Logic and Implication

Carles Noguera

(Joint work with Petr Cintula and Tomáš Lávička)

Institute of Information Theory and Automation Czech Academy of Sciences

Congreso Dr. Antonio Monteiro

• Logic is the study of correct reasoning.

- Logic is the study of correct reasoning.
- There are many different forms of correct reasoning.

- Logic is the study of correct reasoning.
- There are many different forms of correct reasoning.
- Hence, there are many logics (logical pluralism).

- Logic is the study of correct reasoning.
- There are many different forms of correct reasoning.
- Hence, there are many logics (logical pluralism).
- Algebraic logic studies propositional logics by means of their algebraic and matricial semantics.

- Logic is the study of correct reasoning.
- There are many different forms of correct reasoning.
- Hence, there are many logics (logical pluralism).
- Algebraic logic studies propositional logics by means of their algebraic and matricial semantics.
- Abstract algebraic logic (AAL) has developed a general and abstract theory of the relation between logics and their algebraic (matricial) semantics.

- Logic is the study of correct reasoning.
- There are many different forms of correct reasoning.
- Hence, there are many logics (logical pluralism).
- Algebraic logic studies propositional logics by means of their algebraic and matricial semantics.
- Abstract algebraic logic (AAL) has developed a general and abstract theory of the relation between logics and their algebraic (matricial) semantics.
- AAL describes the role of connectives in (non-)classical logics.

- Logic is the study of correct reasoning.
- There are many different forms of correct reasoning.
- Hence, there are many logics (logical pluralism).
- Algebraic logic studies propositional logics by means of their algebraic and matricial semantics.
- Abstract algebraic logic (AAL) has developed a general and abstract theory of the relation between logics and their algebraic (matricial) semantics.
- AAL describes the role of connectives in (non-)classical logics.
- Protoalgebraic logics and their subclasses are based on a general notion of equivalence.

- Logic is the study of correct reasoning.
- There are many different forms of correct reasoning.
- Hence, there are many logics (logical pluralism).
- Algebraic logic studies propositional logics by means of their algebraic and matricial semantics.
- Abstract algebraic logic (AAL) has developed a general and abstract theory of the relation between logics and their algebraic (matricial) semantics.
- AAL describes the role of connectives in (non-)classical logics.
- Protoalgebraic logics and their subclasses are based on a general notion of equivalence.
- Implication has a crucial role in reasoning (entailment, consequence, preservation of truth,...)

- Logic is the study of correct reasoning.
- There are many different forms of correct reasoning.
- Hence, there are many logics (logical pluralism).
- Algebraic logic studies propositional logics by means of their algebraic and matricial semantics.
- Abstract algebraic logic (AAL) has developed a general and abstract theory of the relation between logics and their algebraic (matricial) semantics.
- AAL describes the role of connectives in (non-)classical logics.
- Protoalgebraic logics and their subclasses are based on a general notion of equivalence.
- Implication has a crucial role in reasoning (entailment, consequence, preservation of truth,...)
- We will now present an AAL theory based on implication.

Two examples of non-classical logics

 $[0, 1]_{E}$: the standard MV-matrix with domain [0, 1], filter $\{1\}$ and operations

$$x \rightarrow y = \min\{1, 1 - x + y\}$$

$$x \& y = \max\{0, x + y - 1\}$$

$$x \lor y = \max\{x, y\}$$

$$\neg x = 1 - x$$

Ł: the logic axiomatized by modus ponens and 4 (5) Łukasiewicz axioms Fact: the equivalence $\Gamma \vdash_{\mathbb{L}} \varphi$ iff $\Gamma \models_{[0,1]_{\mathbb{L}}} \varphi$ holds for finite Γ s only

Two examples of non-classical logics

 $[0, 1]_{E}$: the standard MV-matrix with domain [0, 1], filter $\{1\}$ and operations

$$x \rightarrow y = \min\{1, 1 - x + y\}$$

$$x \& y = \max\{0, x + y - 1\}$$

$$x \lor y = \max\{x, y\}$$

$$\neg x = 1 - x$$

Ł: the logic axiomatized by modus ponens and 4 (5) Łukasiewicz axioms Fact: the equivalence $\Gamma \vdash_{\mathbf{E}} \varphi$ iff $\Gamma \models_{[0,1]_{\mathbf{E}}} \varphi$ holds for finite Γ s only

Theorem

Let \mathtt{L}_∞ be the extension of \mathtt{L} by the rule

$$\{\neg \varphi \to \varphi \& : \stackrel{n}{\ldots} \& \varphi \mid n \ge 1\} \rhd \varphi$$

Then $\Gamma \vdash_{\mathbf{L}_{\infty}} \varphi$ iff $\Gamma \models_{[0,1]_{\mathbf{L}}} \varphi$ holds for all Γ s.

Outline

(In)finitary logics

2 Disjunctions

Implications

- 4 Disjunctions and implications
- 5 Completeness properties

What is a logic?

Var: an infinite countable set of propositional variables

 \mathcal{L} : a countable type

 $Fm_{\mathcal{L}}$: the absolutely free \mathcal{L} -algebra with generators Var elements of $Fm_{\mathcal{L}}$ are called \mathcal{L} -formulas

A logic L is a relation between sets of \mathcal{L} -formulas and \mathcal{L} -formulas s.t.: we write ' $\Gamma \vdash_{L} \varphi$ ' instead of ' $\langle \Gamma, \varphi \rangle \in L$ '

(Reflexivity)
(Monotonicity)
(Cut)
(Structurality)

A logic L is finitary if $\Gamma \vdash_{L} \varphi$, then there is a finite $\Gamma' \subseteq \Gamma$ s.t. $\Gamma' \vdash_{L} \varphi$

Axiomatic system \mathcal{AS} : set of axioms and rules closed under substitutions Proof of φ from Γ in \mathcal{AS} : a well-founded tree labeled by formulas s.t.

- its root is labeled by φ and leaves by axioms or elements of Γ and
- if a node is labeled by ψ and Δ ≠ Ø is the set of labels of its preceding nodes, then Δ ▷ ψ is a rule.

 \mathcal{RS} is a presentation of L whenever $\Gamma \vdash_{L} \varphi$ iff there is a proof of φ from Γ in \mathcal{RS} .

Axiomatic system \mathcal{AS} : set of axioms and rules closed under substitutions Proof of φ from Γ in \mathcal{AS} : a well-founded tree labeled by formulas s.t.

- its root is labeled by φ and leaves by axioms or elements of Γ and
- if a node is labeled by ψ and Δ ≠ Ø is the set of labels of its preceding nodes, then Δ ▷ ψ is a rule.

 \mathcal{AS} is a presentation of L whenever $\Gamma \vdash_{L} \varphi$ iff there is a proof of φ from Γ in \mathcal{AS} .

Fact: Each (finitary) logic has a (countable) presentation

Axiomatic system \mathcal{AS} : set of axioms and rules closed under substitutions Proof of φ from Γ in \mathcal{AS} : a well-founded tree labeled by formulas s.t.

- its root is labeled by φ and leaves by axioms or elements of Γ and
- if a node is labeled by ψ and Δ ≠ Ø is the set of labels of its preceding nodes, then Δ ▷ ψ is a rule.

 \mathcal{AS} is a presentation of L whenever $\Gamma \vdash_{L} \varphi$ iff there is a proof of φ from Γ in \mathcal{AS} .

Fact: Each (finitary) logic has a (countable) presentation

L is countably axiomatizable if it has a countable presentation

Axiomatic system \mathcal{AS} : set of axioms and rules closed under substitutions Proof of φ from Γ in \mathcal{AS} : a well-founded tree labeled by formulas s.t.

- its root is labeled by φ and leaves by axioms or elements of Γ and
- if a node is labeled by ψ and Δ ≠ Ø is the set of labels of its preceding nodes, then Δ ▷ ψ is a rule.

 \mathcal{AS} is a presentation of L whenever $\Gamma \vdash_{L} \varphi$ iff there is a proof of φ from Γ in \mathcal{AS} .

Fact: Each (finitary) logic has a (countable) presentation

L is countably axiomatizable if it has a countable presentation

 \boldsymbol{k}_{∞} is countably axiomatizable but not finitary

Logical matrices and semantical consequence

 \mathcal{L} -matrix: a pair $\mathbf{A} = \langle \mathbf{A}, F \rangle$ where

- A is an *L*-algebra and
- $F \subseteq A$ called the filter of **A**

Definition (Semantical consequence)

A formula φ is a semantical consequence of a set Γ of formulas w.r.t. a class \mathbb{K} of \mathcal{L} -matrices, $\Gamma \models_{\mathbb{K}} \varphi$ in symbols, if

for each $\langle A, F \rangle \in \mathbb{K}$ and each *A*-evaluation *e*, we have: $e(\varphi) \in F$ whenever $e[\Gamma] \subseteq F$.

Filters, theories, models of a logic

Let L be a logic in \mathcal{L} and A an \mathcal{L} -algebra

A set $T \subseteq Fm_{\mathcal{L}}$ is a theory if for each $\varphi \in Fm_{\mathcal{L}}$ we have $T \vdash_L \varphi$ implies $\varphi \in T$

we write $T \in \text{Th}(L)$

```
A set F \subseteq A is a filter if
for each \Gamma \cup \{\varphi\} \in Fm_{\mathcal{L}} we have
\Gamma \vdash_{\mathcal{L}} \varphi implies \Gamma \models_{\langle A, F \rangle} \varphi
we write F \in \mathcal{F}i_{\Gamma}(A)
```

Filters, theories, models of a logic

Let L be a logic in \mathcal{L} and A an \mathcal{L} -algebra

```
A set T \subseteq Fm_{\mathcal{L}} is a theory if
for each \varphi \in Fm_{\mathcal{L}} we have
T \vdash_{\mathcal{L}} \varphi implies \varphi \in T
```

we write $T \in \text{Th}(L)$

```
A set F \subseteq A is a filter if
for each \Gamma \cup \{\varphi\} \in Fm_{\mathcal{L}} we have
\Gamma \vdash_{\mathcal{L}} \varphi implies \Gamma \models_{\langle A, F \rangle} \varphi
we write F \in \mathcal{F}i_{\Gamma}(A)
```

Fact 1: $\mathcal{F}i_{L}(A)$ is a closure system

Fact 2: $\mathcal{F}i_{L}(Fm_{\mathcal{L}}) = Th(L)$

Filters, theories, models of a logic

Let L be a logic in \mathcal{L} and A an \mathcal{L} -algebra

```
A set T \subseteq Fm_{\mathcal{L}} is a theory if
for each \varphi \in Fm_{\mathcal{L}} we have
T \vdash_{\mathcal{L}} \varphi implies \varphi \in T
```

we write $T \in \text{Th}(L)$

```
A set F \subseteq A is a filter if
for each \Gamma \cup \{\varphi\} \in Fm_{\mathcal{L}} we have
\Gamma \vdash_{\mathcal{L}} \varphi implies \Gamma \models_{\langle A, F \rangle} \varphi
we write F \in \mathcal{F}i_{\Gamma}(A)
```

Fact 1: $\mathcal{F}i_{L}(A)$ is a closure system

Fact 2: $\mathcal{F}i_{L}(Fm_{\mathcal{L}}) = Th(L)$

L-matrix: a matrix $\langle A, F \rangle$, where $F \in \mathcal{F}i_L(A)$ **MOD**(L)

```
1st completeness theorem: \Gamma \vdash_{L} \varphi iff \Gamma \models_{MOD(L)} \varphi
```

Leibniz congruence and reduced models

A congruence θ of A is logical in a matrix $\langle A, F \rangle$ if for each $a, b \in A$:

if $a \in F$ and $\langle a, b \rangle \in \theta$, then $b \in F$.

Definition

Let $\mathbf{A} = \langle A, F \rangle$ be an \mathcal{L} -matrix. By $\Omega_A(F)$ we denote the largest logical congruence on A and we call it Leibniz congruence of \mathbf{A} .

Definition

A matrix $\langle A, F \rangle$ is reduced, if $\Omega_A(F) = \text{Id}_A$.

For a logic L, by $MOD^{*}(L)$ we denote the class of reduced L-matrices.

Leibniz congruence and reduced models

A congruence θ of A is logical in a matrix $\langle A, F \rangle$ if for each $a, b \in A$:

if $a \in F$ and $\langle a, b \rangle \in \theta$, then $b \in F$.

Definition

Let $\mathbf{A} = \langle A, F \rangle$ be an \mathcal{L} -matrix. By $\Omega_A(F)$ we denote the largest logical congruence on A and we call it Leibniz congruence of \mathbf{A} .

Definition

```
A matrix \langle A, F \rangle is reduced, if \Omega_A(F) = \text{Id}_A.
```

For a logic L, by $MOD^{*}(L)$ we denote the class of reduced L-matrices.

```
2nd completeness theorem: \Gamma \vdash_{L} \varphi iff \Gamma \models_{MOD^{*}(L)} \varphi
```

Bases and ∩-prime elements in closure systems

Let C be a closure system over A.

 $X \in C$ is \cap -prime if for each $Y, Z \subseteq C$:

if $X = Y \cap Z$, then X = Y or X = Z.

 $X \in C$ is completely \cap -prime if for each set $\mathcal{Y} \subseteq C$:

if $X = \bigcap_{Y \in \mathcal{Y}} Y$, then X = Y for some $Y \in \mathcal{Y}$.

Bases and ∩-prime elements in closure systems

Let C be a closure system over A.

 $X \in C$ is \cap -prime if for each $Y, Z \subseteq C$:

if $X = Y \cap Z$, then X = Y or X = Z.

 $X \in C$ is completely \cap -prime if for each set $\mathcal{Y} \subseteq C$:

if $X = \bigcap_{Y \in \mathcal{Y}} Y$, then X = Y for some $Y \in \mathcal{Y}$.

 $\mathcal{B} \subseteq C$ is a basis of *C* if for every $Y \in C$ and $a \in A \setminus Y$ there is $Z \in \mathcal{B}$ such that $Y \subseteq Z$ and $a \notin Z$.

Lemma (Lindenbaum Lemma)

If L is finitary, then completely \cap -prime theories form a basis of Th(L).

RSI and RFSI reduced models

A matrix $\mathbf{A} \in \mathbb{K}$ is (finitely) subdirectly irreducible relative to \mathbb{K} , $\mathbf{A} \in \mathbb{K}_{\mathbf{R}(\mathbf{F})\mathbf{SI}}$ in symbols, if for every (finite non-empty) subdirect representation \mathbf{A} with a family $\{\mathbf{A}_i \mid i \in I\} \subseteq \mathbb{K}$ there is $i \in I$ such that π_i is an isomorphism.

Theorem

Given any logic L and $\mathbf{A} = \langle \mathbf{A}, F \rangle \in \mathbf{MOD}^*(L)$, we have:

- $A \in MOD^*(L)_{RSI}$ iff *F* is completely \cap -prime in $\mathcal{F}i_L(A)$.
- **2** $\mathbf{A} \in \mathbf{MOD}^*(\mathbf{L})_{\mathrm{RFSI}}$ iff F is \cap -prime in $\mathcal{F}i_{\mathbf{L}}(\mathbf{A})$.

RSI and RFSI reduced models

A matrix $\mathbf{A} \in \mathbb{K}$ is (finitely) subdirectly irreducible relative to \mathbb{K} , $\mathbf{A} \in \mathbb{K}_{\mathbf{R}(\mathbf{F})\mathbf{SI}}$ in symbols, if for every (finite non-empty) subdirect representation \mathbf{A} with a family $\{\mathbf{A}_i \mid i \in I\} \subseteq \mathbb{K}$ there is $i \in I$ such that π_i is an isomorphism.

Theorem

Given any logic L and $\mathbf{A} = \langle \mathbf{A}, F \rangle \in \mathbf{MOD}^*(L)$, we have:

- **●** $A \in MOD^*(L)_{RSI}$ iff *F* is completely \cap -prime in $\mathcal{F}i_L(A)$.
- **2** $\mathbf{A} \in \mathbf{MOD}^*(\mathbf{L})_{\mathrm{RFSI}}$ iff F is \cap -prime in $\mathcal{F}i_{\mathbf{L}}(\mathbf{A})$.

3rd compl. theorem (for finitary logics): $\Gamma \vdash_L \varphi$ iff $\Gamma \models_{MOD^*(L)_{RSI}} \varphi$

Classes of infinitary logics

- A logic L has the
 - CIPEP (completely ∩-prime extension property) if
 - completely $\cap\mbox{-prime theories form a basis of } Th(L)$
 - IPEP (\cap -prime ext. property) if \cap -prime theories form a basis of Th(L)

Classes of infinitary logics

- A logic L has the
 - CIPEP (completely ∩-prime extension property) if
 - completely $\cap\mbox{-prime theories form a basis of } Th(L)$
 - IPEP (\cap -prime ext. property) if \cap -prime theories form a basis of Th(L)
- A logic L is
 - **RSI-complete** if $L = \models_{MOD^*(L)_{RSI}}$
 - **RFSI-complete** if $L = \models_{MOD^*(L)_{RFSI}}$

Classes of infinitary logics

- A logic L has the
 - CIPEP (completely ∩-prime extension property) if

```
completely \cap\mbox{-prime theories form a basis of } Th(L)
```

• IPEP (\cap -prime ext. property) if \cap -prime theories form a basis of Th(L)

A logic L is

- **RSI-complete** if $L = \models_{MOD^*(L)_{RSI}}$
- **RFSI-complete** if $L = \models_{MOD^*(L)_{RFSI}}$

Outline

(In)finitary logics

2 Disjunctions

- Implications
- 4 Disjunctions and implications
- 5 Completeness properties

Definition and useful conventions

Let $\nabla(p, q, \vec{r})$ be a set of formulas. We write

$$\varphi \nabla \psi = \{\delta(\varphi, \psi, \vec{\alpha}) \mid \delta(p, q, \vec{s}) \in \nabla \text{ and } \vec{\alpha} \in Fm_{\mathcal{L}}\}$$
$$\Sigma_1 \nabla \Sigma_2 = \bigcup \{\varphi \nabla \psi \mid \varphi \in \Sigma_1, \psi \in \Sigma_2\}$$

Three kinds of disjunctions

A (parameterized) set of formulas ∇ is (p-)protodisjunction if

(PD) $\varphi \vdash \varphi \nabla \psi$ and $\psi \vdash \varphi \nabla \psi$

- A (p-)protodisjunction ∇ is a
 - weak (p-)disjunction if it satisfies: wPCP $\varphi \vdash_L \chi$ and $\psi \vdash_L \chi$ implies $\varphi \nabla \psi \vdash_L \chi$
 - (p-)disjunction if it satisfies: PCP $\Gamma, \varphi \vdash_L \chi$ and $\Gamma, \psi \vdash_L \chi$ implies $\Gamma, \varphi \nabla \psi \vdash_L \chi$
 - strong (p-)disjunction if it satisfies:
 sPCP Γ,Σ ⊢_L χ and Γ, Π ⊢_L χ implies Γ,Σ ∇ Π ⊢_L χ

The disjunctional hierarchy of logics

Carles Noguera (UTIA CAS)

Characterizations

Theorem

Let L be a logic with a presentation \mathcal{RS} and ∇ a p-protodisjunction s.t.

$$\psi \nabla \varphi \vdash_{\mathcal{L}} \varphi \nabla \psi \qquad \qquad \varphi \nabla \varphi \vdash_{\mathcal{L}} \varphi.$$

Then ∇ is a strong p-disjunction iff for each χ and each $\Gamma \triangleright \varphi \in \mathcal{AS}$:

 $\Gamma \nabla \chi \vdash_{\mathsf{L}} \varphi \nabla \chi.$

Characterizations

Theorem

Let L be a logic with a presentation \mathcal{RS} and ∇ a p-protodisjunction s.t.

$$\psi \nabla \varphi \vdash_{\mathcal{L}} \varphi \nabla \psi \qquad \qquad \varphi \nabla \varphi \vdash_{\mathcal{L}} \varphi.$$

Then ∇ is a strong p-disjunction iff for each χ and each $\Gamma \triangleright \varphi \in \mathcal{AS}$:

 $\Gamma \nabla \chi \vdash_{\mathsf{L}} \varphi \nabla \chi.$

We can show that $\varphi \lor \chi, (\varphi \to \psi) \lor \chi \vdash_{\mathbf{L}} \psi \lor \chi$

Thus \lor is a (strong) disjunction in Ł and so

$$\frac{\neg \varphi \to \varphi^n \vdash_{\mathbb{E}} \neg (\varphi \lor \chi) \to (\varphi \lor \chi)^n \qquad \chi \vdash_{\mathbb{E}} \neg (\varphi \lor \chi) \to (\varphi \lor \chi)^n}{(\neg \varphi \to \varphi^n) \lor \chi \vdash_{\mathbb{E}} \neg (\varphi \lor \chi) \to (\varphi \lor \chi)^n}$$

Then $\{(\neg \varphi \to \varphi^n) \lor \chi \mid n \ge 0\} \vdash_{\mathbb{L}_{\infty}} \varphi \lor \chi$

Thus \vee is a strong disjunction in L_∞

Characterizations

 ∇ -prime filter in A: if $\varphi \nabla^A \psi \subseteq F$, then $\varphi \in F$ or $\psi \in F$

Theorem

Let L be a logic with a p-protodisjunction ∇ . TFAE:

- L has the IPEP and (strong) ∇ is a p-disjunction.
- L has the IPEP and ∇ -prime and \cap -prime theories coincide.
- L has the PEP, i.e., ∇ -prime filters form a basis of Th(L).

Infinitary Lindenbaum Lemma

Theorem (Infinitary Lindenbaum Lemma)

Let L be a countably axiomatizable strongly disjunctional logic. Then L has the (I)PEP, i.e, \cap/∇ -prime theories form a basis of Th(L).

Infinitary Lindenbaum Lemma

Theorem (Infinitary Lindenbaum Lemma)

Let L be a countably axiomatizable strongly disjunctional logic. Then L has the (I)PEP, i.e, \cap/∇ -prime theories form a basis of Th(L).

Thus L_{∞} has the IPEP

Outline

(In)finitary logics

2 Disjunctions

- Disjunctions and implications
- 5 Completeness properties

What is an implication?

Let \overrightarrow{r} be a sequence of atoms and $\Rightarrow (p, q, \overrightarrow{r})$ a set of formulas.

Given formulas φ and ψ , we set

$$\varphi \Rightarrow \psi = \{\delta(\varphi, \psi, \vec{\alpha}) \mid \delta(p, q, \vec{s}) \in \Rightarrow \text{ and } \vec{\alpha} \in Fm_{\mathcal{L}}\}$$

What is an implication?

Let \overrightarrow{r} be a sequence of atoms and $\Rightarrow (p, q, \overrightarrow{r})$ a set of formulas.

Given formulas φ and ψ , we set

$$\varphi \Rightarrow \psi = \{\delta(\varphi, \psi, \vec{\alpha}) \mid \delta(p, q, \vec{s}) \in \Rightarrow \text{ and } \vec{\alpha} \in Fm_{\mathcal{L}}\}$$

A set $\Rightarrow (p, q, \overrightarrow{r}) \subseteq Fm_{\mathcal{L}}$ is a weak p-implication in a logic L if:

What is an implication?

Let \overrightarrow{r} be a sequence of atoms and $\Rightarrow (p, q, \overrightarrow{r})$ a set of formulas.

Given formulas φ and ψ , we set

$$\varphi \Rightarrow \psi = \{\delta(\varphi, \psi, \vec{\alpha}) \mid \delta(p, q, \vec{s}) \in \Rightarrow \text{ and } \vec{\alpha} \in Fm_{\mathcal{L}}\}$$

A set $\Rightarrow (p, q, \overrightarrow{r}) \subseteq Fm_{\mathcal{L}}$ is a weak p-implication in a logic L if:

 \rightarrow is a weak implication in L_∞

Implicational hierarchy

Order in matrices and reduced matrices

Let \Rightarrow be a weak p-implication in L and $\mathbf{A} = \langle \mathbf{A}, F \rangle \in \mathbf{MOD}(\mathbf{L})$

Fact 1: The relation $a \leq_{\mathbf{A}}^{\Rightarrow} b$ is a preorder:

 $a \leq^{\Rightarrow}_{\mathbf{A}} b$ iff $a \Rightarrow^{A} b \subseteq F$

Fact 2: $A \in MOD^*(L)$ iff \leq^\Rightarrow_A is an order

Definition: *F* and A are \Rightarrow -linear, $A \in MOD_{\Rightarrow}^{\ell}(L)$, if \leq_{A}^{\Rightarrow} is linear

What is a semilinear implication?

Definition

Let L be a logic and \Rightarrow one of its weak p-implications. We say that \Rightarrow is semilinear if

 $L = \models_{\mathbf{MOD}_{\Rightarrow}^{\ell}(L)}.$

L is a semilinear logic if it has a semilinear implication.

A general characterization of semilinear logics

Theorem

Let L be a logic and \Rightarrow a weak p-implication. TFAE:

- 1. \Rightarrow is semilinear in L, i.e. L = $\models_{MOD_{\Rightarrow}^{\ell}(L)}$.
- 2. L has the LEP w.r.t. \Rightarrow , i.e. \Rightarrow -linear theories are a basis of Th(L).
- 3. L is RFSI-complete and any of the following conditions hold:

3a. L has the SLP w.r.t. \Rightarrow , i.e., for each $\Gamma \cup \{\varphi, \psi, \chi\} \subseteq Fm_{\mathcal{L}}$:

$$\frac{\Gamma, \varphi \Rightarrow \psi \vdash_{\mathsf{L}} \chi}{\Gamma \vdash_{\mathsf{L}} \chi} \frac{\Gamma, \psi \Rightarrow \varphi \vdash_{\mathsf{L}} \chi}{\chi}$$

3b. L has the transferred SLP w.r.t. \Rightarrow ,

3c. \Rightarrow -linear filters coincide with \cap -prime filters in each \mathcal{L} -algebra,

3d. $MOD^*(L)_{RFSI} = MOD^{\ell}_{\Rightarrow}(L)$.

- 4. L has the IPEP and \Rightarrow -linear theories coincide with \cap -prime ones.
- 5. L is RSI-complete and $\textbf{MOD}^*(L)_{RSI} \subseteq \textbf{MOD}_{\Rightarrow}^{\ell}(L)$.

\boldsymbol{k}_{∞} is semilinear

We can easily prove that: $\vdash_{\mathbb{E}} (\varphi \to \psi) \lor (\psi \to \varphi)$

We have shown that \lor is a disjunction in \mathbb{L}_{∞}

Thus from $\Gamma, \varphi \to \psi \vdash_{\mathbb{L}_{\infty}} \chi$ and $\Gamma, \psi \to \varphi \vdash_{\mathbb{L}_{\infty}} \chi$ we get $\Gamma \vdash_{\mathbb{L}_{\infty}} \chi$

We also know that \mathfrak{L}_{∞} has IPEP and so it is RFSI-complete

Thus \mathcal{L}_{∞} is semilinear and $MOD^{*}(\mathcal{L}_{\infty})_{RFSI} = MOD^{\ell}_{\rightarrow}(\mathcal{L}_{\infty})$

Outline

(In)finitary logics

2 Disjunctions

Interplay with disjunction

Proposition

Let L be a logic with a weak p-implication \Rightarrow and p-protodisjunction ∇ .

• If \Rightarrow enjoys the SLP, then it holds:

 $(\mathbb{P}^{\Rightarrow}_{\nabla}) \quad \vdash_{\mathcal{L}} (\varphi \Rightarrow \psi) \, \nabla \, (\psi \Rightarrow \varphi).$

• If ∇ is a p-disjunction, then it holds: $(MP_{\nabla}^{\Rightarrow}) \quad \varphi \Rightarrow \psi, \varphi \nabla \psi \vdash_{L} \psi \quad \text{and} \quad \varphi \Rightarrow \psi, \psi \nabla \varphi \vdash_{L} \psi.$

Interplay with disjunction

Proposition

Let L be a logic with a weak p-implication \Rightarrow and p-protodisjunction ∇ .

• If \Rightarrow enjoys the SLP, then it holds:

 $(\mathbf{P}_{\nabla}^{\Rightarrow}) \quad \vdash_{\mathbf{L}} (\varphi \Rightarrow \psi) \, \nabla \, (\psi \Rightarrow \varphi).$

• If ∇ is a p-disjunction, then it holds: $(MP_{\nabla}^{\Rightarrow}) \quad \varphi \Rightarrow \psi, \varphi \nabla \psi \vdash_{L} \psi \text{ and } \varphi \Rightarrow \psi, \psi \nabla \varphi \vdash_{L} \psi.$

• If L satisfies $(\mathbb{P}_{\nabla}^{\Rightarrow})$, then each ∇ -prime filter in A is \Rightarrow -linear.

Interplay with disjunction

Proposition

Let L be a logic with a weak p-implication \Rightarrow and p-protodisjunction ∇ .

• If \Rightarrow enjoys the SLP, then it holds:

 $(\mathbf{P}_{\nabla}^{\Rightarrow}) \quad \vdash_{\mathbf{L}} (\varphi \Rightarrow \psi) \, \nabla \, (\psi \Rightarrow \varphi).$

• If ∇ is a p-disjunction, then it holds: $(MP_{\nabla}^{\Rightarrow}) \quad \varphi \Rightarrow \psi, \varphi \nabla \psi \vdash_{L} \psi \text{ and } \varphi \Rightarrow \psi, \psi \nabla \varphi \vdash_{L} \psi.$

• If L satisfies $(\mathbb{P}_{\nabla}^{\Rightarrow})$, then each ∇ -prime filter in A is \Rightarrow -linear.

• If L satisfies $(MP_{\nabla}^{\Rightarrow})$, then each \Rightarrow -linear filter in A is ∇ -prime.

Disjunction-based characterization of semilinear logics

Theorem

Let L be a a p-protodisjunction ∇ . TFAE:

logic with a weak p-implication \Rightarrow and

- 1. L satisfies $(MP_{\nabla}^{\Rightarrow})$ and \Rightarrow is semilinear in L
- 2. L satisfies $(P_{\nabla}^{\Rightarrow})$ and has the PEP w.r.t. ∇
- 3. L satisfies $(P_{\nabla}^{\Rightarrow})$, has the IPEP and ∇ is p-disjunction in L.

Disjunction-based characterization of semilinear logics

Theorem

Let L be a countably axiomatizable logic with a weak p-implication \Rightarrow and a p-protodisjunction ∇ . TFAE:

- 1. L satisfies $(MP_{\nabla}^{\Rightarrow})$ and \Rightarrow is semilinear in L
- 2. L satisfies $(P_{\nabla}^{\Rightarrow})$ and has the PEP w.r.t. ∇
- 3. L satisfies $(P_{\nabla}^{\Rightarrow})$ and ∇ is strong p-disjunction in L.

Disjunction-based characterization of semilinear logics

Theorem

Let L be a countably axiomatizable logic with a weak p-implication \Rightarrow and a p-protodisjunction ∇ . TFAE:

- 1. L satisfies $(MP_{\nabla}^{\Rightarrow})$ and \Rightarrow is semilinear in L
- 2. L satisfies $(P_{\nabla}^{\Rightarrow})$ and has the PEP w.r.t. ∇
- 3. L satisfies $(P^{\Rightarrow}_{\nabla})$ and ∇ is strong p-disjunction in L
- 4. L has a countable presentation \mathcal{AS} such that:

 $\vdash_{\mathsf{L}} (\varphi \Rightarrow \psi) \, \nabla \, (\psi \Rightarrow \varphi) \qquad \quad \psi \, \nabla \, \varphi \vdash_{\mathsf{L}} \varphi \, \nabla \, \psi \qquad \quad \varphi \, \nabla \, \varphi \vdash_{\mathsf{L}} \varphi.$

and each $\Gamma \triangleright \varphi \in \mathcal{AS}$:

$$\Gamma \nabla \chi \vdash_{\mathcal{L}} \varphi \nabla \chi.$$

Outline

(In)finitary logics

2 Disjunctions

4 Disjunctions and implications

Three kinds of $\mathbb{K}\text{-completeness}$ and the first theorem

Definition

Let L be a logic and $\mathbb{K} \subseteq \mathbf{MOD}^*(L)$. We say that L has the property of:

- Strong K-completeness, SKC for short, when for every set of formulas Γ ∪ {φ}: Γ ⊢_L φ iff Γ ⊨_K φ
 i.e., ⊢_L = ⊨_K
- Finite strong K-completeness, FSKC for short, when for every finite set of formulas Γ ∪ {φ}: Γ ⊢_L φ iff Γ ⊨_K φ
 i.e., FC(⊢_L) = FC(⊨_K)

• K-completeness, KC for short, when for every formula φ : $\vdash_L \varphi$ iff $\models_K \varphi$

Three kinds of $\mathbb{K}\text{-completeness}$ and the first theorem

Definition

Let L be a logic and $\mathbb{K} \subseteq \mathbf{MOD}^*(L)$. We say that L has the property of:

- Strong K-completeness, SKC for short, when for every set of formulas Γ ∪ {φ}: Γ ⊢_L φ iff Γ ⊨_K φ
 i.e., ⊢_L = ⊨_K
- Finite strong K-completeness, FSKC for short, when for every finite set of formulas Γ ∪ {φ}: Γ ⊢_L φ iff Γ ⊨_K φ
 i.e., FC(⊢_L) = FC(⊨_K)
- K-completeness, KC for short, when for every formula φ : $\vdash_L \varphi$ iff $\models_K \varphi$

Example 1: Ł separates SKC and FSKC

Example 2: any non structurally complete logic separates $FS\mathbb{K}C$ and $\mathbb{K}C$

Class operators

Slogan: Matrices can be regarded as first-order structures

A homomorphism $f: \langle A, F \rangle \rightarrow \langle B, G \rangle$: a morphism of algebras s.t. $f[F] \subseteq G$

- $S(\mathbb{K})$: the class of all submatrices of elements of \mathbb{K}
- $\mathbf{S}^*(\mathbb{K}) = \{ \langle A, F \rangle / \Omega_A(F) \mid \langle A, F \rangle \in \mathbf{S}(\mathbb{K}) \}$
- $\bullet~I(\mathbb{K}):$ the class of all isomorphic images of elements of \mathbb{K}
- $\bullet~H(\mathbb{K}):$ the class of all homomorphic images of elements of \mathbb{K}
- $\bullet~P(\mathbb{K}):$ the class of all products of elements of \mathbb{K}
- $\bullet~P_U(\mathbb{K}):$ the class of all ultraproducts of elements of \mathbb{K}
- $\mathbf{P}_{\sigma f}(\mathbb{K})$: the class of reduced products of \mathbb{K} using filters closed under countable intersections

General characterization

Theorem

Let L be a logic and $\mathbb{K} \subseteq \textbf{MOD}^*(L)$. Then:

- **1** L has the FSKC if, and only if, $MOD^*(L) \subseteq IS^*PP_U(\mathbb{K})$.
- **2** L has the SKC if, and only if, $MOD^*(L) \subseteq IS^*P_{\sigma f}(\mathbb{K})$.

Corollary

Let L be a protoalgebraic logic and $\mathbb{K} \subseteq \textbf{MOD}^*(L).$ Then:

- L has the $\mathbb{K}C$ if, and only if, $H(MOD^*(L)) = HS^*P(\mathbb{K})$.
- If L is finitary then it has a finite p-implication and has the FSKC if, and only if, MOD*(L) = IS*PP_U(K).
- Solution L has the SKC if, and only if, $MOD^*(L) = IS^*P_{\sigma-f}(K)$.

Characterization using RFSI-matrices

Theorem

Let L be an RFSI-complete logic and $\mathbb{K} \subseteq \textbf{MOD}^*(L).$ Then:

- If $MOD^*(L)_{RFSI} \subseteq HSP_U(\mathbb{K})$, then L has the $\mathbb{K}C$.
- ② If $MOD^*(L)_{RFSI} \subseteq IS^*P_U(\mathbb{K})$, then L has the FSKC.

If ${\rm L}$ is p-disjunctional or finitary protoalgebraic, then the reverse implications also hold.

Characterization using RFSI-matrices

Let us denote by \mathbb{K}^σ the class of countable elements of \mathbb{K}

Theorem

Let L be an RSI-complete logic and $\mathbb{K} \subseteq \textbf{MOD}^*(L).$ Then:

• If $MOD^*(L)^{\sigma}_{RSI} \subseteq IS^*(\mathbb{K})$, then L has the SKC

If L is protoalgebraic, then the reverse implication also holds.

Characterization using RFSI-matrices

Let us denote by \mathbb{K}^σ the class of countable elements of \mathbb{K}

Theorem

Let L be an RFSI-complete logic and $\mathbb{K} \subseteq \textbf{MOD}^*(L)$. Then:

• If $MOD^*(L)_{RFSI}^{\sigma} \subseteq IS^*(\mathbb{K}^+)$, then L has the SKC

If L is finitary protoalgebraic logic with a lattice disjunction \lor , then the reverse implication also holds.

A p-disjunction $\nabla = \{p \lor q\}$ is *lattice disjunction* in a protoalgebraic logic L $(\lor 1) \qquad \vdash_{L} \varphi \Rightarrow \varphi \lor \psi$ with a weak p-implication \Rightarrow if: $(\lor 2) \qquad \vdash_{L} \psi \Rightarrow \varphi \lor \psi$ $(\lor 3) \qquad \varphi \Rightarrow \chi, \psi \Rightarrow \chi \vdash_{L} \varphi \lor \psi \Rightarrow \chi$

Back to our motivating example

Theorem

 L_{∞} has the $S[0,1]_{L}C$.

As \mathfrak{L}_{∞} has the IPEP, it is RFSI-complete and so we only need to show:

 $\mathbf{MOD}^*(\mathbb{L}_{\infty})^{\sigma}_{\mathrm{RFSI}} \subseteq \mathbf{IS}^*([0,1]_{\mathbb{L}}) = \mathbf{IS}([0,1]_{\mathbb{L}})$

We know that $\boldsymbol{MOD}^*(\boldsymbol{k}_\infty)_{RFSI}^{\sigma} = \boldsymbol{MOD}_{\Rightarrow}^{\ell}(\boldsymbol{k}_\infty)^{\sigma}$

Fact: If $\mathbf{A} \in \mathbf{MOD}_{\Rightarrow}^{\ell}(\mathbb{L}_{\infty})^{\sigma}$, then A is simple

Back to our motivating example

Theorem

 L_{∞} has the $S[0,1]_{L}C$.

As \mathfrak{L}_{∞} has the IPEP, it is RFSI-complete and so we only need to show:

 $\mathbf{MOD}^*(\mathbb{L}_{\infty})^{\sigma}_{\mathrm{RFSI}} \subseteq \mathbf{IS}^*([0,1]_{\mathbb{L}}) = \mathbf{IS}([0,1]_{\mathbb{L}})$

We know that $MOD^*(\underline{k}_{\infty})^{\sigma}_{RFSI} = MOD^{\ell}_{\Rightarrow}(\underline{k}_{\infty})^{\sigma}$

Fact: If $\mathbf{A} \in \mathbf{MOD}_{\Rightarrow}^{\ell}(\mathbb{L}_{\infty})^{\sigma}$, then A is simple

Proof of the fact: we know that if $\neg x \le x \& : :$ &*x* for each *n*, then x = 1

Take x < 1, then $\neg x > x$ $\& .^n$. & x for some n and so 0 = x $\& \neg x \ge x$ $\& \overset{n+1}{\ldots} \& x$

Back to our motivating example

Theorem

 L_{∞} has the S[0, 1]_LC.

As \mathfrak{L}_{∞} has the IPEP, it is RFSI-complete and so we only need to show:

 $\mathbf{MOD}^*(\mathbb{L}_{\infty})^{\sigma}_{\mathrm{RFSI}} \subseteq \mathbf{IS}^*([0,1]_{\mathbb{L}}) = \mathbf{IS}([0,1]_{\mathbb{L}})$

We know that $MOD^*(\underline{k}_{\infty})^{\sigma}_{RFSI} = MOD^{\ell}_{\Rightarrow}(\underline{k}_{\infty})^{\sigma}$

Fact: If $\mathbf{A} \in \mathbf{MOD}_{\Rightarrow}^{\ell}(\mathbb{L}_{\infty})^{\sigma}$, then A is simple

Algebraic fact: simple MV-chains are embeddable into [0,1]_Ł

References

- Petr Cintula, C.N. *Implicational (Semilinear) Logics I: A New Hierarchy.* Archive for Mathematical Logic 49:417–446, 2010.
- Petr Cintula, C.N. Implicational (Semilinear) Logics II: Additional Connectives and Characterizations of Semilinearity. Archive for Mathematical Logic 55:353–372, 2016.
- Petr Cintula, C.N. *Implicational (Semilinear) Logics III: Completeness properties.* Submitted to Archive for Mathematical Logic
- Petr Cintula, C.N. The Proof by Cases Property and its Variants in Structural Consequence Relations. Studia Logica 101:713–747, 2013
- T. Lávička, C.N. A New Hierarchy of Infinitary Logics in Abstract Algebraic Logic. Studia Logica 105(3):521–551, 2017.
- M. Bílková, Petr Cintula, T. Lávička. *Lindenbaum Lemma for Infinitary Logics.* A draft.