor ([26]).

The metric matrixG(ωωω) = (gij(ωωω)) is the Fisher information matrix with respect to the perturbation
vectorωωω. The elementgjj(ωωω) indicates the amount of perturbation introduced by thej-th component ofωωω.
The elementsgij(ωωω), i 6= j represent the association between different components ofωωω.

The authors of [26] define, based on these observations, an appropriate perturbation as that satisfying
that G(ωωω0) = diag(g11(ωωω

0), . . . , gnn(ωωω0)). This condition avoids any redundant components ofωωω and
determines the ortogonality between the different components ofωωω, to ensure that we can easily pinpoint
the cause of a large effect. Moreover, we can always choose a new perturbation vector̃ωωω such thatG(ω̃ωω)
evaluated atωωω0 equalscIn, wherec > 0.

(M, G) defines a Riemannian manifold, called a statistical perturbation manifold.

3.2.2 Affine connection

If we want to talk about the straightness (and hence curvature) of a smooth curveωωω(t) in M , an affine
connection must be introduced. The metric tensor defines the Levi-Civita connection by its Christoffel
symbols

Γijk(ωωω) =
1

2
[∂igjk(ωωω) + ∂jgik(ωωω) − ∂kgij(ωωω)].

It has the property that the geodesics of the Levi-Civita connection are curves of minimum length among
those paths that lie in the manifold.

Of course there are connections which are not metrics or derived frommetrics in this way. [26] introduce
a covariant 3-tensor, symmetric in all indices, and a related family of affine connectionsΓα for anyα ∈ R

are defined therefrom. We restrict attention to the Levi-Civita connectionΓ (α = 0).

4 INFLUENCE MEASURES FOR THE CORRECTED SCORE ESTIMATOR

Let θ̂(ωωω) : R
q → R be a particular component of the perturbed corrected score estimatorθ̂θθ(ωωω) and

ωωω(t) the geodesic, which is unique and defined in an interval containing 0 such that ωωω(0) = ωωω0 and
dωωω(t)/dt|t=0 = h ∈ Tω0 . [14] state a covariant version of the Taylor theorem, which has the advantage
that each term in the series is a tensor, thus invariant to reparametrization, unlike the standard Taylor’s series
expansion, as follows

θ̂(ωωω(t)) = θ̂(ωωω0) + t∇T

θ̂
h +

1

2
t2hT H̃

θ̂
h + o(t2),



with ∇
θ̂

= ∂θ̂(ωωω0)
∂ωωω andH̃

θ̂
= H̃

θ̂(ω0), where the(i, j)-th element ofH̃
θ̂(ω) is given by

[H̃
θ̂(ω)](i,j) = ∂i∂j θ̂(ωωω) −

∑

s,r

gs,r(ωωω)Γijs(ωωω)∂rθ̂(ωωω),

wheregs,r(ωωω) is the(s, r)-th element ofG(ωωω)−1. The matrixH̃
θ̂(ω) is called the covariant Hessian ofθ̂(ωωω).

First and second derivatives ofθ̂(ωωω(t)) onM , at t = 0 can be used to construct influence measures (see
[26]).

A first order (FI) influence measure in the directionh ∈ Tω0 is given by

FI
θ̂,h

=
hT∇

θ̂
∇T

θ̂
h

hT Gh
, (5)

whereG = G(ωωω0).
A second order (SI) influence measure in the directionh ∈ Tω0 is defined as

SI
θ̂,h

=
hT H̃

θ̂
h

hT Gh
. (6)

[26] showed that ifωωω is an appropriate perturbation and∇
θ̂

= 0, thenSI
θ̂,h

coincides with the normal
curvature defined in [6] in the directionh, which would be calculated in this case from the surface formed
by the corrected score estimator. Moreover,SI

θ̂,h
is scale invariant even when∇

θ̂
6= 0, whereas the normal

curvature of Cook is not ([8]).
Maximum values of FÎ

θ,h
and SÎ

θ,h
quantify the degree of local influence ofωωω to a statistical model, while

the associated directions can be used for identifying influential observations. Also, the absolute values of
FIj = FI

θ̂,ej
andSIj = SI

θ̂,ej
, whereej is ann × 1 vector withj-th element one and zero otherwise, for

j = 1, . . . , n can be used for this purpose. If∇
θ̂
6= 0, thenFI

θ̂,h
andSI

θ̂,h
are used together.

5 APPLICATION TO THE SIMPLE LINEAR REGRESSION MODEL

We consider the simple linear functional measurement error model to illustrate how to calculate geomet-
rical quantities for a perturbation manifold. We check whether the perturbationωωω is appropriate and calculate
influence measures FI and SI associated with the corrected score estimatorof a particular component ofθθθ,
to assess local influence of the perturbation.

The simple linear functional measurement error model can be representedby the equations

yj = α + βzj + εj ,

xj = zj + uj , j = 1 . . . n, (7)

with εj ∼ N(0, σ2
ε) independent ofuj ∼ N(0, σ2

u). To make the model identifiable, the varianceσ2
u is taken

as known.
In this case,θθθ = (α, β, σ2

ε)
T is the structural parameter vector andZ = (z1, . . . , zn)T is the correspond-

ing vector of incidental parameters.
The log-likelihood of the model is given by

n
∑

j=1

ℓ(θθθ, zj ; yj , xj) =
n

∑

j=1

ℓ(θθθ, zj ; yj) +
n

∑

j=1

ℓ(θθθ, zj ; xj),

where

ℓ(θθθ, zj ; yj) = −
1

2
log(2π) −

1

2
log σ2

ε −
1

2σ2
ε

(yj − α − βzj)
2

corresponds to the unobserved log-likelihood and

ℓ(θθθ, zj ; xj) = −
1

2
log(2π) −

1

2
log σ2

u −
1

2σ2
u

(xj − zj)
2



incorporates the relation betweenxj andzj .
The corrected score function can be written ([10]) as

U∗(θθθ;Y,X) =

n
∑

j=1

U∗(θθθ; yj , xj),

where

U∗(θθθ; yj , xj) =
1

σ2
ε





yj − α − βzj

(yj − α − βxj)xj + βσ2
u

−1
2 + 1

2σ2
ε
[(yj − α − βxj)

2 − β2σ2
u]



 .

The solution to the equationU∗(θθθ;Y,X) = 0 leads to the estimators

α̂ = ȳ − β̂x̄, β̂ =
Sxy

Sxx − σ2
u

and σ̂2
ε = Syy − β̂Sxy,

with Sxx > σ2
u and Syy >

S2
xy

Sxx−σ2
u
, where x̄ = 1

n

∑n
j=1 xj , ȳ = 1

n

∑n
j=1 yj , Sxx = 1

n

∑n
j=1(xj −

x̄)2, Syy = 1
n

∑n
j=1(yj − ȳ)2 and Sxy = 1

n

∑n
j=1(xj − x̄)(yj − ȳ).

The estimatorŝα, β̂ andσ̂2
ε differ from the maximum likelihood estimators, which are inconsistent.

For brevity we include the calculations only for case weights perturbation scheme, so that

U∗(θθθ;Y,X, ωωω) =
n

∑

j=1

ωjU
∗(θθθ; yj , xj), with ωωω0 = 1n. (8)

SolvingU∗(θθθ;Y,X, ωωω) = 0, we obtain the perturbed corrected score estimators

α̂(ωωω) = ȳω − β̂(ωωω)x̄ω, β̂(ωωω) =
Sxyω

Sxxω − σ2
u

and σ̂2
ε(ωωω) = Syyω − β̂(ωωω)Sxyω,

wherex̄ω =
∑n

j=1 γjωxj , ȳω =
∑n

j=1 γjωyj , Sxxω =
∑n

j=1 γjω(xj − x̄ω)2, Syyω =
∑n

j=1 γjω(yj −

ȳω)2 andSxyω =
∑n

j=1 γjω(xj − x̄ω)(yj − ȳω), with γjω = ωj/(
∑n

j=1 ωj).

The perturbed log-likelihood of the model can be written as

ℓ(θθθ,Z;Y,X, ωωω) =
n

∑

j=1

ωj{− log(2πσuσε) −
1

2σ2
ε

(yj − α − βzj)
2 −

1

2σ2
u

(xj − zj)
2}.

Thus, the density of the perturbed model is given by

p(Y,X;Z, θθθ,ωωω) =

n
∏

j=1

{
1

2πσεσu
ωj exp{−ωj [

1

2σ2
ε

(yj − α − βzj)
2 +

1

2σ2
u

(xj − zj)
2]}}.

Then

ℓ(ωωω;Y,X,Z, θθθ) = log p(Y,X;Z, θθθ,ωωω)

=
n

∑

j=1

{− log(2πσuσε) + log ωj − ωj [
1

2σ2
ε

(yj − α − βzj)
2 +

1

2σ2
u

(xj − zj)
2]}.

After some calculations, we have

gij(ωωω) =
1

ω2
i

δij and Γijk(ωωω) = −
1

ω3
i

δijδik, i, j, k = 1 . . . n.

Thus,G(ωωω0) = In and the perturbation in (8) is an appropriate one.



We consider the corrected score estimatorβ̂(ωωω) as our objective function. After some algebraic deriva-
tions, first and second derivatives ofβ̂(ωωω) atωωω0 = 1n are obtained as follows

∇
β̂

=
∂β̂(ωωω0)

∂ωωω
=

1

n(Sxx − σ2
u)
{dx ⊙ dy − β̂sx}

and

H
β̂

=
∂2β̂(ωωω0)

∂ωωω∂ωωωT
= A + AT ,

with

A = −
1

n2(Sxx − σ2
u)2

{(Sxx − σ2
u)(dy − β̂dx)dT

x + (dx ⊙ dy − β̂sx)sT
x },

wheredx = (x1 − x̄, . . . , xn − x̄)T , dy = (y1 − ȳ, . . . , yn − ȳ)T , sx = dx ⊙dx − σ2
u1n and ⊙ denotes

the element-wise product.
Direct calculations leads to the covariant Hessian matrix

H̃
β̂

= H
β̂

+ diag(∇
β̂
),

wherediag(∇
β̂
) represents the diagonal matrix with the elements of the vector∇

β̂
in the diagonal.

Then, first and second-order influence measures,FI
β̂,h

andSI
β̂,h

, can be calculated from formulas (5)
and (6), respectively.

Perturbations of the observed covariable and response variable can be analyzed similarly. They are also
appropriate and in these casesΓijk(ωωω) = 0 for all i, j, k = 1 . . . n, so the straight lineωωω(t) = ωωω0 + th is a
geodesic and̃H

β̂
= H

β̂
.

5.1 NUMERICAL ILLUSTRATION

To illustrate the computation of influence measures, we reanalyze the data setconsidered in [11]. The
data given in Table 1 are measurement of serum kanamycin levels in blood samples drawn from twenty
babies. One of the measurements was obtained by a heelstick method (x), the other using an umbilical
catheter (y). Determinations of serum kanamycin contain measurement error in both methods. In [11] it
is assumed a structural model (that is, withx a random variable) under the assumptionσ2

u = σ2
ε , to assure

identifiability. Maximum likelihood estimates are calculated and the influence function is used for detection
of influential observations. For the purpose of the example, here we assume that the functional model (7)
holds, withσ2

u known for making the model identifiable. In [11], the estimates from the analysis were
α̂ = −1.16, β̂ = 1.07 andσ̂2

u = σ̂2
ε = 4.60. We chooseσ2

u = 4.40, as the known value of the variance,
with the aim of making both analysis comparable.

Table 1: Serum kanamycin levels in blood samples

Baby Heelstick Catheter Baby Heelstick Catheter
1 23.0 25.2 11 26.4 24.8
2 33.2 26.0 12 21.8 26.8
3 16.6 16.3 13 14.9 15.4
4 26.3 27.2 14 17.4 14.9
5 20.0 23.2 15 20.0 18.1
6 20.0 18.1 16 13.2 16.3
7 20.6 22.2 17 28.4 31.3
8 18.9 17.2 18 25.9 31.2
9 17.8 18.8 19 18.9 18.0
10 20.0 16.4 20 13.8 15.6

Under these assumptions the estimates from the analysis by the corrected score approach are

α̂ = −1.19, β̂ = 1.07, σ̂2
ε = 4.34.



The slope and intercept estimates are similar to those obtained by the analysis of[11].

In the perturbation of case weights scheme the maximum absolute values ofFI
β̂,h

andSI
β̂,h

are 0.074011
and 0.45629, respectively.

Figure 1 gives the index plot of|FIj | and|SIj |, j = 1, . . . 20. First and second order influence measures
reveal that case 2 is the most influential on the corrected score estimate of the slope. This result coincides
with that obtained by [11].
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Figure 1: Index plot of (a):|FIj | and (b):|SIj |

6 CONCLUSIONS

We have defined a Riemannian manifold, called the perturbation manifold, for assessment of local in-
fluence on corrected score estimators for functional measurement error models. A perturbation vector is
introduced on the corrected score function (which is independent of theincidental parameters) and then the
density of the corresponding perturbed model (including structural andincidental parameters) is found. The
perturbed model, as a function of the perturbation vector, defines the manifold. The metric tensor permits
to select an appropriate perturbation. First and second-order influence measures are defined based on a
covariant version of the Taylor’s theorem.

We consider the simple linear functional measurement error model with one ofthe variances known, to
illustrate the calculation of the geometrical quantities of interest in the case weight perturbation scheme. We
selected as our objective function the corrected score estimator of the slope and obtained simple formulae
for first and second-order influence measures. The influence analysis on the corrected score estimators of
the others parameters in the model can be performed separately.

The calculations of influence measures based on perturbation manifolds in more complex measurement
error models, both functional and structural, by using different estimationapproaches merits further re-
search. Relationships between the influence measures here defined an other influence diagnostics in mea-
surement error models could be also studied.
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