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PART 1: Historical Motivation and a new
characterization of De Morgan algebras

Bernstein (1934): A system of axioms for Boolean
algebras was given by Bernstein, using only implication.
Even though that system was not equational, it could easily
be converted to an equational one, if we use an additional
constant as part of the signature. This led me to ask the
following natural question:
PROBLEM: What about De Morgan algebras? Is it
possible to define the variety of De Morgan algebras using
only the implication and a constant.
In this talk, I will address this question, as well as the
ramifications of its positive solution.
But, first let me start with some well known definitions.
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De Morgan, Kleene and Boolean algebras:

Definition
An algebra A = �A,∧,c , 0� is a De Morgan algebra if A
satisfies the following conditions, where we define
x ∨ y := (xc ∧ yc)c and 1 := 0c :
(d1) �A,∨,∧, 0, 1� is a distributive lattice with 0, 1
(d2) xcc ≈ x .
DM denotes the variety of De Morgan algebras.
A De Morgan algebra A is a Kleene algebra if A satisfies:
(K) x ∧ xc ≤ y ∨ yc .
Let KL denote the variety of Kleene algebras.
A De Morgan algebra A is a Boolean algebra if A satisfies:
(B) x ∧ xc ≈ 0.

Let BA denote the variety of Boolean algebras.
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De Morgan Algebras: From a New Perspective

In the article:
De Morgan algebras: New perspectives and Applications,
Scientiae Mathematicae Japonicae (2012)],
I characterized De Morgan algebras in the language
{→, 0}, where → is binary, and 0 is a constant symbol.
To tell you about this new perspective, I need to introduce
a “new” class of algebras:

Definition
An algebra A = �A,→, 0� is a DM→-algebra if A satisfies the
following axioms, where x � := x → 0:

(I) (x → y) → z ≈ [(z � → x) → (y → z)�]�,
(J) (x → y) → x ≈ x .

Let DM→ denote the variety of DM→-algebras.
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The next theorem gives a positive solution to the problem
mentioned earlier.

Theorem
The variety DM→ is term-equivalent to the variety DM. More
precisely,
(a) For A ∈ DM, let A→ be the algebra �A,→, 0� where → is

defined by x → y := (x ∧ yc)c . Then A→ ∈ DM→.
(b) For A ∈ DM→, let A∗ be the algebra �A,∧,c , 0� such that

x ∧ y := (x → y �)�, where x � := x → 0; and xc := x �. Then
A∗ ∈ DM.

(c) If A ∈ DM, then (A→)∗ = A.
(d) If A ∈ DM→, then (A∗)→ = A.
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Let us prove (a):
Let A = �A,∧,c , 0� be a De Morgan algebra and let A→ be
the algebra as in (a) of the above theorem.
Let x , y , z be arbitrary elements of A→.
First, note that x � := x → 0 := (x ∧ 0c)c = xc ∨ 0 = xc .
Also, note that x ∨ y = (xc ∧ yc)c = xc → y .
Now, let us prove (I):
(x → y) → z = [(x ∧ yc)c ∧ zc]c = (x ∧ yc) ∨ z
= z ∨ (x ∧ yc) = (z ∨ x) ∧ (z ∨ yc) = (z ∨ x) ∧ (yc ∨ z)
= (zc → x) ∧ (y → z) = [(zc → x) ∧ (y → z)cc]cc

= [(zc → x) → (y → z)c]c = [(z � → x) → (y → z)�]�,
which proves (I).
Next, to prove (j):
(x → y) → x = [(x ∧ yc)c ∧ xc]c = [xc ∧ (x ∧ yc)c]c

= x ∨ (x ∧ yc) = x , which proves (J).

The proofs of (b), (c), and (d) will be an exercise for you due
tomorrow!
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Definition
A DM→-algebra A = �A,→, 0� is a KL→-algebra if A satisfies
the following axiom:

(K1) (y → y) → (x → x) ≈ x → x .

A DM→-algebra A = �A,→, 0� is a BA→-algebra if A satisfies
the following axiom:

(B1) x → x ≈ 0�.
Let KL→ and BA→ denote respectively the varieties of
KL→-algebras and BA→-algebras.

Corollary
(1) The variety KL is term-equivalent to the variety KL→,
(2) The variety BA is term-equivalent to the variety BA→.
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KL→-algebras and BA→-algebras.

Corollary
(1) The variety KL is term-equivalent to the variety KL→,
(2) The variety BA is term-equivalent to the variety BA→.

H.P. Sankappanavar Implication Zroupoids: An Abstraction from De Morgan Algebras



Definition
A DM→-algebra A = �A,→, 0� is a KL→-algebra if A satisfies
the following axiom:

(K1) (y → y) → (x → x) ≈ x → x .

A DM→-algebra A = �A,→, 0� is a BA→-algebra if A satisfies
the following axiom:

(B1) x → x ≈ 0�.
Let KL→ and BA→ denote respectively the varieties of
KL→-algebras and BA→-algebras.

Corollary
(1) The variety KL is term-equivalent to the variety KL→,
(2) The variety BA is term-equivalent to the variety BA→.

H.P. Sankappanavar Implication Zroupoids: An Abstraction from De Morgan Algebras



Definition
A DM→-algebra A = �A,→, 0� is a KL→-algebra if A satisfies
the following axiom:

(K1) (y → y) → (x → x) ≈ x → x .

A DM→-algebra A = �A,→, 0� is a BA→-algebra if A satisfies
the following axiom:

(B1) x → x ≈ 0�.
Let KL→ and BA→ denote respectively the varieties of
KL→-algebras and BA→-algebras.

Corollary
(1) The variety KL is term-equivalent to the variety KL→,
(2) The variety BA is term-equivalent to the variety BA→.

H.P. Sankappanavar Implication Zroupoids: An Abstraction from De Morgan Algebras



Definition
A DM→-algebra A = �A,→, 0� is a KL→-algebra if A satisfies
the following axiom:

(K1) (y → y) → (x → x) ≈ x → x .

A DM→-algebra A = �A,→, 0� is a BA→-algebra if A satisfies
the following axiom:

(B1) x → x ≈ 0�.
Let KL→ and BA→ denote respectively the varieties of
KL→-algebras and BA→-algebras.

Corollary
(1) The variety KL is term-equivalent to the variety KL→,
(2) The variety BA is term-equivalent to the variety BA→.

H.P. Sankappanavar Implication Zroupoids: An Abstraction from De Morgan Algebras



An application

As mentioned earlier, in 1934, Bernstein gave an axiom system
using only implication; but it was not equational since one of the
axioms was existential.

Theorem (Modified Version of Bernstein’s Theorem)
The following (equational) axioms form a 2-base for the variety
of Boolean algebras in the language {→, 0}, where x � = x → 0:

(J) (x → y) → x ≈ x
(M) (y → y) → ((x → y) → z) ≈ [(z � → x) → (y → z)�]�.

NOTE: De Morgan Algebras can also be characterized in terms
of NAND and 0.
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Another historical remark:
An article: Characterization of De Morgan lattice in terms
of Implication and Negation, Proc. Japan Acad., 44 (1968),
659-662.
Authors:
M. L. GASTAMINZA and S. GASTAMINZA
Instituto de Matematica,
Universidad Nacional del Sur,
Bahia Blanca, Argentina
Theorem (G and G) Let �A,→,� �, where � is a unary
operation, satisfy the axioms:
(A1)x → y � ≈ y → x �

(A2) (x → y �) → y ≈ y
(A3) (x → y) → z ≈ [(x � → z) → (y → z)]�
If we define x ∨ y := x � → y and x ∧ y := (x → y �)�, then
�A,∨,∧,� � is a De Morgan lattice.
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PART 2: Implication Zroupoids-An abstaction from De
Morgan algebras

The axiom (I) has played a significant role in the
characterizations of De Morgan, Kleene, and Boolean algebras.
So (I) deserves to be investigated in its own right.

Definition
A groupoid with zero (zroupoid, for short) is an algebra
A = �A,→, 0, �, where → is a binary operation and 0 is a
constant.
A zroupoid A = �A,→, 0, � is an implication zroupoid
(I-zroupoid, for short) if the following identities hold in A,
where x � := x → 0:

(I) (x → y) → z ≈ [(z � → x) → (y → z)�]�
(I0) 0�� ≈ 0.
The variety of I-zroupoids is denoted by I.
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EXAMPLES OF I-ZROUPOIDS:
BA→(of Boolean algebras),
KL→ (of Kleene algebras)
DM→ (of De Morgan algebras)
There are exactly 3 two-element I-zroupoids as shown
below

2b :

→ 0 1

0 1 1

1 0 1

2s :2z :

→ 0 1

0 0 0

1 0 0

→ 0 1

0 0 1

1 1 1

NOTE: 2b is the 2-el-Boolean algebra and 2s is the
join-semilattice (→ as the join) with a least element 0.
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A new class of examples of I-zroupoids

Let SL denote the subvariety of I defined by
(1) x � ≈ x ,
(2) x → y ≈ y → x (C).

Theorem
SL = V(2s)= The variety of ∨-semilattices with least element 0.

From Freese and Nation we get the following corollary.

Corollary
The class of congruence lattices Con A, where A ∈ I, does not
satisfy any non-trivial lattice identities. In particular, the variety
I is neither congruence-distributive, nor congruence-modular.
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A Fundamental Property of I-zroupoids

Theorem
Let A ∈ I and x , y ∈ A. Then x ��� → y = x � → y.

Corollary

Let A be an I-zroupoid. Then x ���� = x ��.
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A Glivenko-like theorem for I

Let A ∈ I. Let A�� = {a�� | a ∈ A} and let A�� := �A��,→, 0�.

Theorem
Let A = �A,→, 0� ∈ I, then
(a) A |= (x �� → y ��) → x �� ≈ x �� iff A�� is a De Morgan algebra,
(b) A |= (y �� → y ��) → (x �� → x ��) ≈ x �� → x �� iff A�� is a Kleene

algebra,
(c) A |= x �� → x �� ≈ 0� iff A�� is a Boolean algebra.
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Some Important Subvarieties of the Variety of
Implication Zroupoids

Definition
Let I3,1, I2,0 and I1,0 denote, respectively, the subvarieties of I
satisfying x ��� ≈ x �, x �� ≈ x , and x � ≈ x .

More characterizations of the variety I2,0:

Theorem
Let A be a I-zroupoid. Then T.F.A.E.:
(a) A ∈ I2,0
(b) A |= x ∧ x ≈ x , where x ∧ x := (x → x �)�]
(c) A |= x ∨ x ≈ x , where x ∨ x := (x � ∧ x �)�.
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PART 3: Derived algebras of I and Connections to
other classes of algebras

Let A = �A;→, 0� ∈ I. We define the operations ∧ and ∨ on A
by:

x ∧ y := (x → y �)�,
x ∨ y := (x � ∧ y �)�.

With each implication zroupoid A, we associate the following
algebras, referred to as “derived algebras”:

Am := �A,∧, 0�,
Aj := �A,∨, 0�,
Amj := �A,∧,∨, 0�.
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I meets Bisemigroups.

Theorem

Let A ∈ I. Then Am is a semigroup.

In fact, more is true:

Corollary

Let A ∈ I. Then Amj is a bisemigroup.
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More properties of the derived algebras Amj in the
variety I

Theorem

Let A ∈ I. Then
(a) Amj satisfies:

(1) (x ∨ y)� ≈ x � ∧ y �,
(2) (x ∧ y)� ≈ x � ∨ y �

(b) The following are equivalent in Amj:
(1) x ∧ y ≈ y ∧ x (i.e., ∧-commutative),
(2) x ∨ y ≈ y ∨ x (i.e., ∨-commutative),

(c) The following are equivalent in Amj:
(1) x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z),
(2) x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z).

H.P. Sankappanavar Implication Zroupoids: An Abstraction from De Morgan Algebras



More properties of the derived algebras Amj in the
variety I

Theorem

Let A ∈ I. Then
(a) Amj satisfies:

(1) (x ∨ y)� ≈ x � ∧ y �,
(2) (x ∧ y)� ≈ x � ∨ y �

(b) The following are equivalent in Amj:
(1) x ∧ y ≈ y ∧ x (i.e., ∧-commutative),
(2) x ∨ y ≈ y ∨ x (i.e., ∨-commutative),

(c) The following are equivalent in Amj:
(1) x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z),
(2) x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z).

H.P. Sankappanavar Implication Zroupoids: An Abstraction from De Morgan Algebras



More properties of the derived algebras Amj in the
variety I

Theorem

Let A ∈ I. Then
(a) Amj satisfies:

(1) (x ∨ y)� ≈ x � ∧ y �,
(2) (x ∧ y)� ≈ x � ∨ y �

(b) The following are equivalent in Amj:
(1) x ∧ y ≈ y ∧ x (i.e., ∧-commutative),
(2) x ∨ y ≈ y ∨ x (i.e., ∨-commutative),

(c) The following are equivalent in Amj:
(1) x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z),
(2) x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z).

H.P. Sankappanavar Implication Zroupoids: An Abstraction from De Morgan Algebras



More properties of the derived algebras Amj in the
variety I

Theorem

Let A ∈ I. Then
(a) Amj satisfies:

(1) (x ∨ y)� ≈ x � ∧ y �,
(2) (x ∧ y)� ≈ x � ∨ y �

(b) The following are equivalent in Amj:
(1) x ∧ y ≈ y ∧ x (i.e., ∧-commutative),
(2) x ∨ y ≈ y ∨ x (i.e., ∨-commutative),

(c) The following are equivalent in Amj:
(1) x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z),
(2) x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z).

H.P. Sankappanavar Implication Zroupoids: An Abstraction from De Morgan Algebras



Theorem
Let A ∈ I. Then the following hold in Amj:
(a) (x ∧ y) ∧ (x ∨ y) ≈ x ∧ y,
(b) (x ∨ y) ∨ (x ∧ y) ≈ x ∨ y.
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Theorem
Let A ∈ I. Then the following hold in Amj:
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The derived algebra Amj as a lattice

Necessary and sufficient conditions on algebras A ∈ I under
which the derived algebra Amj = �A,∧,∨, 0� is a lattice:

Theorem
The following are equivalent in A ∈ I:
(1) Amj is a lattice,
(2) Absorption law holds in Amj,
(3) (x → y) → x ≈ x holds in A,
(4) A is a De Morgan algebra.
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Symmetric Implication Zroupoids: Another important
subvariety of I

An algebra A in I is symmetric if A satisfies:
(a) x �� ≈ x (that is, A ∈ I2,0), and
(b) x ∧ y ≈ y ∧ x (∧-commutative)
S denotes the variety of symmetric Implication zroupoids.

Theorem

Let A ∈ S. Then Amj satisfies:
(a) x ∧ x ≈ x,
(b) x ∨ x ≈ x,
(c) x ∨ y ≈ y ∨ x,
(d) x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z),
(e) x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z),
(f) x ∧ (x ∨ y) ≈ x ∨ (x ∧ y).
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The variety S meets with Plonka’s algebras.

In 1967, J.Plonka introduced the class of distributive
quasilattices, which are now known as distributive
bisemilattices.
A bisemilattice is an algebra �A,∧,∨� such that �A,∧� and
�A,∨� are both semilattices.
A distributive bisemilattice is a bisemilattice in which the
distributive laws hold.
An Interesting property of Amj for A ∈ S:

Theorem
Let A be in the variety S. Then Amj is a distributive
bisemilattice.

H.P. Sankappanavar Implication Zroupoids: An Abstraction from De Morgan Algebras



The variety S meets with Plonka’s algebras.

In 1967, J.Plonka introduced the class of distributive
quasilattices, which are now known as distributive
bisemilattices.
A bisemilattice is an algebra �A,∧,∨� such that �A,∧� and
�A,∨� are both semilattices.
A distributive bisemilattice is a bisemilattice in which the
distributive laws hold.
An Interesting property of Amj for A ∈ S:

Theorem
Let A be in the variety S. Then Amj is a distributive
bisemilattice.

H.P. Sankappanavar Implication Zroupoids: An Abstraction from De Morgan Algebras



The variety S meets with Plonka’s algebras.

In 1967, J.Plonka introduced the class of distributive
quasilattices, which are now known as distributive
bisemilattices.
A bisemilattice is an algebra �A,∧,∨� such that �A,∧� and
�A,∨� are both semilattices.
A distributive bisemilattice is a bisemilattice in which the
distributive laws hold.
An Interesting property of Amj for A ∈ S:

Theorem
Let A be in the variety S. Then Amj is a distributive
bisemilattice.

H.P. Sankappanavar Implication Zroupoids: An Abstraction from De Morgan Algebras



The variety S meets with Plonka’s algebras.

In 1967, J.Plonka introduced the class of distributive
quasilattices, which are now known as distributive
bisemilattices.
A bisemilattice is an algebra �A,∧,∨� such that �A,∧� and
�A,∨� are both semilattices.
A distributive bisemilattice is a bisemilattice in which the
distributive laws hold.
An Interesting property of Amj for A ∈ S:

Theorem
Let A be in the variety S. Then Amj is a distributive
bisemilattice.

H.P. Sankappanavar Implication Zroupoids: An Abstraction from De Morgan Algebras



The variety S meets with Plonka’s algebras.

In 1967, J.Plonka introduced the class of distributive
quasilattices, which are now known as distributive
bisemilattices.
A bisemilattice is an algebra �A,∧,∨� such that �A,∧� and
�A,∨� are both semilattices.
A distributive bisemilattice is a bisemilattice in which the
distributive laws hold.
An Interesting property of Amj for A ∈ S:

Theorem
Let A be in the variety S. Then Amj is a distributive
bisemilattice.

H.P. Sankappanavar Implication Zroupoids: An Abstraction from De Morgan Algebras



The variety S meets with Plonka’s algebras.

In 1967, J.Plonka introduced the class of distributive
quasilattices, which are now known as distributive
bisemilattices.
A bisemilattice is an algebra �A,∧,∨� such that �A,∧� and
�A,∨� are both semilattices.
A distributive bisemilattice is a bisemilattice in which the
distributive laws hold.
An Interesting property of Amj for A ∈ S:

Theorem
Let A be in the variety S. Then Amj is a distributive
bisemilattice.

H.P. Sankappanavar Implication Zroupoids: An Abstraction from De Morgan Algebras



S meets Birkhoff Systems.

A Birkhoff system is a bisemilattice satisfying the Birkhoff’s
identity:

(BR) x ∧ (x ∨ y) ≈ x ∨ (x ∧ y).

Theorem
If A ∈ S, then Amj is both a distributive bisemilattice and a
Birkhoff system.
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PART 4: Simple Algebras in I

Theorem
The only simple algebras in I, up to isomorphism, are 2z, 2s,
2b, 3k and 4d , where the → operations of 3k and 4d are given
below

→: 0 1 2
0 1 1 1
1 0 1 2
2 2 1 2

→: 0 1 2 3
0 1 1 1 1
1 0 1 2 3
2 2 1 2 1
3 3 1 1 3

Corollary
The only (nontrivial ) simple algebras in I2,0, up to
isomorphism, are 2s, 2b, 3k and 4d .
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Semisimple Varieties of Implication Zroupoids

Recall that a variety is semisimple if and only if every
subdirectly irreducible algebra in it is simple.

Corollary
A subvariety V of I is semisimple if and only if
V ⊆ V(2z, 2s, 4d).
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The lattice of semisimple subvarieties of I
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PART 5: Order

Both the variety SL of ∨ semilattices with a least element 0
and the variety DM of De Morgan algebras have a partial
order induced by the operation ∧.
So, it is but natural to consider the following relation � in
Implication Zroupoids.

Definition

Let A ∈ I. We define the relation � on A as follows:

x � y if and only if x ∧ y = x (equivalently , (x → y �)� = x).

PROBLEM: Is there a subvariety V of I, containing both
SL and DM, such that, for every algebra A in V, the
relation � on A is actually a partial order.
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Part of the importance of the variety I2,0, which contains the
varieties SL and DM, is highlighted by the following theorem.

Theorem
The variety I2,0 is a maximal subvariety of I with respect to the
property that the relation �, is a partial order.
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Finite I2,0-chains

Since the relation � is a partial order on algebras in I2,0, it
is natural to ask the
Question: How many I2,0-chains are there on a given set
of size n?

Definition
A ∈ I2,0 is an I2,0-chain if the relation � is totally ordered on A.

Let me give some examples of I2,0-chains.
Note that, in these examples, the number 0 is the constant
element.
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Examples of finite I2,0-chains

The only 2-element I2,0-chains, up to isomorphism, are

→: 0 1
0 1 1
1 0 1

with 0 � 1.

(This is the Boolean Algebra 2b), and

→: -1 0
-1 -1 -1
0 -1 0

with −1 � 0
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The only 3-element I2,0-chains, up to isomorphism, are

→: 0 1 2
0 2 2 2
1 1 1 2
2 0 1 2

with 0 � 1 � 2,

→: -1 0 1
-1 -1 -1 -1
0 -1 1 1
1 -1 0 1

with −1 � 0 � 1,

→: -2 -1 0
-2 -2 -2 -2
-1 -2 -1 -1
0 -2 -1 0

with −2 � −1 � 0.
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Characterization of finite I2,0-chains

Theorem
There are n non-isomorphic I2,0-chains of size n, for n ∈ N.
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PART 6: Varieties of Implication Zroupoids
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The Identities defining the above subvarieties of I

(I2,0) x �� ≈ x : (I3,1) x ��� ≈ x �; (I1,0) x � ≈ x ;
(ID) x → x ≈ x ; (Z ) x → y ≈ 0;
(MC) x ∧ y ≈ y ∧ x ; (C) x → y ≈ y → x ;
(CP) x → y � ≈ y → x �; (SCP) x → y ≈ y � → x �;
(WCP)x � → y ≈ y � → x ;

(A) (x → y) → z ≈ x → (y → z);
(RD) (x → y) → z ≈ (x → z) → (y → z);
(SRD) (x → y) → z ≈ (z → x) → (y → z);
(LD) x → (y → z) ≈ (x → y) → (x → z); not shown in the picture
(CLD) x → (y → z) ≈ (x → z) → (y → x);

(LAP) (x → x) → x ≈ x ; (TII) 0� → (x → y) ≈ x → y .
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(LAP) (x → x) → x ≈ x ; (TII) 0� → (x → y) ≈ x → y .
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PART 7: Associativity-like Identities

The search for new subvarieties of I led us to look at
“associative-like” identities.
We consider two kinds:
(1) identities of associative-type,

(2) Weak Associative Identities of length ≤ 4.
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PART 7(1): Identities of Associative-type

An identity of associative type is an identity p ≈ q, in the
groupoid language �→�, where p and q have exactly 3
variables, say x,y,z, and in which the variables are grouped
according to one of the following two ways of grouping:
a) o → (o → o)
b) (o → o) → o.
The six permuatations of 3 variables give rise to 12 terms:
(1a) x → (y → z), (1b) (x → y) → z
(2a) x → (z → y), (2b) (x → z) → y
(3a) y → (x → z), (3b) (y → x) → z
(4a) y → (z → x), (4b) (y → z) → x
(5a) z → (x → y), (5b) (z → x) → y
(6a) z → (y → x), (6b) (z → y) → x
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It turns out that the following 14 identities of associative type are
the only ones that are mutually independent on any groupoid:

(A1) x → (y → z) ≈ (x → y) → z (Associative law)
(A2) x → (y → z) ≈ x → (z → y)
(A3) x → (y → z) ≈ (x → z) → y
(A4) x → (y → z) ≈ y → (x → z)
(A5) x → (y → z) ≈ (y → x) → z
(A6) x → (y → z) ≈ y → (z → x)
(A7) x → (y → z) ≈ (y → z) → x
(A8) x → (y → z) ≈ (z → x) → y
(A9) x → (y → z) ≈ z → (y → x)

(A10) x → (y → z) ≈ (z → y) → x
(A11) (x → y) → z ≈ (x → z) → y
(A12) (x → y) → z ≈ (y → x) → z
(A13) (x → y) → z ≈ (y → z) → x
(A14) (x → y) → z ≈ (z → y) → x .
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Main Theorem for the varieties of associative-type

Theorem
(a) The following are the 8 subvarieties of associative type of I

that are distinct from each other.

A1,A2,A3,A4,A6,A9,A11 and A14

(b) They satisfy the following relationships
1. SL ⊂ A3 ⊂ A4
2. BA ⊂ A4 ⊂ I
3. A3 ⊂ A1 ⊂ I
4. A3 ⊂ A2 ⊂ A11, A3 ⊂ A6 ⊂ A11 and A3 ⊂ A9 ⊂ A11
5. A11 ⊂ A14 ⊂ I
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PART 7(2) Weak Associative Identities of length m ≤ 4
in Symmetric Idempotent Zroupoids

The first systematic analysis of the relationships among the
weak associative identities appears to have been done by
Feyves in 1969 in the context of loops for the special case of
Bol-Moufang type. He listed 60 identities of Bol-Moufang type
(of size 4 in 3 variables, with one variable repeated).

We have done a systematic study of the identities of weak
associative identities of length ≤ 4 that include identities of
Bol-Moufang type in the context of the variety S of symmetric
implication zroupoids.
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Definition
Let n,m, p, q ∈ N and let X denote a word of length n in which
the m (distinct) variables occur alphabetically.
(nmXpq) denotes the weak associative identity t ≈ s of length n
with m variables, where t and s are terms, obtained from X ,
with bracketing numbers p and q respectively.
nmXpq denotes the subvariety S defined by the weak
associative identity (nmXpq).
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Weak Associative Identities of size ≤ 4, relative to S

Let us look at the weak associative laws of size ≤ 4 relative to
S.
Clearly, x ≈ x is the only identity of lenth 1 which is trivial.
Also, the identities x → x ≈ x → x and x → y ≈ x → y are the
only identities of length 2, which are also trivial.
So, we will consider the identities of length 3 and 4.
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Weak associative identities of length 3 with 1 variable

The only word of length 3 with 1 variable is:
A: �x , x , x�.
Ways in which the word A can be bracketed (where ‘o’ is just a
place holder) are:

1: o → (o → o),
2: (o → o) → o.

The only weak associative identity in this category is:

1: (31A12) x → (x → x) ≈ (x → x) → x .
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Weak associative laws of length 3 with 2 variables:

Possible words of length 3 with 2 variables are:

A: �x , x , y�,
B: �x , y , x�,
C: �x , y , y�.

Ways in which a word of size 3 can be bracketed:

1: o → (o → o),
2: (o → o) → o.

The weak associative identities in this category are:

1: (31A12) = (LALT) x → (x → y) ≈ (x → x) → y (the
left-alternative law)
2: (31B12) = (FLEX) x → (y → x) ≈ (x → y) → x (the flexible
law)
3: (31C12) =(RALT) x → (y → y) ≈ (x → y) → y (the
right-alternative law)
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Weak associative laws of length 3 with 3 variables:

The only word of length 3 with 3 variables is:

A: �x , y , z�.

Ways in which a word of length 3 can be bracketed:

1: o → (o → o),
2: (o → o) → o, where ‘o’ is a place holder.

The only weak associative identitiy in this category is:

(33A12) x → (y → z) ≈ (x → y) → z (associative law).
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Weak associative laws with length 4 and with 1
variable.

The only word of length 4 with 1 variable is:

A: �x , x , x , x�.

Ways in which a word of length 4 can be bracketed are:

1: o → (o → (o → o)),
2: o → ((o → o) → o),
3: (o → o) → (o → o),
4: (o → (o → o)) → o,
5: ((o → o) → o) → o, where ‘o’ is a place holder.
There are 10 identities in this category.
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Weak associative identities with length 4 and with 2
variables.

Possible words of length 4 with 2 variables are:

A: �x , x , x , y�, B: �x , x , y , x�,
C: �x , x , y , y�, D: �x , y , x , x�,
E: �x , y , x , y�, F: �x , y , y , x�,
G: �x , y , y , y�.

Ways in which a word of size 4 can be bracketed are:

1: o → (o → (o → o)), 2: o → ((o → o) → o),
3: (o → o) → (o → o), 4: (o → (o → o)) → o,
5: ((o → o) → o) → o.
There are 70 identities in this category.
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5: ((o → o) → o) → o.
There are 70 identities in this category.
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Weak associative identities with length 4 and with 2
variables.

Possible words of length 4 with 2 variables are:

A: �x , x , x , y�, B: �x , x , y , x�,
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G: �x , y , y , y�.

Ways in which a word of size 4 can be bracketed are:

1: o → (o → (o → o)), 2: o → ((o → o) → o),
3: (o → o) → (o → o), 4: (o → (o → o)) → o,
5: ((o → o) → o) → o.
There are 70 identities in this category.

H.P. Sankappanavar Implication Zroupoids: An Abstraction from De Morgan Algebras



Weak associative laws with length 4 and with 3
variables (=Bol-Moufang identities) of length 4

Possible words of length 4 with 3 variables are:

A: �x , x , y , z�, B: �x , y , x , z�,
C: �x , y , y , z�, D: �x , y , z, x�,
E: �x , y , z, y�, F: �x , y , z, z�.

Ways in which a word of size 4 can be bracketed:

1: a → (a → (a → a)), 2: a → ((a → a) → a),
3: (a → a) → (a → a), 4: (a → (a → a)) → a,
5: ((a → a) → a) → a.
There are 60 identities in this category.
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Weak associative laws with length 4 and with 4
variables.

The only word of length 4 with 4 variables is:

A: �t , x , y , z�.

Ways in which a word of length 4 can be bracketed:

1: o → (o → (o → o)), 2: o → ((o → o) → o),
3: (o → o) → (o → o), 4: (o → (o → o)) → o,
5: ((o → o) → o) → o.
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MAIN THEOREM ABOUT DISTINCT, WEAK
ASSOCIATIVE SUBVARIETIES of S

Theorem

(a) The following are the 6 (distinct) varieties defined,
relative to S, arising from the 155 weak associative laws
of length m ≤ 4 that are distinct from each other:

SL, 43A12, 43A23, 42A12, 43F25 and S.
(b) They satisfy the following relationships:

1 SL ⊂ 43A23 ⊂ 43F25 ⊂ S,
2 SL ⊂ 43A12 ⊂ 42A12 ⊂ S,
3 BA ⊂ 43A12 ⊂ 43F25,
4 43A12 �⊆ 43A23 and 43A23 �⊆ 43A12,
5 42A12 �⊆ 43F25 and 43F25 �⊆ 42A12.
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The Hasse diagram of the poset of (distinct) weak associative
subvarieties of S of length ≤ 4, together with the variety BA:

� T

�BA � SL

�43A12 � 43A23

�42A12 � 43F25

� S
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Corresponding Identities:

43A12: x → [x → (y → z)] ≈ x → [(x → y) → z]

45A23: x → [(x → y) → z] ≈ (x → x) → (y → z]

43F25: x → [(y → z) → z] ≈ [(x → y) → z] → z

42A12: x → [x → (x → y ] ≈ x → [(x → x) → y ]
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Some directions for future research.

PROBLEM 1: Explore the connection of implication zroupoids
to semigroups as given by Am or Aj, further.
PROBLEM 2: Describe subdirectly irreducible implication
zroupoids in S, I2.0, and I.
PROBLEM 3: Is their a characterization of Stone algebras in
the language {→, 0}?
PROBLEM 5: Investigate the lattice of subvarieties of I further.
PROBLEM 6: Investigate expansions of I by adding additional
(interesting) operations.
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THANK YOU VERY MUCH FOR LISTENING.
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