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PROPOSITIONAL ¢

t stands for [0,1]-valued tukasiewicz propositional logic over =, — .
X,Y,Z,... (finite) sets of propositional variables (/languages)

tx set of formulas built from the variables in X

[0, 1]X set of valuations on X (identifiable with [0,1]", n = |X|)

For ¢ € tx, v € [0,1]X:

v(¢) := value of ¢ according to tukasiewicz interpretation of -, — .

Mod(¢) := {v € [0,1]X : v(p) = 1}
Define similarly Mod(T) for a theory T C tx with possibly infinite X.
Fact

fp : [0, 1)X — [0,1], f,(v) = v(@), is continuous for any @; hence,
Mod(T) = m(peTf(p_l(l) is closed in [0, 1)X.

| A

Corollary

(Compactness) if each finite part of a theory T is satisfiable, T is
satisfiable.
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Proof. Mod(T) = Ngc, 7 Mod(F). O
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If X C Y the projection 77 : [0,1]Y — [0,1]%, n(v) = v | X is
continuous.

If p € tx C ty, £z we may speak about Mody (¢), Modz(¢). The
following notions are independent of Y

=g iff Mody(p)=1[0,1]"
¢y iff Mody (@) C Mody (1)

For a theory T Ctx Cty :
TE=vy iff Mody(T)C Mody ()

The completeness theorem says that we may replace above |= with F for a
suitable deductive system F.(T finite in the last case)
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Craig interpolation

X, Y, Z mutually disjoint languages, ¢ € txuy, ¥ € Lxuz.
If = @ — @ then there is 6 € tx such that |= ¢ — 6 and =60 — .

Fo—y
txuyuz
/! AN
Fe—0 txuy txuz 60—
BN VAR
tx
0

It fails in £:

F (pA=p) — (gV —q),

the only interpolant is the constant % not expressible by a formula of £.
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Deductive interpolation

¢ |= ¢ instead of = ¢ — ¢

PEY
txuyuz
/ AN
pEO  txuy txuz OF79
¢ N\ Sy
tx
0

holds in £.
The lack of a classical deduction theorem prevents recovering Craig.

Shown by algebraic means by several people, geometrically by D. Mundici.
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The geometric proof

The sets Mod(¢), ¢ € tx, are exactly the rational polyhedra in [0, 1]X.

Projections of rational polyhedra are rational polyhedra.

Modxyyuz(¢) € Modxuyuz ()

[0’ 1]XUYUZ
v N
[0, 1]XUY O [0, 1]XUZ
Modxyy (¢) "\, /" Modxuz(y)
[0,1%

ﬂMOdXUy ((P) = MOdX (0)

Proof. MOdXUy(§0) - ﬂ_lﬂMOdXUy((p) = ﬁ_lMOd(Q) = MOdXUy(Q).
Modxz(0) € Modxyz(), using the disjointedness cf X, Y, Z.
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Uniform interpolation

This proof yields left uniform (deductive) interpolation: 6 does not depend
on v, it is a left uniform interpolant. Similarly there is a right uniform
interpolation not depending on ¢ because:

Cylindrifications of rational polyhedra are rational polyhedra.

The cylindrification of R C [0,1]XYZ in X is the largest subset C of

[0, 1]X such that C x [0,1]4 C R.

Thus the cylindrification of Modxyz () is the model class of a sentence
0 € Lx, which interpolates.

For each ¢ € txyy thereis ¢, € tx such that ¢ |= ¢, and ¢, |= ¢ for
any ¢ € Lxyz such that ¢ |= . Dually, for each € tx 7z there is * €

tx such that ¢* =¥ and ¢ = ¥* whenever ¢ = .
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Some propositional extensions
Rational Pavelka t: add a constant connective % for each n € w.
Divisible t: add a unary connective %x for each n € w (Gerla).
Riesz L: add a unary connective ax for each a € [0, 1] (Di Nola, Leustean).

Continuous t: add all continuous connectives.

The model classes of these logics:

Mod(¢)
L rational polyhedra
Rational Pavelka L rational polyhedra
Divisible L rational polyhedra
Riesz t polyhedra
Continuous L closed sets

Closed under projections and cylindrification.All satisfy uniform
deductive interpolation.

X.C. () Interpolation / 25



Craig again

Divisible t satisfies Craig Interpolation and it is the smallest extension
doing so (Baaz and Veith 1999). This hinges on:

The family {f(P : ¢ €Divisible L} is closed under propositional
quantification (sup and inf with respect to a variable).

Mod (@) {fo}y  Craig
t rational polyhedra McNz -
Rational Pavelka L rational polyhedra -
Divisible rational polyhedra McNg +
Riesz t polyhedra McNg +
Continuous t closed sets c([r, OO]X) +

A similar fact holds for Riesz £ and Continuous £
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Robinson “s joint consistency

T C T’ theories in £x and £y, respectively, with X C Y.

Definition
T’ is conservative over T if for any ¢ € tx : T' |= @ implies T = ¢.

If Ti C Lx,, i = 1,2, are satisfiable extensions of T C tx,x, with Ty (or
T,) conservative over T then Ty U T, is satisfiable.

If T C Lx is X-complete (maximally satisfiable among theories in £x)
then any satisfiable extension of T is conservative. Hence, the usual
statement of the Robinson s property.

Deductive interpolation implies Robinson’s property.

Both properties are equivalent in any extension of £ satifying compactness

ced negyy!
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Expressing rational approximations in £

For each rational r € (0, 1) there are unary connectives [J} and [J;
definable in £ such that

Of(x)=1iffx>r O, (x)=1iffx<r

r r

This follows from McNaughton's theorem.

More elegantly, [r, 1] and [0, r] are rational polyhedra and thus model sets.

We will write, suggestively,

P<

3=
3=

for O} (¢) and O; (¢).
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FIRST ORDER tUKASIEWICZ tV

The failure of Craig's property lifts to £V with essentially the same
counterexample:

= Ix(Px A =Px) — ¥x(Qx V —Qx).

Warning: the interpolant does not need to be a constant sentence, it may
contain the identity symbol.

Situation for deductive interpolation and Robinson’s property?
e We prove an approximate form of deductive interpolation

e Full Robinson’s property.

This extends to any logic between £V and continuous logic CLY (the
approximate interpolant may be chosen in LV)
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First order tukasiewicz logic

e First order languages: T = {R, ..;f,...,c, ..},
e [0, 1]-valued structures: 2 = (A, R*, ...;f*..;c%, )

R*: A" —[0,1], f*:A" - A *ecA
Lukasiewicz connectives —, —; quantifiers 3, V interpreted as suprema and

infima:
[Fxe(x)]*(b) = sup,ca ¢™(a,b)
[Vx@(x)]*(b) := inf,ca@*(a b).
Terms, evaluated as in classical logic, give rise to functions th: A" — A.
Formulas ¢(x1, ..., xn) give rise to maps ¢% : A" — [0, 1].
Sentences give rise to values ¢* € [0, 1].
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Identity

A distinguished binary predicate ~*: A> — [0, 1] satisfying:

X~ X d(x,x) =0
XRy—yRx d(x,y) =d(y,x)
(xmy—(ymz—xmz) d(x,z) < d(x,y) ©d(y, z)
x~y—(R(x,..) = R(y,.)) |R(x.)=R(y, )| <dxy)
xmy—f(x,.)~f(y ) d(f(x,..),f(y,..)) < d(x,y)

e d(x,y) := —x & y defines a pseudo-metric for which R and f are
1-Lipschitz continuous.

o If we assume that the maximum degree of identity of two elements
imply their true identity, the pseudometric d becomes a metric. We
will assume this is always the case.
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@ The schema x = y — (¢(x,..) <> ¢(y,..)) is not inherited by all
formulas

x~y — (R(x) <> R(y)) does not imply
x~y = (R(x) ©R(x) = R(y) ®R(y))

but
(x = y)? = (R(x) ® R(x) < R(y) ® R(y)).

the congruence axioms for basic predicates and operations imply that for
any formula ¢ or term t of LV there is a constant k such that

(x=y)* = (p(x,.) = @y,.))  [R(x,.) = R(y,.)| < kd(x,y)
(x = y)k — (t(x,..) < t(y,..)) d(f(x,..),f(y,..)) < kd(x,y).

@ Their interpretations become uniformly continuous with a Lipschitz
constant depending on the formula only.
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Ultraproducts

e {A;}ic; a family of [0, 1]-valued structures of type T, U and ultrafilter
over /.

e IT;A;/y ordinary ultraproduct for the algebraic part of the A;.

° For each predicate symbol R € T, including d, the ultraproduct of

(% o), |
(A /0)" 55 [0,1]' /4
Compose with st : [0, 1]’/U —[0,1] :

(ILA/v)" % 10, 1]
(IT;A;i/y)? AN [0, 1] becomes a pseudometric. Divide out by infinitesimals:

Definition. IT;A;/y := (H,‘A,‘/U)/ ~, where
fry~ g/U if and only if d**(f,y, g/y) = 0 iff
{iel:d(f(i),g(i)) <e} € U for all positive e.
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Ultraproduct theorem

Forp € t and f,.. € IL;A;

ﬁ,-A,-/U = olfiu, -] iff {i€l: A s, [f(i),..]} €U for any rational r

Hence,
liel:AEg[f(i),..]} € U implies ILA;/y = ¢[fru, ...

@ Model classes are closed under ultraproducts

@ Projections of model classes are closed under ultraproducts:
A; € K implies (A, Ri) € Mod(T) then
* * *
H,‘(A,’, R,)/U = (H,’A,’/U, R*) S MOd(T), thus IT;A; /U
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Keisler-Shelah

Definition

A =,y B if and only if ¢p* = @B for any sentence ¢

If A = Aforall i€l then A/, :=TI;A;i/y is called a (metric)
ultrapower of A.

tV-equivalent models have isomorphic ultrapowers
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The £V-topology

Let T'; the topology on St;(£V) obtained by taking the classes Mod (),
0 € L;, as a sub-basis of closed classes. This topology

- Is invariant under isomorphism

- Has for closed classes the classes Mod(T) for T CtV-

- If T C p, the reduct map St (£V) — St;(£Y) is continuous.

- It is a regular topology (separation of closed clases and points)
- (St (LY),T7) is compact.

Regularity follows from the fact that rational approximations are
expressible. Assume A € Mod(T) then A [~ ¢ for some ¢ € T, hence
A= ¢, forsome r <1.If r <s <1 then Mod(¢_,)¢ and Mod(¢- )¢
are disjoint open classes containing, respecatively, Mod(T) and {A}.

X.C. () Interpolation / 25



Compactness

Given a topological space, X, {X,'},'E/ C X, x € X, and an ultrafilter U
over |

Definition

{xities —mr x iff {i € I :x; € V} € U, for any open neinghborhood V' of
X.

X is compact if and only if all ultrafilter limits exist for all families in X.

In Xe = (Stz(£Y),T+)

{Aitic —F ILA; /U

Proof. IT;A;/F € Mod(¢)¢ =V implies {i: Aj = ¢, } & Uforr <1
then {i: Aj = ¢ } € Uthen {i: A; £ ¢} € U, thatis
{i CAE V} ev.
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A topological disgression
Define in any space X,
x=y e {x}={y}

x and y belong to the same closed (open) subsets of X. We may form the
quotient space X/ =

If X is regular, the quotient space X,— is Hausdorff (excercise).

If K1 and K, are disjoint compact subsets of a regular topological space X
which can not be separated by a finite intersection of basic closed sets,
then there exist x; € K;, i = 1,2, such that x; = x».

Clearly, = is £V-equivalence in the space (St (£V).T.).
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A separation lemma

Any pair of disjoint PCa-classes K1, Ky of the same signature T are
separable by a sentence 6 € LV, that is,

Ki C Mod(8), K, N Mod(6) = @.

Proof. The K; are compact (being continuous images of compact classes).
If separation is not possible, we obtain by the topological lemma above

A=,y Bwith A€ Ki, B € K.
Utilizing the Keisler-Shelah theorem for LV we obtain:
A~ B with A€ Ki, Be K.

yielding a contradiction.
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Approximate deductive interpolation

If o |= 4 then for any r <1 there is 0, such that ¢ =0, = ..

Proof. If ¢ =1 then ¢ and ¢_, are jointly unsatisfiable. Therefore

Ki = Mod(¢) [ X and Ky = Mod(ip_,) | X are disjoint and thus there is
0, € £V(TNp) such that ¢ =0, and Mod(0,) N Ky = D, thus 6, = ¢,
|

Taking @ = {6, },

If =1 there is a countable theory ® C tV(T(¢) N T(P)) such that
PEOFY

Both versions are equivalent.
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Robinson

Approximate interpolation implies Robinson:

If T; C LV, i = 1,2, are conservative extensions of a theory T C £V¢ s,
then T1 U T, is satisfiable.

Proof. T; U T, is unsatisfiable so is {41, 2} where ¢; is the conjunction
of a finite subset of T;. Then {1, 82>,},<1 is unsatisfiable and by
compactness again 1 = (d2)<, for some r < 1. By approximate
interpolation there is @ C £V, such that é; = © =5 da<,. Then,
T1 s © and T |= O by conservativity; hence, Ty = © = d2<, which
yields unsatisfiability of T,. [J

In fact, both propeties are equivalent in any compact extension of £V
closed under Lukasiewicz connectives.

For the other direction, notice that ¢ = ¢ implies K1 = Mod(¢) | X and
Ky = Mod(yp_,) | X are disjoin for any r < 1. If these classe where not

separable, then we would have A =,y B with A € X7, B € ;. Then
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Questions

e Does sharp deductive interpolation holds in £V? or in continuous logic?
Do proof-theoretical methods could shed any light?

e Does DivLY enjoys Craig interpolation

e Does CLY (continuous logic) enjoys Craig interpolation

(Ben Yaacov has shown that it holds in CL,, and infinitary version of CL)
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THANKS!
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