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Classical first-order logic and its completeness

CFOL: theory of quantification built over classical propositional logic

Formalized (in its present form) by Hilbert and Ackermann (1928)

`CFOL its Hilbert axiomatization, |=CFOL the semantical consequence

Its completeness proved by Gödel (1929):

Theorem
For every set of first-order formulas Γ ∪ {ϕ}:

Γ `CFOL ϕ if, and only if, Γ |=CFOL ϕ
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Altering CFOL

Over the years CFOL has been altered in many ways:

strengthened: higher-order, more expressive languages

reformulated: e.g. algebraizing using cylindric or polyadic algebras

weakened: changing the propositional part, e.g. to intuitionistic,
substructural, fuzzy

and in arbitrary combinations of the above (and probably in
thousands of other ways I have never seen or even imagined)
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Two aims of this talk

Define: a (natural) first-order variant of arbitrary propositional logic
and prove a variant of Gödel completeness theorem

Demonstrate: the power and usefulness of the resulting theory
using example from formal fuzzy mathematics
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Four questions

1 What will be our formulas?

2 How to design their (general/intended) semantics?

3 Given a semantic, how to define its consequence relation?

4 And finally, how to axiomatize it?

Thus in particular obtaining the Gödel completeness theorem . . .

The first part of the talk is based on the paper:

PC, C. Noguera: A Henkin-style proof of completeness for
first-order algebraizable logics. J. of Symbolic Logic, 2015

but presented from the first principles and semantics-first
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The first part of the talk is based on the paper:

PC, C. Noguera: A Henkin-style proof of completeness for
first-order algebraizable logics. J. of Symbolic Logic, 2015

but presented from the first principles and semantics-first

Petr Cintula (ICS CAS) Lattice-Valued Predicate Logics Congreso Dr. Antonio Monteiro 7 / 39



Four questions

1 What will be our formulas?

2 How to design their (general/intended) semantics?

3 Given a semantic, how to define its consequence relation?

4 And finally, how to axiomatize it?

Thus in particular obtaining the Gödel completeness theorem . . .
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What will be our formulas? (DC 1)

A language is a quadruple L = 〈C,P,F, ar〉
connectives, predicate and function symbols with their arities

And we build sets of L-terms Term and L-formulas Form as usual,
i.e., as the least sets such that:

object variables ObjVar are terms

if t1, . . . , tn ∈ Term, F ∈ F, ar(F) = n, then F(t1, . . . , tn) ∈ Term

if t1, . . . , tn ∈ Term, P ∈ P, ar(P) = n, then P(t1, . . . , tn) ∈ Form

if ϕ1, . . . , ϕn ∈ Form, c ∈ C, ar(c) = n, then c(ϕ1, . . . , ϕn) ∈ Form

if ϕ ∈ Form and x ∈ ObjVar, then (∀x)ϕ ∈ Form and (∃x)ϕ ∈ Form
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More on languages

There is a well-known difference between the role of connectives and
other syntactical objects.

Let us fix, for this talk, a set of connectives C and their arities

Thus we can speak about predicate languages P = 〈P,F, ar〉

We also consider a special language: the propositional one

L = 〈C, {pi | i ∈ N}, ∅, ar〉, where ar(pi) = 0

Note that L can be seen as an algebraic type
i.e., a classical predicate language 〈∅,C, ar〉
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How to design the semantics?

We follow the stream of research:

1961 Mostowski: interpretation of existential (resp. universal)
quantifiers as suprema (resp. infima)

1963 Rasiowa and Sikorski: first-order intuitionistic logic

1969 Horn: first-order Gödel–Dummett logic

1974 Rasiowa: first-order implicative logics

1992 Takeuti, Titani: first-order Gödel–Dummett logic with
additional connectives

1998 Hájek: first-order axiomatic extensions of HL
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Ordered algebra based semantics (DC 2,3)

We want our semantics to assign some ‘grades’ from a set G to formulas:

‖ · ‖ : Form→ G

Let us also fix the ‘interpretation’ of connectives, i.e., operations

cG : Gn → G for each n-ary c ∈ C

Then we simply set (DC 2)

‖c(ϕ1, . . . , ϕn)‖ = cG(‖ϕ1‖, . . . , ‖ϕn‖)

The classical structure G = 〈G, 〈cG〉c∈C〉 is then an algebra of type L

Finally, let us assume that G is partially ordered (DC3)
some grades are ‘better’ than others

Petr Cintula (ICS CAS) Lattice-Valued Predicate Logics Congreso Dr. Antonio Monteiro 11 / 39



Ordered algebra based semantics (DC 2,3)

We want our semantics to assign some ‘grades’ from a set G to formulas:

‖ · ‖ : Form→ G

Let us also fix the ‘interpretation’ of connectives, i.e., operations

cG : Gn → G for each n-ary c ∈ C

Then we simply set (DC 2)

‖c(ϕ1, . . . , ϕn)‖ = cG(‖ϕ1‖, . . . , ‖ϕn‖)

The classical structure G = 〈G, 〈cG〉c∈C〉 is then an algebra of type L

Finally, let us assume that G is partially ordered (DC3)
some grades are ‘better’ than others

Petr Cintula (ICS CAS) Lattice-Valued Predicate Logics Congreso Dr. Antonio Monteiro 11 / 39



Generalized semantics (DC 3′, 4)

Consider a ‘normal’ predicate language: P = 〈P,F, ar〉 DC1

Consider an algebra G of type L with a partial order ≤ DC2, DC3

G-structureM for P is tupleM = 〈M, 〈fM〉f∈F , 〈PM〉P∈P〉 where

fM : Mn → M for each n-ary f ∈ F
PM : Mn → G for each n-ary P ∈ P

M-evaluation v: a mapping v: ObjVar→ M; extended to all terms/fle:

‖f (t1, . . . , tn)‖Mv = fM(‖t1‖Mv , . . . , ‖tn‖
M
v ) for f ∈ F

‖P(t1, . . . , tn)‖Mv = PM(‖t1‖Mv , . . . , ‖tn‖
M
v ) for P ∈ P

‖c(ϕ1, . . . , ϕn)‖Mv = cG(‖ϕ1‖
M
v , . . . , ‖ϕn‖

M
v ) for c ∈ C

‖(∀x)ϕ(x)‖Mv = inf≤{‖ϕ(x)‖Mv[x:m] | m ∈ M} DC4

‖(∃x)ϕ(x)‖Mv = sup≤{‖ϕ(x)‖Mv[x:m] | m ∈ M} DC4
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Generalized semantics (DC 3′, 4)

Consider a ‘normal’ predicate language: P = 〈P,F, ar〉 DC1
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Example
Take the standard MV-algebra [0, 1]Ł = 〈[0, 1],&,→,∧,∨, 0, 1〉 where

x & y = max{x + y − 1, 0} x→ y = min{1 − x + y, 1}

x ∧ y = min{x, y} x ∨ y = max{x, y}

Consider a [0, 1]Ł-structure with domain M = {1, . . . , 6} and binary
predicate

s

P: ‘x likes y’:

and =: ‘x equals y’:

PM 1 2 3 4 5 6
1 1.0 1.0 0.5 0.4 0.3 0.0
2 0.8 1.0 0.4 0.4 0.3 0.0
3 0.7 0.9 1.0 0.8 0.7 0.4
4 0.9 1.0 0.7 1.0 0.9 0.6
5 0.6 0.8 0.8 0.7 1.0 0.7
6 0.3 0.5 0.6 0.4 0.7 1.0

Narciss(R) ≡df (∀x)Rxx ‖Narciss(P)‖M = 1
Sym(R) ≡df (∀x, y)(Rxy→ Ryx) ‖Sym(P)‖M = 0.4

Trans(R) ≡df (∀x, y, z)(Rxy & Ryz→ Rxz) ‖Trans(P)‖M = 1
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ELS(R) ≡df (∀x)(∃y)(Rxy) ‖ELS(P)‖M = 1
EILS(R) ≡df (∀x)(∃y)(Ryx) ‖EILS(P)‖M = 1

ELSE(R) ≡df (∀x)(∃y)(x , y ∧ Rxy) ‖ELSE(P)‖M = 0.7
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How to define the consequence? (DC5)

Definition ((Sentential) consequence relation)
Let G be an L-algebra with lattice reduct.
Let T ∪ {ϕ} be a set of P-formulas.
Then ϕ is a semantical consequence of T w.r.t. G, T |=G ϕ, if

each G-model of T is G-model of ϕ

Assume, from now on, that L contains a nullary connective 1 DC5

M is a G-model of T if for eachM-evaluation v:

‖χ‖Mv is defined for each formula χ and

‖ϕ‖Mv ≥ 1
G

for each formula ϕ ∈ T DC5

1
G

is the least ‘good’ grade
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How to define the consequence? (DC5)

Definition ((Sentential) consequence relation)
Let K be a class of L-algebras with lattice reduct.
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Examples
K logic
{2} classical FOL
(complete) Boolean algebras classical FOL
(complete) Heyting algebras intuitionistic FOL
(complete) SI Heyting algebras intuitionistic FOL + CD
(complete) Heyting chains int. FOL + (ϕ→ ψ) ∨ (ψ→ ϕ) + CD
Gödel algebras int. FOL + (ϕ→ ψ) ∨ (ψ→ ϕ)
(complete) FLew-algebras affine FOL (w/o expon.)
MV-algebras Łukasiewicz FOL

SI Heyting algebras = Heyting algebras with a coatom

CD: (∀x)(χ ∨ ϕ)→ χ ∨ (∀x)ϕ (x not free in χ)

Gödel algebras = variety generated by Heyting chains

MV-algebras = variety generated by [0, 1]Ł

Petr Cintula (ICS CAS) Lattice-Valued Predicate Logics Congreso Dr. Antonio Monteiro 15 / 39



How the propositional logics look like?

Recall propositional language L = 〈C, {pi | i ∈ N}, ∅, ar〉, ar(pi) = 0

Then |=K is a structural consequence relation à la Tarski

, i.e.,

If ϕ ∈ T, then T |=K ϕ (Reflexivity)

If S |=K ψ for each ψ ∈ T and T |=K ϕ, then S |=K ϕ (Cut)

If T |=K ϕ, then σ[T] |=K σ(ϕ) for all substitutions σ (Structurality)

where substitution is any mapping from {pi | i ∈ N} to Form

But |=K need not be finitary, i.e., we do not have

T ` ϕ implies T ′ ` ϕ for some finite T ′ ⊆ T

This is the case e.g. for K = {[0, 1]Ł}.

Petr Cintula (ICS CAS) Lattice-Valued Predicate Logics Congreso Dr. Antonio Monteiro 16 / 39



How the propositional logics look like?

Recall propositional language L = 〈C, {pi | i ∈ N}, ∅, ar〉, ar(pi) = 0

Then |=K is a structural consequence relation à la Tarski, i.e.,
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We want propositional logics to be a bit ‘better’ (DC6)

Assume, from now on, that there is a binary operation→ in L st: DC6

x→G y ≥ 1
G

iff x ≤ y for each G
y is ‘better’ than x IFF x→G y is ‘good’

Then |=K is algebraically implicative à la C and Noguera
and, if finitary, algebraizable logic à la Blok and Pigozzi

,
i.e., we will always have:

|=K ϕ→ ϕ ϕ, ϕ→ ψ |=K ψ ϕ→ ψ, ψ→ χ |=K ϕ→ χ

ϕ |=K 1→ ϕ 1→ ϕ |=K ϕ

|=K ϕ ∧ ψ→ ϕ |=K ϕ ∧ ψ→ ψ χ→ ϕ, χ→ ψ |=K χ→ ϕ ∧ ψ

|=K ϕ→ ϕ ∨ ψ |=K ψ→ ϕ ∨ ψ ϕ→ χ, ψ→ χ |=K ϕ ∨ ψ→ χ

and for each n-ary c ∈ C, formulas ϕ, ψ, χ1, . . . , χn, and each i < n:

ϕ→ ψ, ψ→ ϕ |=K c(χ1, . . . , χi, ϕ, . . . , χn)↔ c(χ1, . . . , χi, ψ, . . . , χn)
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ϕ |=K 1→ ϕ 1→ ϕ |=K ϕ

|=K ϕ ∧ ψ→ ϕ |=K ϕ ∧ ψ→ ψ χ→ ϕ, χ→ ψ |=K χ→ ϕ ∧ ψ

|=K ϕ→ ϕ ∨ ψ |=K ψ→ ϕ ∨ ψ ϕ→ χ, ψ→ χ |=K ϕ ∨ ψ→ χ

and for each n-ary c ∈ C, formulas ϕ, ψ, χ1, . . . , χn, and each i < n:

ϕ→ ψ, ψ→ ϕ |=K c(χ1, . . . , χi, ϕ, . . . , χn)↔ c(χ1, . . . , χi, ψ, . . . , χn)
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How to axiomatize |=K?

Lets us first restrict to propositional languages

If |=K is finitary logic, than

Q(K) is its equivalent algebraic semantics

|=K is axiomatized ‘using’ the quasiidentities axiomatizing Q(K)
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1st axiomatizability result

Theorem (PC, C. Noguera. JSL 2015)
Let K be a quasivariety of L-algebras satisfying DC3’, DC4, DC5
and AX an arbitrary axiomatization of the propositional logic of K.

Then the following are equivalent:

T |=K ϕ

there is a proof of ϕ from T in the axiomatic system:
(P) first-order substitutions of axioms and rules of AX

(∀1) ` (∀x)ϕ(x,~z)→ ϕ(t,~z) t substitutable for x in ϕ

(∃1) ` ϕ(t,~z)→ (∃x)ϕ(x,~z) t substitutable for x in ϕ

(∀2) χ→ ϕ ` χ→ (∀x)ϕ x not free in χ

(∃2) ϕ→ χ ` (∃x)ϕ→ χ x not free in χ
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Why only for such big Ks?
Especially if we know that for finitary |=K and propositional languages:

|=K = |=Q(K)

Consider K being the class of Heyting chains:

Then ϕ ∨ ψ |=K ((∀x)ϕ) ∨ ψ but ϕ ∨ ψ 6|=Q(K) ((∀x)ϕ) ∨ ψ

Other example: the set {ϕ | |=[0,1]Ł ϕ} is coNP-complete for
propositional languages but Π2-complete in general

while {ϕ | |=Q([0,1]Ł) ϕ} is Σ1-complete

But at least we will have soundness:

|=K ⊇ |=Q(K) = `
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When can we axiomatize a logic based on ‘smaller’
class? (let us restrict to countable predicate languages)

Theorem
Let K be a class of L-algebras and for each countable A ∈ Q(K) there is a
σ-embedding of A into some B ∈ K. Then

|=K = |=Q(K)

This condition is not necessary, only sufficient.

A function f : A→ B is a σ-embedding if:

f is one-one

f (cA(a1, . . . , an)) = cB(f (a1), . . . , f (an)) for each n-ary c ∈ C

for each X ⊆ A, if inf≤A X exists, then f (inf≤A X) = inf≤B f [A].

for each X ⊆ A, if sup≤A X exists, then f (sup≤A X) = sup≤B f [A].
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2nd axiomatizability result
Theorem (PC, C. Noguera. JSL 2015)
Let K′ be a quasivariety of L-algebras satisfying DC3’, DC4, DC5
such that K′ = Q(K), where K is the class of all chains in K′

and AX an arbitrary axiomatization of the propositional logic of K.

Then the following are equivalent:

T |=K ϕ

there is a proof of ϕ from T in the axiomatic system:
(P) first-order substitutions of axioms and rules of AX

(∀1) ` (∀x)ϕ(x,~z)→ ϕ(t,~z) t substitutable for x in ϕ

(∃1) ` ϕ(t,~z)→ (∃x)ϕ(x,~z) t substitutable for x in ϕ

(∀2) χ→ ϕ ` χ→ (∀x)ϕ x not free in χ

(∃2) ϕ→ χ ` (∃x)ϕ→ χ x not free in χ

(∀2)∨ (χ→ ϕ) ∨ ψ ` (χ→ (∀x)ϕ) ∨ ψ x not free in χ and ψ

(∃2)∨ (ϕ→ χ) ∨ ψ ` ((∃x)ϕ→ χ) ∨ ψ x not free in χ and ψ
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2nd axiomatizability result
Theorem (PC, C. Noguera. JSL 2015)
Let L be a semilinear finitary alg. impl. logic with axiomatization AX,
such that its equivalent algebraic semantics K′ satisfies DC3’, DC4, DC5
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When can we axiomatize a logic based on a ‘smaller’
class of chains? (let us restrict to countable predicate languages)

Theorem
Let K be a class of L-chains and for each countable chain A ∈ Q(K) there
is a σ-embedding of A into some B ∈ K. Then

|=K = |=Q(K)

Again, this condition is not necessary, only sufficient.
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A summary of this section
We have designed ‘lattice-valued predicate logics’ based on design
choices:

DC1 the syntax is almost classical; we only consider an arbitrary set L of
propositional connectives

DC2 connectives have truth-functional interpretations

DC3′ some grades are better than others and for each two grades there is
the best (worst) grade worse (better) than both of them ∧,∨ ∈ L

DC4 quantifiers are interpreted using infima and suprema over the set of
instances of the formulas quantified

DC5 some grades are ‘good’; the logic/consequence is the transition of
‘goodness’; and there is the least ‘good’ grade 1 ∈ L

DC6 the order of grades and the set of good grades are mutually definable
using implication → ∈ L

We have axiomatized, in some cases, the resulting logics
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Recall our example
Take the standard MV-algebra [0, 1]Ł = 〈[0, 1],&,→,∧,∨, 0, 1〉 where

x & y = max{x + y − 1, 0} x→ y = min{1 − x + y, 1}

x ∧ y = min{x, y} x ∨ y = max{x, y}

Consider a [0, 1]Ł-structure with domain M = {1, . . . , 6} and binary
predicate P: ‘x likes y’:

PM 1 2 3 4 5 6
1 1.0 1.0 0.5 0.4 0.3 0.0
2 0.8 1.0 0.4 0.4 0.3 0.0
3 0.7 0.9 1.0 0.8 0.7 0.4
4 0.9 1.0 0.7 1.0 0.9 0.6
5 0.6 0.8 0.8 0.7 1.0 0.7
6 0.3 0.5 0.6 0.4 0.7 1.0

Refl(R) ≡df (∀x)Rxx ‖Refl(P)‖M = 1
Sym(R) ≡df (∀x, y)(Rxy→ Ryx) ‖Sym(P)‖M = 0.4

Trans(R) ≡df (∀x, y, z)(Rxy & Ryz→ Rxz) ‖Trans(P)‖M = 1
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x & y = max{x + y − 1, 0} x→ y = min{1 − x + y, 1}

x ∧ y = min{x, y} x ∨ y = max{x, y}

Consider a [0, 1]Ł-structure with domain M = {1, . . . , 6} and binary
predicate P: ‘x likes y’:

PM 1 2 3 4 5 6
1 1.00 1.00 0.56 0.40 0.30 0.00
2 0.87 1.00 0.33 0.44 0.26 0.02
3 0.67 0.92 0.93 0.87 0.70 0.39
4 0.93 1.00 0.64 1.00 0.97 0.67
5 0.52 0.79 0.82 0.71 1.00 0.59
6 0.27 0.50 0.61 0.41 0.72 1.00

Refl(R) ≡df (∀x)Rxx ‖Refl(P)‖M = 0.93
Sym(R) ≡df (∀x, y)(Rxy→ Ryx) ‖Sym(P)‖M = 0.41

Trans(R) ≡df (∀x, y, z)(Rxy & Ryz→ Rxz) ‖Trans(P)‖M = 0.93
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What we want to study?

Fuzzy equivalence relation a.k.a. similarity
Refl(R) ≡df (∀x)Rxx
Sym(R) ≡df (∀x, y)(Rxy→ Ryx)

Trans(R) ≡df (∀x, y, z)(Rxy & Ryz→ Rxz)
Sim(R) ≡df Refl(R) & Sym(R) & Trans(R)

We need a unary connective 4 interpreted as 41 = 1 and 4x = 0 for x < 1

Fuzzy partitions
Cover(A) ≡df (∀x)(∃A ∈ A)4(x ∈ A)

Disj(A) ≡df (∀A,B ∈ A)((∃x)(x ∈ A & x ∈ B)→ A ⊆ B)
Crisp(A) ≡df (∀A)4(A ∈ A ∨ ¬(A ∈ A))

NormM(A) ≡df (∀A ∈ A)(∃x)4(x ∈ A)
Part(A) ≡df Crisp(A) & NormM(A) & Cover(A) & Disj(A)

This part of the talk is based on: L. Běhounek, U. Bodenhofer, PC: Relations in
Fuzzy Class Theory. Fuzzy Sets and Systems, 2008
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Setting the stage—language

Consider three-sorted predicate language with sorts for

O objects

C classes of objects

C classes of classes of objects

binary predicates

∈ ⊆ O × C and ∈ ⊆ C × C

= ⊆ O × O and = ⊆ C × C and = ⊆ C × C

and terms:

〈·, ·〉 : O2 → O, we write Rxy for ‘〈x, y〉 ∈ X’

{x | ϕ} gives a class and {X | ϕ} ∈ C a class of classes

We shall also use defined binary predicate:

A ⊆ B ≡df (∀x)(x ∈ A→ x ∈ B)
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Setting the stage—models

Intended models:

Object variables range over a set (universe) U

Class variables range over [0, 1]U

Class-class variables range over [0, 1][0,1]U

‘General’ models for an MV-chain A:

Object variables range over a set (universe) U

Class variables range over a subset of AU

Class-class variables range over a subset of AAU
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Setting the stage—axiomatization?

W.r.t. intended models: not a nice one (it contains second-order logic)

W.r.t. general models: yes (due to the completeness theorem)

But even soundness w.r.t. intended models is very usefull

Petr Cintula (ICS CAS) Lattice-Valued Predicate Logics Congreso Dr. Antonio Monteiro 30 / 39



Setting the stage—axiomatization

First-order axioms: those of |=K where K is the class all MV-chains with 4

Equality axioms: as usual plus (∀x, y)(4(x = y)↔ x = y)

Additional axioms:

Comprehension axioms:

(∀y)(y ∈ {x | ϕ(x)} ↔ ϕ(y)) and (∀Y)(Y ∈ {X | ϕ(X)} ↔ ϕ(Y))

Extensionality:

(∀x)4(x ∈ A↔ x ∈ B)→ A = B

(∀X)4(X ∈ A ↔ X ∈ B)→ A = B

Axioms for tuples: tuples equal iff all components equal, etc.
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From similarities to partitions
Definitions

[x]R =df {y | Ryx}

V/R =df {A | (∃x)(A = [x]R)}

Results

Crisp(V/R)

4Refl(R)→ Cover(V/R) & NormM(V/R) Refl(R)→ (∀x)(x ∈ [x]R)

Trans2(R) & Sym(R)→ Disj(V/R)

Trans(R)→ (∀x, y)(Rxy→ [x]R ⊆ [y]R)
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4Refl(R)→ Cover(V/R) & NormM(V/R) Refl(R)→ (∀x)(x ∈ [x]R)

Trans2(R) & Sym(R)→ Disj(V/R) Trans(R)→ (∀x, y)(Rxy→ [x]R ⊆ [y]R)

1. Rzx & Rxy→ Rzy Trans(R) and (∀1)

2. Rxy→ (Rzx→ Rzy) 1., residuation, MP

3. Rxy→ (z ∈ [x]R → z ∈ [y]R) 2. and comprehension axioms

4. Rxy→ [x]R ⊆ [y]R 3. and (∀2)

5. Trans(R)→ (Rxy→ [x]R ⊆ [y]R) 4. and deduction theorem

6. Trans(R)→ (∀x, y)(Rxy→ [x]R ⊆ [y]R) 5. and (∀2)
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Results

Crisp(V/R)

4Refl(R)→ Cover(V/R) & NormM(V/R) Refl(R)→ (∀x)(x ∈ [x]R)

Trans2(R) & Sym(R)→ Disj(V/R) Trans(R)→ (∀x, y)(Rxy→ [x]R ⊆ [y]R)

1. Rxy & Rxz→ Ryz Trans(R),Sym(R), and (∀1)

2. x ∈ [y]R & x ∈ [z]R → Ryz 1. and comprehension axioms

3. x ∈ [y]R & x ∈ [z]R → [y]R ⊆ [z]R 2. and Trans(R)

4. (∃x)(x ∈ [y]R & x ∈ [z]R)→ [y]R ⊆ [z]R 3. and (∃2)

5. Trans2(R) & Sym(R)→ ((∃x)(x ∈ [y]R & x ∈ [z]R)→ [y]R ⊆ [z]R) 4. and DT

6. Trans2(R) & Sym(R)→ Disj(V/R) 5., (∀2), and . . .
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From similarities to partitions
Definitions

[x]R =df {y | Ryx}

V/R =df {A | (∃x)(A = [x]R)}

Results

Crisp(V/R)

4Refl(R)→ Cover(V/R) & NormM(V/R) Refl(R)→ (∀x)(x ∈ [x]R)

Trans2(R) & Sym(R)→ Disj(V/R) Trans(R)→ (∀x, y)(Rxy→ [x]R ⊆ [y]R)

So together we proved:

Trans2(R) & Sym(R) & 4Refl(R)→ Part(V/R)

4Sim(R)→ 4Part(V/R)
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Semantical content

Trans2(R) & Sym(R)→ Disj(V/R)

Thus for fuzzy relation R : U2 → [0, 1] st. ‖Trans(R)‖ = ‖Sym(R)‖ = 0.9:

0.7 ≤ ‖Disj(V/R)‖

This says that:

0.7 ≤ inf
A,B∈V/R

(sup
z∈U

(z ∈ A & z ∈ B)→ inf
z∈U

(z ∈ A→ z ∈ B))

where

x & y = max{x + y − 1, 0} x→ y = min{1 − x + y, 1}
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From partitions to similarities

Definition

RA =df {〈x, y〉 | (∃A ∈ A)(x ∈ A & y ∈ A)}

Results

Sym(RA)

Crisp(A) & Cover(A)→ 4Refl(RA)

Disj(A)→ Trans(RA)

Petr Cintula (ICS CAS) Lattice-Valued Predicate Logics Congreso Dr. Antonio Monteiro 34 / 39



From partitions to similarities

Definition

RA =df {〈x, y〉 | (∃A ∈ A)(x ∈ A & y ∈ A)}

Results

Sym(RA)

Crisp(A) & Cover(A)→ 4Refl(RA)

Disj(A)→ Trans(RA)

1. (y ∈ X & y ∈ Y)→ X ⊆ Y Disj (X), (∀1), and (∃1)

2. (∃X ∈ X)(x ∈ X & y ∈ X) RXxy

3. (∃Y ∈ X)(y ∈ Y & z ∈ Y) RXyz

4. (∃X,Y ∈ X)(x ∈ X & y ∈ X & y ∈ Y & z ∈ Y) 2., 3., and . . .

5. (∃X,Y ∈ X)(x ∈ X & X ⊆ Y & z ∈ Y) 1., 4., and . . .

6. (∃X,Y ∈ X)(x ∈ Y & z ∈ Y) 5. and . . .
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From partitions to similarities

Definition

RA =df {〈x, y〉 | (∃A ∈ A)(x ∈ A & y ∈ A)}

Results

Sym(RA)

Crisp(A) & Cover(A)→ 4Refl(RA)

Disj(A)→ Trans(RA)

So together we proved:

Part(A)→ 4Sym(RA) & 4Refl(RA) & Trans(RA)

Part(A)→ Sim(RA)

4Part(A)→ 4Sim(RA)
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There and back again . . .

Results
Sim(R)→ (RV/R ≈ R)

4Part(A)→ V/RA = A

Proof of R ⊆ RV/R:

1. Rxy

2. [y]R = [y]R & x ∈ [y]R & y ∈ [y]R Refl(R)

3. (∃z)([z]R = [z]R & x ∈ [z]R & y ∈ [z]R)

4. (∃Z)(∃z)([z]R = Z & x ∈ Z & y ∈ Z)

5. (∃Z)((∃z)([z]R = Z) & x ∈ Z & y ∈ Z)

6. (∃Z ∈ V/R)(x ∈ Z & y ∈ Z)

7. RV/R xy
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3 Formal Fuzzy Mathematics

4 What’s next?
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Future work: the ‘logical’ part

Extending the scope of our results
Generalizing other usual classical results

I Developing model-theory of our structures
I Studying the usual strengthenings of classical FO

Studying genuinely ‘non-classical’ aspects of our approach:
I Safe structures
I Unusual forms of Skolemization, Herbrand theorem etc.
I Witnessed structures
I Generalized quantifiers

Exploring connections to other approaches to non-classical FOL:
I Those close in spirit to ours; e.g. Ono’s treatment of first-order

substructural logics
I Those based on some kind of Kripke semantics
I Those based on polyadic and cylindric algebras
I Categorial approaches
I Game-theoretic semantics
I Continuous model theory
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Future work: the ‘fuzzy mathematics’ part

?

http://www.cs.cas.cz/fct

Petr Cintula (ICS CAS) Lattice-Valued Predicate Logics Congreso Dr. Antonio Monteiro 38 / 39

http://www.cs.cas.cz/fct


Future work: the ‘fuzzy mathematics’ part

?
http://www.cs.cas.cz/fct

Petr Cintula (ICS CAS) Lattice-Valued Predicate Logics Congreso Dr. Antonio Monteiro 38 / 39

http://www.cs.cas.cz/fct


Future work: The big picture

∞

Find a ‘market’ for all this work
not only in mathematics

but also in
computer science, linguistic, philosophy, etc.
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