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Residuated lattices

An integral and commutative residuated lattice is an algebra

A = 〈A; ∗,→,∨,∧,>〉

such that

〈A; ∗,>〉 is a commutative monoid,
L(A) = 〈A;∨,∧,>〉 is a lattice with greatest element >,
the following residuation condition holds:

x ∗ y ≤ z iff x ≤ y → z (1)
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Bounded residuated lattices

A bounded residuated lattice is an algebra

A = 〈A, ∗,→,∨,∧,>,⊥〉

such that 〈A, ∗,→,∨,∧,>〉 is a residuated lattice, and ⊥ is the
smallest element of the lattice L(A).
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Famous bounded residuated lattices

Boolean algebras
Heyting algebras
MV-algebras
BL-algebras
MTL-algebras
NM-algebras
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Stone lattices (algebras)

A Stone lattice is an algebra

S = 〈S;∨,∧,¬,>,⊥〉

such that

L(S) = 〈S;∨,∧,>,⊥〉 is a bounded distributive lattice
x ∧ ¬x = ⊥
¬x ∨ ¬¬x = >
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Stone lattices

A distributive Stonean residuated lattice is a residuated lattice
A whose lattice reduct L(A) is a Stone lattice.
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Stonean residuated lattices

Stonean residuated lattices are bounded residuated lattices
satisfying

¬x ∨ ¬¬x = >.
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Boolean skeleton

Let A be a bounded residuated lattice.

B(A) = { complemented elements of A}

= {x ∈ A : there exists z ∈ A such that x∧z = ⊥ and x∨z = >}

B(A) is a subalgebra of A which is a Boolean algebra.
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Importance of the Boolean skeleton in Stonean
residuated lattices

Theorem

The following are equivalent conditions for a bounded
residuated lattice A:

(i) A is Stonean,
(ii) B(A) ⊇ ¬(A) := {¬ x : x ∈ A}.
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Theorem

A is a Stonean residuated lattice if and only if the application:

h : A→ B(A)

x 7→ ¬¬x

is a retraction,

i.e., it satisfies that
1 h is an onto homomorphism
2 and h(h(x)) = h(x) for each x ∈ A.

Manuela Busaniche Stonean residuated lattices



Theorem

A is a Stonean residuated lattice if and only if the application:

h : A→ B(A)

x 7→ ¬¬x

is a retraction, i.e., it satisfies that
1 h is an onto homomorphism
2 and h(h(x)) = h(x) for each x ∈ A.

Manuela Busaniche Stonean residuated lattices



Summary

Distributive Stonean residuated lattices (DSRL) are:

1 The greatest subvariety of bounded distributive residuated
lattices such that ¬¬ is a retraction onto the Boolean
skeleton

2 Bounded distributive residuated lattices that satisfy
¬x ∨ ¬¬x = >.

3 Bounded distributive residuated lattices such that their
lattice reducts are Stone algebras (lattices).

Manuela Busaniche Stonean residuated lattices



Summary

Distributive Stonean residuated lattices (DSRL) are:
1 The greatest subvariety of bounded distributive residuated

lattices such that ¬¬ is a retraction onto the Boolean
skeleton

2 Bounded distributive residuated lattices that satisfy
¬x ∨ ¬¬x = >.

3 Bounded distributive residuated lattices such that their
lattice reducts are Stone algebras (lattices).

Manuela Busaniche Stonean residuated lattices



Summary

Distributive Stonean residuated lattices (DSRL) are:
1 The greatest subvariety of bounded distributive residuated

lattices such that ¬¬ is a retraction onto the Boolean
skeleton

2 Bounded distributive residuated lattices that satisfy
¬x ∨ ¬¬x = >.

3 Bounded distributive residuated lattices such that their
lattice reducts are Stone algebras (lattices).

Manuela Busaniche Stonean residuated lattices



Summary

Distributive Stonean residuated lattices (DSRL) are:
1 The greatest subvariety of bounded distributive residuated

lattices such that ¬¬ is a retraction onto the Boolean
skeleton

2 Bounded distributive residuated lattices that satisfy
¬x ∨ ¬¬x = >.

3 Bounded distributive residuated lattices such that their
lattice reducts are Stone algebras (lattices).

Manuela Busaniche Stonean residuated lattices



Famous distributive Stonean residuated lattices

Boolean algebras
Pseudocomplemented BL-algebras
Product algebras
Gödel algebras
Pseudocomplemented MTL-algebras
Stonean Heyting algebras
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Dense elements

Let A be in DSRL. Since ¬¬ : A→ B(A) is a retraction, the
kernel,

D(A) = {x ∈ A : ¬¬x = >}

is a filter of A.

We will consider

D(A) = (D(A), ∗,→,∨,∧,>)

as an integral distributive residuated lattice.
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How can we use the information of B(A) and of D(A) to
characterize the algebra A?
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Building algebras in DSRL

Let D be an integral distributive residuated lattice and an
element o 6∈ D.

Adjoining the element o as bottom element, then

S(D) = ({o} ∪ D, ∗,→,∨,∧,>,o)

is in DSRL
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D
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S(D)D
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Theorem

Given a distributive residuated lattice D, then
1 S(D) is a Stonean residuated lattice,
2 B(S(D)) = {⊥,>}.
3 D(S(D)) = D
4 Each homomorphism h : D1 → D2 can be extended to a

homomorphism S(h) : S(D1)→ S(D2) by the prescription

S(h)(x) =

{
h(x) if x ∈ D1,

oS(D2) if x = oS(D1).
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Equivalence of categories

The functor
S : RL→ diDSRL

given by
D 7→ S(D) and h 7→ S(h)

establish a categorical equivalence.
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Isomorphic Boolean skeletons and Isomorphic dense
elements

Take D an integral distributive residuated lattice.

Consider

A1 ∼=
∏
N

S(D)

· · ·

B(A1) ∼=
∏
N{⊥,>} and D(A1) ∼=

∏
N D

B(A1) ∼=
∏
N
{⊥,>} and D(A1) ∼=

∏
N

D
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Isomorphic Boolean skeletons and Isomorphic dense
elements

With the same D, consider C =
∏
N D.

Let

A2 ∼= S(C)×
∏
N
{⊥,>}

· · ·

· · ·
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Isomorphic Boolean skeletons and Isomorphic dense
elements

With the same D, consider C =
∏
N D. Let
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A1 � A2.

How can we distinguish these two algebras?
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Let b ∈ B(A1). Then [¬b) ∩ D(A1) ∼=
∏
N D.

· · ·
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Let b ∈ B(A2). Then [¬b) ∩ D(A2) ∼= {>}

· · ·

· · ·
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φA : B(A)→ Fi(D(A))

b 7→ [¬b) ∩ D(A).

φA(b) = {x ∈ D(A) : x ≥ ¬b}.
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Representation of elements

Let A be in DSRL. For each x ∈ A

x = ¬¬x ∗ (¬¬x → x)
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Representation of elements

Let A be in DSRL. For each x ∈ A

x = ¬¬x︸︷︷︸
B(A)

∗ (¬¬x → x)︸ ︷︷ ︸
D(A)
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Consider D a residuated lattice and A ∼= S(D)× S(D).
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Representation of elements

For d ∈ D take
x = (⊥,d) ∈ A.

Thus
(⊥,d) = (⊥,>) ∗ (>,d)

But for any d ′ ∈ D we also have

(⊥,d) = (⊥,>) ∗ (d ′,d)

(>,d) is the unique dense satisfying the representation that
belongs to

φ(⊥,>) = {(d1,d2) ∈ D2 : (d1,d2) ≥ ¬(⊥,>)} =

{(d1,d2) ∈ D2 : (d1,d2) ≥ (>,⊥)}
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The category T

Objects: Triples (B,D, φ) such that:
B is a Boolean algebra,
D is a distributive residuated lattice and
φ is bounded lattice-homomorphism,

φ : B→ Fi(D).
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The category T

Morphisms: Given triples (Bi ,Di , φi), i = 1,2, a morphism is a
pair

(h, k) : (B1,D1, φ1)→ (B2,D2, φ2)

is a pair such that:

1 h : B1 → B2 is a Boolean algebra homomorphism,
2 k : D1 → D2 is a residuated lattice homomorphism, and
3 For all a ∈ B1, k(φ1(a)) ⊆ φ2(h(a)).

Manuela Busaniche Stonean residuated lattices



The category T

Morphisms: Given triples (Bi ,Di , φi), i = 1,2, a morphism is a
pair

(h, k) : (B1,D1, φ1)→ (B2,D2, φ2)

is a pair such that:

1 h : B1 → B2 is a Boolean algebra homomorphism,
2 k : D1 → D2 is a residuated lattice homomorphism, and
3 For all a ∈ B1, k(φ1(a)) ⊆ φ2(h(a)).

Manuela Busaniche Stonean residuated lattices



The functor T

T : DSRL→ T

A 7→ (B(A),D(A), φA)

h : B(A1)→ B(A2)
f : A1 → A2 7→

k : D(A1)→ D(A2)
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We need to prove that T is:
1 faithful
2 full
3 essentially surjective
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Some ideas

That T is faithful follows immediate from the representation of
each element x in A ∈ DSRL by

x = ¬¬x ∗ (¬¬x → x).

Let T(f1) = (h1, k1) be equal to T(f2) = (h2, k2).Then

f1(x) = f1(¬¬x ∗ (¬¬x → x)) = f1(¬¬x) ∗ f1(¬¬x → x) =

h1(¬¬x) ∗ k1(¬¬x → x) = h2(¬¬x) ∗ k2(¬¬x → x) =

= f2(¬¬x) ∗ f2(¬¬x → x) = f2(¬¬x ∗ (¬¬x → x)) = f2(x).
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Some ideas

To see that T is full, given

(h, k) : T(A1)→ T(A2)

we have

h : B(A1)→ B(A2) and k : D(A1)→ D(A2).

We define f : A1 → A2 by

f (x) = h(¬¬x) ∗ k(¬¬x → x)

and we prove that f is a morphism such that T(f ) = (h, k).
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Some ideas

To see that T is essentially surjective (dense), for each triple
(B,D, φ) we need to find an algebra A such that

T(A) = (B(A),D(A), φA) ∼= (B,D, φ)
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Let (B,D, φ).

Take X to be the Stone space of the Boolean
algebra B, and

α : C(X )→ Fi(D)

given by
α(a) = φ(¬a).

Then α is a dual lattice homomorphism, i.e., for each a ⊆ b we
have

α(b) ⊆ α(a).

Moreover, we have

ρa,b : D/α(b)→ D/α(a)

the natural projection
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Thus the system

R = 〈{D/α(a)}a∈C(X), {ρab}a⊆b〉

is a presheaf of residuated lattices.

Because of the categorical equivalence, the system

S = 〈{S(D/α(a))}a∈C(X), {S(ρab)}a⊆b〉

is a presheaf of directly indecomposable Stonean residuated
lattices.

Manuela Busaniche Stonean residuated lattices



Thus the system

R = 〈{D/α(a)}a∈C(X), {ρab}a⊆b〉

is a presheaf of residuated lattices.

Because of the categorical equivalence, the system

S = 〈{S(D/α(a))}a∈C(X), {S(ρab)}a⊆b〉

is a presheaf of directly indecomposable Stonean residuated
lattices.

Manuela Busaniche Stonean residuated lattices



For each x ∈ X ,
Fx =

∨
a∈C(x)

α(a).

Then D/Fx is the inductive limit of the system R and S(D)/Fx is
the inductive limit of the system S.

Since
⋂

x∈X Fx = {>} the algebra D is a subdirect product of
the family

{D/Fx}x∈X .
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Now let
S =

⋃
x∈X

({x} × S(D/Fx)),

and for each x ∈ X ,d ∈ D and a ∈ C(X ) let

d̂(x) = 〈x ,d/Fx〉 â(x) =

{
〈x ,oS(D/Fx )〉 if x ∈ a,
〈x ,>〉 if x ∈ X \ a.

Equipping S with the topology having as basis the sets

{d̂(x) : x ∈ a} and {â(x) : x ∈ a}

and defining π : S → X as the projection in the first coordinate.
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and defining π : S → X as the projection in the first coordinate.

Manuela Busaniche Stonean residuated lattices



The algebra of global sections

Theorem
〈S, π,X 〉 is the sheaf of directly indecomposable Stonean
residuated lattices associated with the presheaf

〈{S(D/α(a))}a∈C(X), {S(ρab)}a⊆b〉.

The continuous global sections of 〈S, π,X 〉, with the operations
defined pointwise, form a Stonean residuated lattice
A = A(〈B,D, φ〉).

T(A) ∼= (B,D, φ).
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Conclusion

The category of distributive Stonean residuated lattices is
equivalent to the category T of triples.
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Work in progress

(joint work with M. Marcos and S. Ugolini) Generalize the
results for a category of distributive residuated lattices with an
MV-retraction.
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