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UNIVERSAL QUASIVARIETIES OF ALGEBRAS

M.E. ADAMS AND W. DZIOBIAK

ABSTRACT. Two different notions of universal, one due to Hedrlín and Pultr in the 1960s
and the other due to Sapir in the 1980s, are discussed, as well as the relationship between
them. Some of the historical perspective and mathematical motivation lying behind them is
also included, together with a brief overview of a variety meriting further investigation in
this context.

1. INTRODUCTION

In the 1960s, Hedrlín and Pultr introduced the notion of a universal quasivariety. In §2,
universal quasivarieties are discussed, as well as some of their motivation: illustrating ex-
amples include unary algebras, lattices, and graphs.

In the 1970s, pseudocomplemented distributive lattices became the subject of intense in-
vestigation following Lee’s elegant description of the lattice of subvarieties in terms of their
equational bases. Research on pseudocomplemented distributive lattices is closely linked
to the development of the two notions of universal discussed here, and will be addressed in
§3.

In the 1980s, Sapir introduced the notion of a Q-universal quasivariety. In §4, Q-universal
quasivarieties are discussed, as well as some of the underlying motivation. Illustrating ex-
amples include semigroups, as well as the Q-universality of unary algebras, lattices, and
graphs.

Bringing us up to the 2000s, connections between the two notions are considered in §5.

This is an active area of research and in §6, via monadic Boolean algebras, we seek to
suggest some pertinent open problems that require minimal technical background.

Our primary objective is to provide an introduction to the topic in question. As such, we
make no claim to a comprehensive treatment, nor will we necessarily attempt to state results
in their full generality.
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12 M.E. Adams and W. Dziobiak

2. UNIVERSAL IN THE SENSE OF HEDRLÍN AND PULTR

For an algebra A, the automorphisms of A under composition form a group, denoted
Aut(A), begging the question of when, for a given group K, there exists an algebra A such
that Aut(A) ∼= K. As Cayley’s classical theorem states, for a group K, there always exists
a group G for which Aut(G) ∼= K. Other classes of algebra also have this property; for
example, Birkhoff [26] showed that there always exists a lattice L for which Aut(L)∼= K (in
fact, L may be chosen to be a distributive lattice). Neither is there any need to limit oneself
to algebras; as shown by Frucht [28], for any group K, there exists a graph G for which
Aut(G) ∼= K, where Aut(G) denotes the compatible bijections of G to itself closed under
composition. Taking the graph G = (V,E), Frucht [28] went on to give an alternative proof
of Birkhoff’s result that there exists a lattice L for which Aut(L) ∼= K (where L is taken to
be the lattice whose members are those of V and E together with a least member 0 and a
maximum element 1, and for which v < e iff v ∈ e with v ∈V and e ∈ E). Although provid-
ing a simple and visual proof of Birkhoff’s theorem, lattices constructed in this manner are
rarely distributive.

More generally, the endomorphisms of an algebra A under composition form a monoid
(that is, a semigroup with identity), denoted End(A). Analogously, as shown by Armbrust
and Schmidt [16], for a monoid M, there exists an algebra A such that End(A)∼= M, which,
as shown by Hedrlín and Pultr [41], may be chosen to be an algebra of type (1,1) (that is,
a unary algebra with two operations). In the early sixties a number of mathematicians (see
Grätzer [34], page 68) were considering the question of when, for a given monoid M, there
exists an algebra A for which End(A) ∼= M. However, it was Hedrlín and Pultr who raised
the bar, as we shall see momentarily.

A class of algebras of the same fixed type that is closed under isomorphisms, subalge-
bras, direct products, and ultraproducts is called a quasivariety. If it is also closed under
homomorphic images, then it is a variety —every variety is a quasivariety, but not vice
versa. The quasivarieties contained in a quasivariety K form a lattice L(K) under inclusion,
as do the varieties contained in a variety denoted LV (K).

Following Pultr [60], Hedrlín and Pultr [41], and Vopěnka, Hedrlín and Pultr [75], a qua-
sivariety K is universal if every category of algebras of finite type is isomorphic to a full
subcategory of K. Equivalently, the category G of all graphs together with all compati-
ble mappings is isomorphic to a full subcategory of K. Since, as shown by them, for any
monoid M there exists a graph G such that End(G)∼= M, it immediately follows that if K is
universal, there is also an algebra A in K such that End(A)∼= M.

Typically, to establish that a quasivariety K is universal, a suitable functor Φ from the
category G of all graphs together with all compatible mappings, or, equivalently, from
the category of all directed graphs, to K is presented, which is then used to show that G
is isomorphic to a full subcategory of K. Constructions of this type are known as šíp-
constructions, a lucid exposition of which may be found, for example, in Mendelsohn [58].
Such functors were given by Hedrlín and Pultr in their pioneering work establishing, inter
alia, that the variety Un of all unary algebras with n unary operations is universal iff n ≥ 2
(see also Pultr and Sichler [61] and Sichler [68], [70], [71]). If, in addition, a functor Φ can
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Universal quasivarieties of algebras 13

be chosen so that finite graphs are sent to finite algebras, then K is said to be finite-to-finite
universal. In fact, for n ≥ 2, Un is finite-to-finite universal, a point to which we shall refer
later.

If the underlying motivation behind the introduction of universal quasivarieties is the rep-
resentation of monoids as endomorphism monoids of algebras, then, as shown by Hedrlín
and Sichler [42], it is at its sharpest for finite-to-finite universal quasivarieties: for a finite-
to-finite universal quasivariety K and monoid M, if κ ≥ |M| is infinite, then there exists a
family (Ai ∈ K : i < 2κ) such that, for i, j < 2κ , End(Ai) ∼= M, |Ai| = κ , and there are no
homomorphisms from Ai to A j whenever i 6= j; if M is finite, then there exists a countably
infinite family (Ai ∈ K : i < ω) of finite algebras such that, for i, j < ω , End(Ai) ∼= M and
there are no homomorphisms from Ai to A j whenever i 6= j.

Amongst the earliest varieties of algebras shown to be universal was the variety of
bounded lattices, Grätzer and Sichler [39] (later shown to be finite-to-finite universal, Adams
and Sichler [11]). In doing so, they gave a functor from the category of triangle-connected
graphs to the variety of bounded lattices, thereby making use of the fact that the category
of triangle-connected graphs is universal, Hell [43]. Employing a category of graphs with
special properties is no longer so unusual and, over time, many categories of graphs with
special properties have been shown to be (finite-to-finite) universal —see Hell and Nešetřil
[44]— as have many (quasi)varieties of algebras —see Pultr and Trnková [62] and, for some
more recent references, Adams, Adaricheva, Dziobiak, and Kravchenko [2].

3. AN INFLUENTIAL VARIETY: PSEUDOCOMPLEMENTED DISTRIBUTIVE LATTICES

A pseudocomplemented distributive lattice (L,∨,∧,∗,0,1) is a bounded distributive lat-
tice (L,∨,∧,0,1) where, for x,y ∈ L, x∧y = 0 iff y≤ x∗. Pseudocomplemented distributive
lattices are a generalization of Boolean algebras which, as shown by Ribenboim [63], form
an equational class —equivalently, by Birkhoff’s classical theorem, a variety B. Since pseu-
docomplemented distributive lattices have played a rôle greater than that of an illustrative
example, a brief overview is appropriate.

In 1970, Lee [55] showed that LV (B) is an ω +1-chain

B−1 ⊂ B0 ⊂ B1 ⊂ . . .⊂ Bn ⊂ . . .⊂ B,

where B−1, B0, and B1 are the varieties of one-element algebras, Boolean algebras, and
Stone algebras, respectively. Moreover, Lee showed that, for 1 ≤ n < ω , L ∈ Bn iff the
equation

(x1∧ . . .∧ xn)∗∨
∨

1≤i≤n

(x1∧ . . .∧ x∗i ∧ . . .∧ xn)∗ = 1

holds in L.

Following quickly on the heels of Lee’s elegant paper were another three significant
papers, Lakser [54] and Grätzer and Lakser [36], [37], where a number of properties of
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pseudocomplemented distributive lattices were considered in detail —subdirect irreducibil-
ity, congruence extension, the standard semigroup of operators, amalgamation, injectiv-
ity. At the time, Grätzer and Lakser posed a number of interesting problems. Verifying
one of their conjectures (see Grätzer [35]), Adams [1] and Wroński [76] independently
showed that there are 2ω quasivarieties of pseudocomplemented distributive lattices, that
is |L(Bω)| = 2ω . This was rapidly superseded by Grätzer, Lakser, and Quackenbush [38],
showing that |L(B3)| = 2ω —since every quasivariety contained in B2 is a variety, this is
sharp. They also showed that L(B3) is non-modular —it already being known that, for any
quasivariety K of algebras, if L(K) is a modular lattice then it is distributive, Gorbunov
[30]. Subsequently, Dziobiak [23] and Tropin [73] independently showed that L(B3) fails
to satisfy any non-trivial lattice identity. In either case, they showed that the existence of a
family of algebras with certain properties was sufficient to show that any non-trivial lattice
identity would fail to hold in L(B3). Since this is a point to which we will return, we will
explicitly state Dziobiak’s criteria P1–(P4) as given in [23].

Interpreting the class-operators S,P in the inclusive sense, so that for example, S(K)
denotes the class of all algebras isomorphic to a subalgebra of some algebra in K, a quasi-
variety is a class K of algebras of the same signature such that S(K) = P(K) = Pu(K) = K
where Pu(K) denotes the class of all algebras isomorphic to an ultraproduct of algebras
from K.

Let N be a fixed infinite but countable set and P f (N) denote the set of all finite subsets
of it. Suppose K is a quasivariety of algebras of finite type that contains a family (AX : X ∈
P f (N)) of finite members satisfying the following conditions:

(P1) A /0 is a trivial member of K;
(P2) if Z = X ∪Y , then AZ ∈ SP({AX ,AY});
(P3) if X 6= /0 and AX ∈ SP({AY}), then X = Y ;
(P4) if AX is a subsystem of B×C for finite B and C ∈ SP({AW : W ∈P f (N)}), then

there exists Y and Z with AY ∈ SP(B), AZ ∈ SP(C), and X = Y ∪Z.

Then L(K) fails to satisfy any non-trivial lattice identity. In particular, as shown in [23], B3
contains such a family. (As does the variety of lattices, Dziobiak [24] —in point of fact, the
variety of modular lattices M3,3.)

All to the well and good, but what, if anything, have pseudocomplemented distributive
lattices to do with representing monoids as endomorphism monoids of algebras?

Recall that B−1 is the variety of one-element algebras and B0 the variety of Boolean
algebras. Independently, Magill [56] and Schein [66] showed that Boolean algebras are
recoverable from their endomorphism monoids: for Boolean algebras B0,B1, if End(B0)∼=
End(B1), then B0 ∼= B1. In Adams, Koubek, and Sichler [10] it was shown that a similar
result holds for the variety of Stone algebras B1, and, though there exist L0,L1 ∈ B2 for
which End(L0) ∼= End(L1) with L0 6∼= L1, it is a fact that, for L,L0,L1 ∈ B2, if End(L) ∼=
End(L0) ∼= End(L1) and L0 6∼= L1, then either L ∼= L0 or L ∼= L1. Any hope that a pattern
is being set whereby pseudocomplemented distributive lattices in Bn are recoverable up to
isomorphism as one of n from isomorphic endomorphism monoids is rapidly dashed since,
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Universal quasivarieties of algebras 15

as shown in Adams, Koubek, and Sichler [9], there is a proper class of non-isomorphic al-
gebras in B3 each of which has a finite endomorphism monoid. Does this mean that B3 is
universal? Well, not exactly.

If I is a minimal prime ideal of a pseudocomplemented distributive lattice L, then φ :
L −→ L, given by φ(x) = 0 if x ∈ I and 1 otherwise, is an endomorphism of L. Whenever
L is non-trivial it has a minimal prime ideal, whereby |End(L)| ≥ 2. Since, for any monoid
M, including the one-element monoid, in a universal variety there exists a proper class of
non-isomorphic algebras each of which has an endomorphism monoid isomorphic to M, it
follows that Bω is not universal. Nevertheless, more can be said.

Recall that Grätzer and Sichler [39] showed that the variety of bounded lattices is uni-
versal, that is the variety of lattices (L,∨,∧,0,1) of type (2,2,0,0). The same cannot be
said of the variety of lattices (L,∨,∧) of type (2,2), since, for c ∈ L, the constant map
φ(x) = c for all x ∈ L is an endomorphism of L and, in particular, |End(L)| ≥ |L|. Once
again, |End(L)| ≥ 2 whenever L non-trivial. For lattices, the constant maps are recogniz-
able as the left zeros of the endomorphism monoid, which, as noted above, always abound.
However, as shown by Sichler, their existence clouds the underlying reality. In [69], Sich-
ler showed that the category of all graphs is isomorphic to a subcategory of the variety of
lattices whose morphisms are precisely all non-constant homomorphisms (that is all homo-
morphisms the image of which is not a singleton). It follows immediately, for example, that
given any monoid M, there exists a proper class of non-isomorphic lattices such that, for
each member L, End(L) is isomorphic to a monoid M′ which is a copy of M together with
a set of left zeros (in fact, |L| many left zeros).

If, for some quasivariety K, the category of all graphs is isomorphic to a subcategory of
K whose morphisms are precisely all non-constant homomorphisms, then K is is said to
be almost universal and, as before, if there is a functor which sends finite graphs to finite
algebras, then K is said to be finite-to-finite almost universal. This is a notion to which we
will return later.

Returning to pseudocomplemented distributive lattices, the non-trivial endomorphisms
associated with minimal prime ideals have as an image {0,1}, the constants. In this con-
text, one might define a constant map to be one whose image is {0,1}. As shown in [10],
the category of all graphs is isomorphic to a subcategory of B3 whose morphisms consist
of precisely all non-constant homomorphisms of this type. As a consequence [9], for any
monoid M, there is a proper class of non-isomorphic pseudocomplemented distributive lat-
tices in B4 such that, for each member L, End(L) is isomorphic to a monoid M′ which is a
copy of M together with a finite set of left zeros —an analogous, but not so cleanly stated,
property holds in B3.

It was considerations such as these, that led Demlová and Koubek to define a quasivariety
K with a subquasivariety M as M-relatively universal providing the category of all graphs
is isomorphic to a subcategory of K whose morphisms consist of all homomorphism which
do not have an image in M and as relatively universal providing there exists a subquasiva-
riety M for which K is M-relatively universal. As before, should there exist an appropriate
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functor which sends finite graphs to finite algebras, then K will be said to be finite-to-finite
M-relatively universal or finite-to-finite relatively universal, respectively. In this terminol-
ogy, both the variety of lattices and B3 are finite-to-finite relatively universal: the variety
of lattices is finite-to-finite T-universal for the trivial variety T and B3 is finite-to-finite B0-
universal.

4. UNIVERSAL IN THE SENSE OF SAPIR

Lattices that are isomorphic to L(K) for some quasivariety K are called Q-lattices and,
in particular, any lattice of the form L(K) is called the Q-lattice of K. A long standing open
problem asks for a characterization of Q-lattices —known as the Birkhoff-Maltsev problem.

Solutions to the problem have been found within certain classes of lattices —for example,
Gorbunov and Tumanov [33] (Boolean lattices), Adaricheva and Gorbunov [13] (lattices of
convex subsets of partially ordered sets), or Semenova [67] (lattices of partial suborders of
partially ordered sets), see [2].

However, despite many known properties of Q-lattices, the problem continues to fight
back. For example, as shown independently by Gorbunov [30] and Igošin [45], every Q-
lattice satisfies SD∨ (that is, every Q-lattice is join-semidistributive). As a matter of fact,
Gorbunov and Tumanov [33] (see also Adaricheva, Gorbunov, and Tumanov [14]) showed
that the least quasivariety of lattices that contains all Q-lattices coincides with the class of all
SD∨-lattices. Encouraging a ray of hope, Tumanov [74] showed that every finite distributive
lattice is a Q-lattice. However, Dziobiak [25] showed that if an element of a finite Q-lattice
is a join of k atoms, then it contains at most 2k− 1 atoms, thereby giving an example of a
finite SD∨-lattice which is not a Q-lattice.

Building on [25], Adaricheva and Gorbunov [13] went on to define the notion of an equa-
closure operator which ultimately proved crucial in showing that an atomistic and algebraic
lattice is a Q-lattice if and only if it is isomorphic to the lattice of subsets of some alge-
braic lattice A which are closed under arbitrary lattice meets in A and under arbitrary lattice
joins of non-empty chains in A, see Adaricheva, Dziobiak, and Gorbunov [12]. Recently,
Adaricheva and Nation [15] have introduced the closely related notion of an equa-interior
operator, in the process of which they have found an example of a finite Q-lattice which is
not lower bounded in the sense of McKenzie —although it was known that not every finite
lower bounded lattice is a Q-lattice [25], the converse had been an open problem since the
early nineties.

As the reader may have come to suspect, Q-lattices are quite sophisticated in nature. Per-
haps their complexity is best illustrated by the following notion due to Sapir [65].

A quasivariety K of algebras of finite type is Q-universal providing that, for any quasi-
variety M of finite type, L(M) is a homomorphic image of a sublattice of L(K). This notion
was introduced by Sapir in [65], where amongst other results it was shown that the variety
of commutative 3-nilpotent semigroups is Q-universal. For any Q-universal quasivariety
K, noteworthy properties include |L(K)| = 2ω , as well as that L(K) contains a copy of a
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Universal quasivarieties of algebras 17

free lattice on countably many generators and, hence, fails to satisfy any non-trivial lattice
identity.

Many (quasi)varieties of algebras are now known to be Q-universal —see, for example,
Gorbunov [32]. In particular, as shown by Gorbunov [31] (see also Kravchenko [52]), the
variety Un of all unary algebras with n unary operations is Q-universal for every n ≥ 1
—thereby demonstrating that a Q-universal variety need not be universal. However, for
undirected graphs, the two notions do coincide —as shown by Kravchenko [53], a qua-
sivariety of undirected graphs is Q-universal if and only if it is (finite-to-finite) universal
(which, in turn, is equivalent to the presence of a non-bipartite graph). Nonetheless, qua-
sivarieties of directed graphs behave differently —see Kravchenko [51] and Sizyı̆ [72], as
well as Problem 21 of [2].

Sapir’s original approach to establishing that a quasivariety is Q-universal makes essen-
tial use of the notion of a split system as introduced by him in his Ph.D. Thesis [64]. Addi-
tionally there are now two other approaches Adams and Dziobiak [3] and Gorbunov [31].
In [3], it was shown that whenever a quasivariety K contains a family (AX : X ∈P f (N))
of finite members satisfying (P1)–(P4), then L(K) contains as a sublattice a copy of the
ideal lattice I(F) of a free lattice on countably many generators, by virtue of which K is
Q-universal. In particular, it follows immediately from the above that both the variety of all
lattices and the variety of pseudocomplemented distributive lattices are Q-universal, since
M3,3 and B3 contain such families. The conditions of [31] are also known to guarantee that
L(K) contains a copy of I(F), whilst inspection reveals that each of the Q-universal quasi-
varieties established using the conditions of [65] do too. Whether L(K) containing a copy
of I(F) is a necessary condition for K to be Q-universal is not known —see Problems 14,
15, and 16 of [2].

5. A CONNECTION

Since the variety U1 of all unary algebras with one unary operation is Q-universal but
not universal, not every Q-universal quasivariety is universal. However, in [5], Adams
and Dziobiak showed that every finite-to-finite universal quasivariety contains a family
(AX : X ∈P f (N)) of finite members satisfying (P1)–(P4). In other words, every finite-
to-finite universal quasivariety is Q-universal.

An immediate application is to varieties of bounded lattices, a motivating example that
led to [5]. In their outstanding paper [29], Goralčík, Koubek, and Sichler characterized
finite-to-finite universal varieties of bounded lattices as those containing a finite non-dis-
tributive simple lattice (see also McKenzie [57]). Since the variety generated by the five
element non-distributive modular lattice is such a variety, it follows that there are 2ω Q-
universal varieties of bounded lattices. That the two notions do not coincide for bounded lat-
tices is verified in Adams and Dziobiak [6], where it is shown that there are 2ω Q-universal
varieties of bounded lattices which are not universal, to say nothing of finite-to-finite uni-
versal.
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18 M.E. Adams and W. Dziobiak

But what of semigroups, the algebras of primary interest to Sapir when he introduced
the notion of Q-universal? Since every finite semigroup contains an idempotent element,
no quasivariety of semigroups is finite-to-finite universal. That having been said, universal
varieties of semigroups were characterized by Koubek and Sichler in [46]. Relatively uni-
versal varieties of semigroups were considered by Demlová and Koubek in a remarkable
series of papers [17], [18], [19], and [20]. Of particular interest to them were idempotent
semigroups, the Q-universality of which was subsequently considered by Adams and Dzio-
biak [7] and Sapir (private communication —see [7]). Demlová and Koubek went on to
consider Q-universality for varieties of semigroups in [21] and [22], in the course of which
they also address the question of whether, for a Q-universal quasivariety K of semigroups,
I(F) need be isomorphic to a sublattice of L(K).

Could the hypothesis that a quasivariety be finite-to-finite universal be weakened, but still
lead to it being Q-universal —see Problem 20 of [2]?

Koubek and Sichler [47] gave an example showing one way in which it could not. It
was however conjectured that the hypothesis finite-to-finite universal could be weakened
to finite-to-finite almost universal. In [49], Koubek and Sichler characterized the finitely
generated varieties of 0-lattices which are finite-to-finite almost universal and, in [48], they
showed that a variety of modular 0-lattices is finite-to-finite almost universal iff it is Q-
universal. Subsequently [50], they have gone on to show that any finite-to-finite almost
universal quasivariety is Q-universal, thereby verifying the conjecture.

6. AN INTRIGUING VARIETY: MONADIC BOOLEAN ALGEBRAS

To the newcomer, the technical nature of papers in this area can be somewhat daunting, if
not overwhelming. Keeping this in mind, we conclude with an open problem that is readily
accessible and requires little background —enter monadic Boolean algebras.

A quantifier on a Boolean algebra (B,∨,∧,∗,0,1) is a unary operation5 on B such that,
for x and y ∈ B,50 = 0, x∧5x = x, and5(x∧5y) =5x∧5y (as shown by Halmos [40],
it follows, for example, that 55 x =5x and 5(x∨ y) =5x∨5y). A monadic Boolean
algebra (B,∨,∧,∗,5,0,1) is a Boolean algebra (B,∨,∧,∗,0,1) with a quantifier 5. The
variety of monadic Boolean algebras M was introduced by Halmos in [40].

As shown by Monk [59], similar to the variety of pseudocomplemented distributive lat-
tices, the lattice of subvarieties of M is an ω +1 chain

M−1 ⊂M0 ⊂M1 ⊂ . . .⊂Mn ⊂ . . .⊂M,

where M−1 is the trivial variety and M0 corresponds to the variety of Boolean algebras.

Since, for any B ∈M, End(B) 6∼= C3 the cyclic group of order three, it follows that M
is not universal. Neither is M Q-universal —L(M) is a countable lattice (see Adams and
Dziobiak [4]). Why then are monadic Boolean algebras of any interest in this context?
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Universal quasivarieties of algebras 19

Any universal quasivariety contains a proper class of non-isomorphic algebras each of
which has only the identity as an endomorphism —so called rigid algebras. A long stand-
ing conjecture was whether any quasivariety containing a proper class of non-isomorphic
rigid algebras is necessarily universal. Monadic Boolean algebras were the first known
counterexample to this conjecture. However, even though M contains a proper class of
non-isomorphic monadic Boolean algebras, every rigid monadic Boolean algebra in Mn
is necessarily trivial. Moreover, for non-trivial finite monadic Boolean algebras B0 and
B1 ∈M, if End(B0)∼= End(B1), then B0 ∼= B1; that is, finite monadic Boolean algebras are
recoverable from their endomorphism monoids. Recalling that all algebras, not just finite
algebras, in the variety of Boolean algebras M0 are recoverable from their endomorphism
monoids, prompts one to ask after the varieties Mn for n < ω:

Does there exist, for every n < ω , some mn < ω such that monadic Boolean algebras in
Mn are recoverable up to one of mn non-isomorphic algebras? Perhaps an even stronger
statement is possible? Does there exist an m < ω such that, for n < ω , monadic Boolean
algebras in Mn are recoverable up to one of m non-isomorphic algebras?

For a fuller discussion of this rather enigmatic variety, see Adams and Dziobiak [8].
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[29] P.Goralčík, V.Koubek, and J.Sichler, Universal varieties of (0,1)-lattices, Canad. J. Math. 42 (1990),

470–490.
[30] V.A.Gorbunov, Lattices of quasivarieties, Algebra and Logic 15 (1976), 275–288.
[31] V.A.Gorbunov, The structure of lattices of varieties and lattices of quasivarieties: similarity and differ-

ence. II, Algebra and Logic 34 (1995), 203–218
[32] V.A.Gorbunov, Algebraic theory of quasivarieties, Plenum Publishing Co., New York, 1998.
[33] V.A.Gorbunov and V.I.Tumanov, A class of lattices of quasivarieties, Algebra and Logic 19 (1980), 38–52.
[34] G.Grätzer, Universal algebra, Van Nostrand Co., Princeton, Toronto, London, 1968.
[35] G.Grätzer, Lattice theory. First concepts and distributive lattices, W. H. Freeman and Co., San Fran-

cisco, Calif., 1971.
[36] G.Grätzer and H.Lakser, The structure of pseudocomplemented distributive lattices. II. Congruence exten-

sion and amalgamation, Trans. Amer. Math. Soc. 156 (1971), 343–358.
[37] G.Grätzer and H.Lakser, The structure of pseudocomplemented distributive lattices. III. Injective and ab-

solute subretracts, Trans. Amer. Math. Soc. 169 (1972), 475–487.
[38] G.Grätzer, H.Lakser, and R.W.Quackenbush, On the lattice of quasivarieties of distributive lattices with

pseudocomplementation, Acta Sci. Math. (Szeged) 42 (1980), 257–263.
[39] G.Grätzer and J.Sichler, On the endomorphism semigroup (and category) of bounded lattices, Pacific J.

Math. 35 (1970), 639–647.
[40] P.R.Halmos, Algebraic logic, I. Monadic Boolean algebras, Compositio Math. 12 (1956), 217–249.
[41] Z.Hedrlín and A.Pultr, On full embeddings of categories of algebras, Illinois J. Math. 10 (1966), 392–406.
[42] Z.Hedrlín and J.Sichler, Any boundable binding category contains a proper class of mutually disjoint

copies of itself, Algebra Universalis 1 (1971), 97–103.
[43] P.Hell, Full embeddings into some categories of graphs, Algebra Universalis 2 (1972), 129–141.
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