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Aims

• Connecting SAR (Synthetic Aperture Radar) image
processing and analysis with statistical models

• Commenting upon seemingly disjoint problems
• Showing that they can be tackled successfully within the
same framework

• Discussing the use of Information-Theoretic
Statistically-Based tools
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What is SAR?
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Basic Characteristics

• Synthetic Aperture Radar (SAR) and Polarimetric SAR
(PolSAR) sensors have been successfully used in remote
sensing.
• data can be captured independently of weather
conditions, because the sensor is active,

• they measure mostly geometry and dielectric constant, as
they work in the microwaves region of the spectrum,

• depending on the sensor and target characteristics, the
signal penetrates through soil, canopies etc.

• SAR and PolSAR systems can provide images with high
spacial resolution but contaminated by an interference
pattern, called speckle.
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SAR Image
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General Discussion

� Speckle imposes a peculiar behavior to the SAR return:
• a good model for the return is multiplicative, rather than
additive, and

• intensities follow non-Gaussian distributions.
� This makes SAR image analysis challenging because

standard methods for image processing
1. assume additivity Z � X + Y, and
2. use tools derived from the Gaussian assumption.

� Observations are organized as a complex-valued
Hermitian positive definite matrix in each position of a
fully PolSAR image.

• Thus specialized tools are required.
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The Multiplicative Model

A well accepted model for the return Z in each pixel is the
Multiplicative Model:

Z � XY,

where X is the backscatter, and Y is the speckle.

The physics of the imaging allows to assume that Y follows a
Gamma distribution with unitary mean and shape parameter
L ≥ 1, the number of looks. We denote this Y ∼ Γ (1, L).

We are interested in the backscatter X, which can be constant
or random but always positive.
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Is this model correct?

Box et al. (2005)
The most that can be expected from any model is that it can
supply an useful approximation to reality:

All models are wrong; some models are useful.
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Is this model correct?
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Assessment of Despeckling Filters

There are many despeckling techniques, as well as measures
of their performance.

Assuming the multiplicative model, the observed image Z is
the product of two independent fields: the backscatter X and
the speckle Y.

The result of any speckle filter is X̂, an estimator of the
backscatter X, based solely on the observed data Z.

An ideal estimator would be the one for which the ratio
I � Z/̂X is only speckle: a collection of independent identically
distributed samples from Gamma variates.

We, then, assess the quality of a filter by the closeness of the
ratio image I to the hypothesis that it is adherent to the
statistical properties of pure speckle.

11 / 58



Assessment of Despeckling Filters

There are many despeckling techniques, as well as measures
of their performance.

Assuming the multiplicative model, the observed image Z is
the product of two independent fields: the backscatter X and
the speckle Y.

The result of any speckle filter is X̂, an estimator of the
backscatter X, based solely on the observed data Z.

An ideal estimator would be the one for which the ratio
I � Z/̂X is only speckle: a collection of independent identically
distributed samples from Gamma variates.

We, then, assess the quality of a filter by the closeness of the
ratio image I to the hypothesis that it is adherent to the
statistical properties of pure speckle.

11 / 58



Assessment of Despeckling Filters

There are many despeckling techniques, as well as measures
of their performance.

Assuming the multiplicative model, the observed image Z is
the product of two independent fields: the backscatter X and
the speckle Y.

The result of any speckle filter is X̂, an estimator of the
backscatter X, based solely on the observed data Z.

An ideal estimator would be the one for which the ratio
I � Z/̂X is only speckle: a collection of independent identically
distributed samples from Gamma variates.

We, then, assess the quality of a filter by the closeness of the
ratio image I to the hypothesis that it is adherent to the
statistical properties of pure speckle.

11 / 58



Assessment of Despeckling Filters

There are many despeckling techniques, as well as measures
of their performance.

Assuming the multiplicative model, the observed image Z is
the product of two independent fields: the backscatter X and
the speckle Y.

The result of any speckle filter is X̂, an estimator of the
backscatter X, based solely on the observed data Z.

An ideal estimator would be the one for which the ratio
I � Z/̂X is only speckle: a collection of independent identically
distributed samples from Gamma variates.

We, then, assess the quality of a filter by the closeness of the
ratio image I to the hypothesis that it is adherent to the
statistical properties of pure speckle.

11 / 58



Proposal

We propose an evaluation of the quality of the remaining
speckle based on two components:

First-order component: one term for mean preservation, and
another for preservation of the equivalent
number of looks.

Second-order component: a measure of the remaining
geometrical content within the ratio image.
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The Rationale

The rationale behind this proposal is measuring the distance
between two objects, namely

• a theoretical distribution, and
• observed data.

This was done in an empirical manner, and provided very
good results; cf. Gomez et al. (2017b, 2019).
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A General Approach

This idea of comparing samples, or samples and models, has
led to interesting tools.

First, we will see a model with respect to which such
comparisons will be made. Then we will see measures based
on Information Theory and Information Geometry. Finally, we
will see a multivariate model for PolSAR data, and several
applications of these techniques.
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The G0 Return Model

We call Y ∼ Γ (1, L) speckle, and X � σ2 backscatter, and we
assume these random variables are independent.

The return is Z � XY.

When the mean backscatter σ2 fluctuates, the return σ2Y is no
longer Gamma-distributed.

The two most important stochastic models for the backscatter
are:

• A Gamma random variable
• A Reciprocal Gamma random variable
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The G0 Return Model

Assuming X ∼ Γ−1(α,γ) and Y ∼ Γ (1, L), one obtains the G0

distribution for the return Z � XY, which is characterized by
the density

fZ(z;α,γ, L) �
LLΓ (L − α)

γαΓ (L)Γ (−α)
zL−1

(γ + Lz)L−α , (1)

where α < 0, and γ, z > 0.

The parameters describe the texture (the smaller the value of
α is, the less textured the region is), and the scale (γ).

This model was proposed by Frery et al. (1997).

19 / 58



G0 densities
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Figure 2: Densities in linear and semilogarithmic scale of the E(1)
(green) and G0 distributions with unitary mean and
α ∈ {−8,−3,−1.5} in black, blue and red, resp.
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Advantages and disadvantages

The Good
• More flexible than the Γ model
• It has the Γ model as particular case
• It relates to the Fisher-Snedekor distribution
• Differently from the K law, it does not
involve Bessel functions

The Bad
• Its likelihood function may become flat
• Its moments estimators may have no
solution

• Those estimators are susceptible to
contamination
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Parameter Estimation
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Parameter Estimation

Gambini et al. (2015) proposed estimating by searching in Θ

for the point θ̂ which minimizes a distance between the
evidence (data) and the model:

θ̂ � arg min
θ∈Θ

d
(
H̃(z), f(z; θ)

)
,

where z are the data, and H̃ is an smoothed version of the
histogram. Also,

d(f1, f2) �
∫ (f1 − f2)2

f1 + f2
,

is the Triangular (or symmetric χ2) distance.

It works quite well!
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Why such a distance?

We chose the Triangular distance, because of its numerical
simplicity and stability, within a family of divergences
between members of the same law:
h-ϕ divergences

Dhϕ(θ1, θ2) � h
( ∫

ϕ

( f(θ1)
f(θ2)

)
f(θ2)

)
,

where h is strictly increasing with h(0) � 0, and ϕ is convex
with mild smoothness properties. Then,
h-ϕ distances

dhϕ(θ1, θ2) �
1
2
(
Dhϕ(θ1, θ2) + Dhϕ(θ2, θ1)

)
.

Suitable choices of h and ϕ lead to, among others, the
Bhattacharya, Rényi, Triangular, Harmonic, χ2,
Kullback-Leibler, Hellinger, Havrda-Charvát, and
Sharma-Mittal distances.
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Another family of distances

Consider the model D(θ), two parameters θ1, θ2 ∈ Θ, and let t
be the parameter of a curve θ(t) ∈ Θ which joins θ1 � θ(t1) and
θ2 � θ(t2).

The (Shannon) geodesic distance between the models is given
by:

s(θ1, θ2) �

������
∫ t2

t1

√√√ r∑
i,j�1

−E
(

∂2

∂θi∂θj
ln f(z | θ)

) dθi
dt

dθj
dt dt

������ . (2)

This expression can be connected with the entropy of D(θ),
and with generalized entropies:

Hhϕ(θ) � h
( ∫

ϕ(f)f
)
,

leading to h-ϕ geodesic distances.
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What do we have so far?

• It seems that the distance between the data and a model
produces interesting results:
• measuring it quantifies the quality of filters;
• minimizing it yields robust estimators.

• But… is there a notion of close and far? Not yet.
• Can we compare such distances? No!
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From stochastic distances to test statistics

When indexed by MLE, under H0 : θ1 � θ2 holds that

N1N2
(N1 + N2)h′(0)ϕ′′(1)d

h
ϕ(θ̂1, θ̂2)

follows asymptotically a χ2p distribution, where

• p is the dimension of θi,
• N1 and N2 are the sample sizes used to compute the MLEs
θ̂1 and θ̂2,

• N1,N2 → ∞ at comparable rate.
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From geodesic distances to test statistics

For the sake of simplicity, but without loss of generality,
assume we have two samples of the same size N. When
indexed by MLE, under H0 : θ1 � θ2 holds that

N
(
H(θ̂1) − H(θ̂2)

)2
σ2(θ̂1) + σ2(θ̂2)

follows asymptotically a χ2p−1 distribution, where p is the
dimension of θi, and N→ ∞.

This can be generalized to many samples of different sizes.
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What do we have now?

Test Statistics based on IT
• Each h-ϕ divergence can be turned into a test statistic.
• Each h-ϕ entropy can be turned into a test statistic.

Test Statistics based on IG
Each geodesic distance can be turned into a test statistic.

All these test statistics have known asymptotic distribution,
so they are interpretable and comparable.

Moreover, they exhibit excellent finite-size behavior: they
have good size and power even with very small samples.
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Edge Detection with GD under the G0 law

Naranjo-Torres et al. (2017) obtained expressions for the GD
between G0 models and proposed a line search algorithm for
edge detection.
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Edge Detection with GD

2000 4000 6000 8000

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

Number of pixels

S
ta

tis
tic

s

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Geodesic for L=1
α2 = − 6
α2 = − 5
α2 = − 3
α2 = − 2

●

Triangular for L=1
α2 = − 6
α2 = − 5
α2 = − 3
α2 = − 2

31 / 58



Edge Detection with GD
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What is PolSAR?
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The Complex Wishart Distribution

Analogously to the Γ (σ2, L) for intensity data, the Complex
Wishart distribution is a widely accepted model of fully
polarimetric data. It is characterized by the density

fZ(z;Σ, L) �
LpL |z|L−p
|Σ|LΓp(L)

exp
[
−L tr

(
Σ−1z

) ]
,

where Γp(L) � πp(p−1)/2
∏p−1

i�0 Γ (L − i), L ≥ p, and tr(·) is the trace
operator. We denote it by Z ∼ W(Σ, L).

This distribution satisfies E{Z} � Σ, which is a Hermitian
positive definite matrix (Anfinsen et al., 2009). In practice, L is
treated as a parameter and must be estimated, usually for the
whole image.
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Properties of theW distribution

• It is a distribution for complex Hermitian matrices.
• The marginal distribution of each diagonal element is a
Γ (σ2, L) law.

• The joint distribution of the diagonal elements was
derived by Hagedorn et al. (2006).

• Other important marginal laws were obtained by Lee et
al. (1994).
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Tests based on divergences

Frery et al. (2014) computed several of these tests under the
W model:

• Relatively simple expressions
• They all rely only on the determinant and the inverse of Σ
• Good size and power even for very small (4) samples
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Edge Detection Stochastic Distances
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Spectral Decomposition by Rotation
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PolSARpro
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Nonlocal Means Speckle Reduction

A large convolution mask is computed at each position, with
weights inversely proportional to the dissimilarity between
the point and the central value.
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Nonlocal Means Speckle Reduction
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From Segments to Classes
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Difference of Entropies

It provides a powerful result for checking if at least one of the
scenes under test has changed from the rest.

Being a test statistic, it is possible to compute the p-value of
the no-change hypothesis at each position, rather than a
binary mask.

This was applied to pairs of fully PolSAR images.
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Change Detection
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The frontiers: Kennaugh projection

Fully PolSAR data, and elementary backscatterers, can be
projected onto the surface of a 16-dimensional sphere.

Then, distances become angles.

By measuring angles, we can classify, and decompose
observations.
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Once projected…
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Concluding Remarks

• Several interesting problems can be posed in the form of
comparing samples and/or models.

• Information Theory and Information Geometry, along with
Statistics, provide us with tools for solving such problems.

• Although the focus was on SAR/PolSAR, the basic ideas
can be used whenever there is a model… even when
there is no model!

• This is a fertile area for scientific research and
technology development.
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Research avenues I

We only presented the geodesic distance for p-dimensional
parameters, which is seldom feasible.

The alternative we worked with consisted in dealing with a
one-dimensional parameter after scaling the data.

There is an another approach which allows mixing
one-dimensional test statistics and using other geodesic
metrics. This approach is closely related to generalized
entropies.
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Research avenues II

• What happens with the convergence when we use non-ML
estimators?

• What happens with the convergence when we use kernel
estimators?

• Can we obtain other geodesic distances, stochastic
distances, and difference of entropy, and their tests?

• Can we turn them into other useful techniques?
• What can we say about the statistics of distances in the
Kennaugh space?

51 / 58



References i

Allende, H., Frery, A. C., Galbiati, J. & Pizarro, L. (2006), ‘M-estimators with asymmetric influence functions: the GA0
distribution case’, Journal of Statistical Computation and Simulation 76(11), 941–956.

Anfinsen, S. N., Doulgeris, A. P. & Eltoft, T. (2009), ‘Estimation of the equivalent number of looks in polarimetric
synthetic aperture radar imagery’, IEEE Transactions on Geoscience and Remote Sensing 47(11), 3795–3809.

Bhattacharya, A., Muhuri, A., De, S., Manickam, S. & Frery, A. C. (2015), ‘Modifying the Yamaguchi four-component
decomposition scattering powers using a stochastic distance’, IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 8(7), 3497–3506.

Box, G. E., Hunter, J. S. & Hunter, W. G. (2005), Statistics for Experimenters: design, discovery and innovation, 2 ed.,
Wiley, Hoboken, NJ.

Bustos, O. H., Flesia, A. G. & Frery, A. C. (2001), ‘Performance of spectral estimators in simulated synthetic aperture
radar images’, Latin American Applied Research 31(2), 93–98. URL
http://www.laar.uns.edu.ar/indexes/i31_02.htm.

Bustos, O. H., Lucini, M. M. & Frery, A. C. (2002), ‘M-estimators of roughness and scale for GA0-modelled SAR
imagery’, EURASIP Journal on Advances in Signal Processing 2002(1), 105–114.

Bustos, O. H., Ruiz, M., Ojeda, S., Vallejos, R. & Frery, A. C. (2009), ‘Asymptotic behavior of RA-estimates in
autoregressive 2D processes’, Journal of Statistical Planning and Inference 139, 3649–3664.

Cintra, R. J., Frery, A. C. & Nascimento, A. D. C. (2013), ‘Parametric and nonparametric tests for speckled imagery’,
Pattern Analysis and Applications 16(2), 141–161.

Cribari-Neto, F., Frery, A. C. & Silva, M. F. (2002), ‘Improved estimation of clutter properties in speckled imagery’,
Computational Statistics and Data Analysis 40(4), 801–824.

Ferral, A., Luccini, E., Solis, V., Frery, A. C., Aleksinko, A., Bernasconi, I. & Scavuzzo, C. M. (2018), ‘In-situ and satellite
monitoring of water quality of an eutrophic lake with an artificial air diffusion system’, IEEE Latin America
Transactions 16(2), 627–633.

52 / 58

http://www.laar.uns.edu.ar/indexes/i31_02.htm


References ii

Freitas, C. C., Frery, A. C. & Correia, A. H. (2005), ‘The polarimetric G distribution for SAR data analysis’,
Environmetrics 16(1), 13–31.

Frery, A. C., Cintra, R. J. & Nascimento, A. D. C. (2013), ‘Entropy-based statistical analysis of PolSAR data’, IEEE
Transactions on Geoscience and Remote Sensing 51(6), 3733–3743.

Frery, A. C., Correia, A. H. & Freitas, C. C. (2007), ‘Classifying multifrequency fully polarimetric imagery with multiple
sources of statistical evidence and contextual information’, IEEE Transactions on Geoscience and Remote
Sensing 45(10), 3098–3109.

Frery, A. C., Cribari-Neto, F. & Souza, M. O. (2004), ‘Analysis of minute features in speckled imagery with maximum
likelihood estimation’, EURASIP Journal on Advances in Signal Processing 2004(16), 2476–2491.

Frery, A. C., Jacobo-Berlles, J., Gambini, J. & Mejail, M. (2010), ‘Polarimetric SAR image segmentation with B-Splines
and a new statistical model’, Multidimensional Systems and Signal Processing 21, 319–342.

Frery, A. C., Müller, H.-J., Yanasse, C. C. F. & Sant’Anna, S. J. S. (1997), ‘A model for extremely heterogeneous clutter’,
IEEE Transactions on Geoscience and Remote Sensing 35(3), 648–659.

Frery, A. C., Nascimento, A. D. C. & Cintra, R. J. (2014), ‘Analytic expressions for stochastic distances between
relaxed complex Wishart distributions’, IEEE Transactions on Geoscience and Remote Sensing 52(2), 1213–1226.

Gambini, J., Cassetti, J., Lucini, M. M. & Frery, A. C. (2015), ‘Parameter estimation in SAR imagery using stochastic
distances and asymmetric kernels’, IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing 8(1), 365–375.

Gambini, J., Mejail, M., Jacobo-Berlles, J. & Frery, A. C. (2006), ‘Feature extraction in speckled imagery using dynamic
B-spline deformable contours under the G0 model’, International Journal of Remote Sensing 27(22), 5037–5059.

Gambini, J., Mejail, M., Jacobo-Berlles, J. & Frery, A. C. (2008), ‘Accuracy of edge detection methods with local
information in speckled imagery’, Statistics and Computing 18(1), 15–26.

53 / 58



References iii

Girón, E., Frery, A. C. & Cribari-Neto, F. (2012), ‘Nonparametric edge detection in speckled imagery’, Mathematics
and Computers in Simulation 82, 2182–2198. URL
http://www.sciencedirect.com/science/article/pii/S037847541200136X.

Gomez, L., Alvarez, L., Mazorra, L. & Frery, A. C. (2015), ‘Classification of complex Wishart matrices with a
diffusion-reaction system guided by stochastic distances’, Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 373(2056), 20150118. URL
http://dx.doi.org/10.1098/rsta.2015.0118.

Gomez, L., Alvarez, L., Mazorra, L. & Frery, A. C. (2017a), ‘Fully PolSAR image classification using machine learning
techniques and reaction-diffusion systems’, Neurocomputing 255, 52–60.

Gomez, L., Ospina, R. & Frery, A. C. (2017b), ‘Unassisted quantitative evaluation of despeckling filters’, Remote
Sensing 9(9), 389. URL https://github.com/Raydonal/UNASSISTED.

Gomez, L., Ospina, R. & Frery, A. C. (2019), ‘Statistical properties of an unassisted image quality index for SAR’,
Remote Sensing 11(4), 1–16.

Hagedorn, M., Smith, P. J., Bones, P. J., Millane, R. P. & Pairman, D. (2006), ‘A trivariate chi-squared distribution
derived from the complex Wishart distribution’, Journal of Multivariate Analysis 97, 655–674.

Lee, J.-S. & Pottier, E. (2009), Polarimetric Radar Imaging: From Basics to Applications, CRC, Boca Raton.

Lee, J. S., Hoppel, K. W., Mango, S. A. & Miller, A. R. (1994), ‘Intensity and phase statistics of multilook polarimetric
and interferometric SAR imagery’, IEEE Transactions on Geoscience and Remote Sensing 32(5), 1017–1028.

Lucini, M. M., Ruiz, V. F., Frery, A. C. & Bustos, O. H. (2003), Robust classification of SAR imagery, in ‘IEEE
International Conference on Acoustics, Speech and Signal Processing’, IEEE, Hong Kong, pp. 557–560.

Mejail, M. E., Jacobo-Berlles, J., Frery, A. C. & Bustos, O. H. (2000), ‘Parametric roughness estimation in amplitude
SAR images under the multiplicative model’, Revista de Teledetección 13, 37–49.

54 / 58

http://www.sciencedirect.com/science/article/pii/S037847541200136X
http://dx.doi.org/10.1098/rsta.2015.0118
https://github.com/Raydonal/UNASSISTED


References iv

Mejail, M. E., Jacobo-Berlles, J., Frery, A. C. & Bustos, O. H. (2003), ‘Classification of SAR images using a general and
tractable multiplicative model’, International Journal of Remote Sensing 24(18), 3565–3582.

Moschetti, E., Palacio, M. G., Picco, M., Bustos, O. H. & Frery, A. C. (2006), ‘On the use of Lee’s protocol for
speckle-reducing techniques’, Latin American Applied Research 36(2), 115–121.

Naranjo-Torres, J., Gambini, J. & Frery, A. C. (2017), ‘The geodesic distance between GI0 models and its application
to region discrimination’, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
10(3), 987–997.

Nascimento, A. D. C., Cintra, R. J. & Frery, A. C. (2010), ‘Hypothesis testing in speckled data with stochastic
distances’, IEEE Transactions on Geoscience and Remote Sensing 48(1), 373–385.

Nascimento, A. D. C., Frery, A. C. & Cintra, R. J. (2014a), ‘Bias correction and modified profile likelihood under the
Wishart complex distribution’, IEEE Transactions on Geoscience and Remote Sensing 52(8), 4932–4941.

Nascimento, A. D. C., Frery, A. C. & Cintra, R. J. (2019), ‘Detecting changes in fully polarimetric SAR imagery with
statistical information theory’, IEEE Transactions on Geoscience and Remote Sensing 57(3), 1380–1392.

Nascimento, A. D. C., Horta, M. M., Frery, A. C. & Cintra, R. J. (2014b), ‘Comparing edge detection methods based on
stochastic entropies and distances for PolSAR imagery’, IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 7(2), 648–663.

Negri, R. G., Frery, A. C., Silva, W. B., Mendes, T. S. G. & Dutra, L. V. (2019), ‘Region-based classification of PolSAR
data using radial basis kernel functions with stochastic distances’, International Journal of Digital Earth
12(6), 699–719. URL https://doi.org/10.1080/17538947.2018.1474958.

Palacio, M. G., Ferrero, S. B. & Frery, A. C. (2019), ‘Revisiting the effect of spatial resolution on information content
based on classification results’, International Journal of Remote Sensing 40(12), 4489–4505. URL
https://doi.org/10.1080/01431161.2019.1569278.

55 / 58

https://doi.org/10.1080/17538947.2018.1474958
https://doi.org/10.1080/01431161.2019.1569278


References v

Penna, P. A. A. & Mascarenhas, N. D. A. (2019), ‘SAR speckle nonlocal filtering with statistical modeling of Haar
wavelet coefficients and stochastic distances’, IEEE Transactions on Geoscience and Remote Sensing pp. 1–15.

Ratha, D., Bhattacharya, A. & Frery, A. C. (2018), ‘Unsupervised classification of PolSAR data using a scattering
similarity measure derived from a geodesic distance’, IEEE Geoscience and Remote Sensing Letters
15(1), 151–155.

Ratha, D., Gamba, P., Bhattacharya, A. & Frery, A. C. (2019a), ‘Novel techniques for built-up area extraction from
polarimetric SAR images’, IEEE Geoscience and Remote Sensing Letters p. in press.

Ratha, D., Mandal, D., Kumar, V., McNairn, H., Bhattacharya, A. & Frery, A. C. (2019b), ‘A generalized volume
scattering model based vegetation index from polarimetric SAR data’, IEEE Geoscience and Remote Sensing
Letters p. in press.

Santana-Cedrés, D., Gomez, L., Alvarez, L. & Frery, A. C. (2019), ‘Despeckling PolSAR images with a structure tensor
filter’, IEEE Geoscience and Remote Sensing Letters p. in press.

Silva, M., Cribari-Neto, F. & Frery, A. C. (2008), ‘Improved likelihood inference for the roughness parameter of the
GA0 distribution’, Environmetrics 19(4), 347–368. URL
http://www3.interscience.wiley.com/cgi-bin/abstract/114801264/ABSTRACT.

Silva, W. B., Freitas, C. C., Sant’Anna, S. J. S. & Frery, A. C. (2013), ‘Classification of segments in PolSAR imagery by
minimum stochastic distances between Wishart distributions’, IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 6(3), 1263–1273.

Torres, L., Sant’Anna, S. J. S., Freitas, C. C. & Frery, A. C. (2014), ‘Speckle reduction in polarimetric SAR imagery with
stochastic distances and nonlocal means’, Pattern Recognition 47, 141–157.

Vasconcellos, K. L. P., Frery, A. C. & Silva, L. B. (2005), ‘Improving estimation in speckled imagery’, Computational
Statistics 20(3), 503–519.

56 / 58

http://www3.interscience.wiley.com/cgi-bin/abstract/114801264/ABSTRACT


Thanks!

This meeting is possible thanks to the efforts of the
organizers and their funding agencies.

57 / 58



Contact
Alejandro C. Frery
acfrery@laccan.ufal.br
http://lattes.cnpq.br/2312365155234431
https://publons.com/researcher/447720/
alejandro-c-frery/

LaCCAN

Laboratório de Computação Científica
e Análise Numérica

58 / 58

http://lattes.cnpq.br/2312365155234431
https://publons.com/researcher/447720/alejandro-c-frery/
https://publons.com/researcher/447720/alejandro-c-frery/

