A categorical equivalence for Nelson algebras

Luiz F. Monteiro - Ignacio Viglizzo

Universidad Nacional del Sur

<ロ> <同> <同> <三> < 回> < 回> < 三>

_∢ ≣ ≯

Kalman's construction

J. Kalman [*Lattices with involution*. Trans. Amer. Math. Soc., 87:485–491, 1958.]

Given a bounded distributive lattice $(L, \land, \lor, 0, 1)$, and an element $a \in L$, let

$$L(a) = \{(x, y) \in L \times L : x \land y \leq a \leq x \lor y\}.$$

|田・ (日) (日)

Operations on L(a):

K1) $(0,1), (1,0) \in L(a)$. K2) $(x_1, x_2) \cup (y_1, y_2) = (x_1 \lor y_1, x_2 \land y_2);$ K3) $(x_1, x_2) \cap (y_1, y_2) = (x_1 \land y_1, x_2 \lor y_2);$ K4) $\sim (x_1, x_2) = (x_2, x_1);$ $(L(a), \cap, \cup, (1, 0))$ is a Kleene algebra.

Vakarelov's construction

Dimiter Vakarelov. Notes on N-lattices and constructive logic with strong negation. Studia Logica, 36(1-2):109-125, 1977. Given a Heyting algebra $(H, \land, \lor, \Rightarrow, 0, 1)$, let V(H) be the set:

$$V(H) = \{(a, b) \in H \times H : a \land b = 0\}.$$

In addition to the operations defined on V(H) by K2)-K4) Vakarelov defines \rightarrow by:

K5) $(x_1, x_2) \rightarrow (y_1, y_2) = (x_1 \Rightarrow y_1, x_1 \land y_2)$, and proves it is a binary operation on V(H), so V(H) is a Nelson algebra.

D. Brignole and M. Fidel

M. Fidel and D. Brignole define in [*Algebraic study of some nonclassical logics using product algebras*. In Proceedings of the First "Dr. Antonio A. R. Monteiro" Congress on Mathematics (Spanish) (Bahía Blanca, 1991), pages 23–38. Univ. Nac. del Sur, Bahía Blanca, 1991.] the following notion:

Definition

A P-De Morgan algebra is a non-empty subset M of $L \times L^*$ such that:

P1) $(0,1), (1,0) \in M$,

P2) If
$$(x_1, x_2) \in M$$
 then $(x_2, x_1) \in M$,

P3) If $(x_1, x_2), (y_1, y_2) \in M$, then $(x_1 \land y_1, x_2 \lor y_2) \in M$,

in which the operations \cap, \cup and \sim are defined by V2)-V4).

Applications

- Andrzej Sendlewski. *Nelson algebras through Heyting ones.* Studia Logica 49 (1990), no. 1, 105–126.
- Luiz Monteiro and I.V, *Construction of Nelson algebras*, IV congreso A. Monteiro, 1997.
- Umberto Rivieccio. *Implicative twist-structures.* Algebra Universalis 71 (2014), no. 2, 155–186.
- Marta Sagastume, Hernán San Martín, *A categorical equivalence motivated by Kalman's construction.* Studia Logica 104 (2016), no. 2, 185–208.
- Juan Manuel Cornejo, Ignacio Viglizzo. *Semi-Nelson algebras*. Order (2017).
- S. Aguzzoli, M. Busaniche, B. Gerla, Miguel Andrés Marcos. *NPc-algebras and Gödel hoops.* Yesterday!

For a given ideal I and a filter F of a bounded distributive lattice $(L, \land, \lor, 0, 1)$, we consider the set:

$$M(L, I, F) = \{(a, b) \in L \times L : a \land b \in I \text{ and } a \lor b \in F\}.$$

<ロ> (日) (日) (日) (日) (日)

For a given ideal I and a filter F of a bounded distributive lattice $(L, \land, \lor, 0, 1)$, we consider the set:

$$M(L, I, F) = \{(a, b) \in L \times L : a \land b \in I \text{ and } a \lor b \in F\}.$$

 $Tw(L, \Delta, \nabla)$

For a given ideal I and a filter F of a bounded distributive lattice $(L, \land, \lor, 0, 1)$, we consider the set:

$$M(L, I, F) = \{(a, b) \in L \times L : a \land b \in I \text{ and } a \lor b \in F\}.$$

$Tw(L, \Delta, \nabla)$

M(L, I, F) with the operations defined by Kalman is a De Morgan algebra.

- 4 回 2 - 4 □ 2 - 4 □

Results about the construction M(L, I, F)

• It is more general than Kalman's:

$$L(a) = M(L, I(a), F(a))$$

• It is less general than the P-De Morgan algebras.

Results about the construction M(L, I, F)

• It is more general than Kalman's:

$$L(a) = M(L, I(a), F(a))$$

• It is less general than the P-De Morgan algebras.

Lemma

M(L, I, F) is a Kleene algebra if and only if for all $i \in I$ and $f \in F$, $i \leq f$ is verified.

Results about the construction M(L, I, F)

• It is more general than Kalman's:

$$L(a) = M(L, I(a), F(a))$$

• It is less general than the P-De Morgan algebras.

Lemma

M(L, I, F) is a Kleene algebra if and only if for all $i \in I$ and $f \in F$, $i \leq f$ is verified.

Lemma

If I_1, I_2 are ideals of L and $I_1 \subseteq I_2$ then $M(L, I_1, F)$ is a subalgebra of $M(L, I_2, F)$. If F_1, F_2 are filters of L and $F_1 \subseteq F_2$ then $M(L, I, F_1)$ is a subalgebra of $M(L, I, F_2)$.

Results about the construction M(L, I, F)

Lemma

If B is a boolean algebra then $M(B, \{0\}, \{1\})$ is a boolean algebra isomorphic to B.

イロン イヨン イヨン イヨン

Results about the construction M(L, I, F)

Lemma

If B is a boolean algebra then $M(B, \{0\}, \{1\})$ is a boolean algebra isomorphic to B.

Lemma

Let H be a Heyting algebra and $(a, b), (c, d) \in M(H, I, F)$. Then $(a, b) \rightarrow (c, d) = (a \Rightarrow c, a \land d) \in M(H, I, F)$ if and only if $(a \Rightarrow c) \lor a \in F$.

イロン イ団 とくほと くほとう

Results about the construction M(L, I, F)

Lemma

If B is a boolean algebra then $M(B, \{0\}, \{1\})$ is a boolean algebra isomorphic to B.

Lemma

Let H be a Heyting algebra and $(a, b), (c, d) \in M(H, I, F)$. Then $(a, b) \rightarrow (c, d) = (a \Rightarrow c, a \land d) \in M(H, I, F)$ if and only if $(a \Rightarrow c) \lor a \in F$.

Lemma

Let H be a Heyting algebra with an ideal I and a filter F such that $\pi_1(M(H, I, F)) = H$. Then K5) defines a binary operation on M(H, I, F) if and only if $Ds(H) = \{y \in H : y = x \lor \neg x\} \subseteq F$.

N(H, F)

Theorem

Let H be a Heyting algebra. Then $(M(H, I, F), \cap, \cup, \rightarrow, \sim, (1, 0))$ is a Nelson algebra if and only if $I = \{0\}$.

N(H, F)

Theorem

Let H be a Heyting algebra. Then $(M(H, I, F), \cap, \cup, \rightarrow, \sim, (1, 0))$ is a Nelson algebra if and only if $I = \{0\}$.

Definition

If H is a Heyting algebra, and F a filter in H,

 $N(H, F) = M(H, \{0\}, F).$

・ロト・(日)・(日)・(日)・(日)・(日)

N(H, F)

Theorem

Let H be a Heyting algebra. Then $(M(H, I, F), \cap, \cup, \rightarrow, \sim, (1, 0))$ is a Nelson algebra if and only if $I = \{0\}$.

Definition

If H is a Heyting algebra, and F a filter in H,

 $N(H, F) = M(H, \{0\}, F).$

V(H) = N(H, H).

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 … のへで

N(H, F)

Theorem

Let $(H, \land, \lor, \Rightarrow, 0, 1)$ be an algebra of type (2, 2, 2, 0, 0). If $(N(H, F), (1, 0), \sim, \cap, \cup, \rightarrow)$ is a Nelson algebra, where the operations are defined by K2)-K5) and $\pi_1(N(H, F)) = H$, then H is a Heyting algebra.

イロン イ部ン イヨン イヨン 三日

N(H,F)

Theorem

Let $(H, \land, \lor, \Rightarrow, 0, 1)$ be an algebra of type (2, 2, 2, 0, 0). If $(N(H, F), (1, 0), \sim, \cap, \cup, \rightarrow)$ is a Nelson algebra, where the operations are defined by K2)-K5) and $\pi_1(N(H, F)) = H$, then H is a Heyting algebra.

Lemma

Let H be a Heyting algebra and S a subalgebra of the Nelson algebra V(H) such that $\pi_1(S) = H$. The filter $F = \{x \in H : x = a \lor b, (a, b) \in S\}$ in H such that S = N(H, F).

The equivalence

Andrzej Sendlewski. *Nelson algebras through Heyting ones.* Studia Logica 49 (1990), no. 1, 105–126.

The equivalence

Given a Nelson algebra A, one can find a Heyting algebra H(A) by finding the quotient through the relation

$$x \cong y \quad iff \quad x \to y = 1 = y \to x,$$

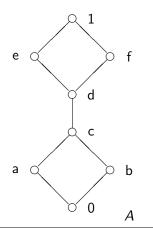
defining $|x| \Rightarrow |y|$ as $|x \rightarrow y|$. There is an injection $h : A \rightarrow V(H(A))$.

$$h(a) = (|a|, |\sim a|).$$

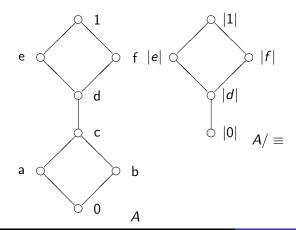
For any Heyting algebra H, H(V(H)) is isomorphic to H. Different Nelson algebras can have the same associated Heyting algebra.

æ

An example

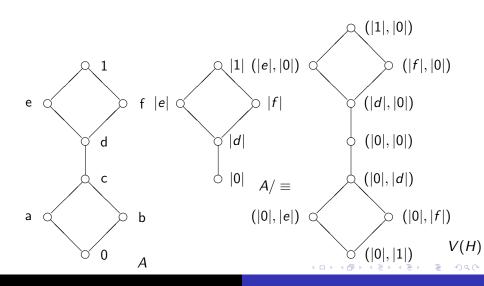


An example



◆□> ◆□> ◆三> ◆三> ● 三 のへの

An example



The equivalence

We define the category **HF**:

- Objects: pairs (H, F), where H is a Heyting algebra and F one of its filters such that Ds_H(H) ⊆ F.
- Morphisms: $f : (H, F) \rightarrow (H', F')$, where $f : H \rightarrow H'$ is a Heyting algebra morphism such that $f(F) \subseteq F'$.

イロト イヨト イヨト イヨト

The equivalence

We define the category **HF**:

- Objects: pairs (H, F), where H is a Heyting algebra and F one of its filters such that Ds_H(H) ⊆ F.
- Morphisms: $f : (H, F) \rightarrow (H', F')$, where $f : H \rightarrow H'$ is a Heyting algebra morphism such that $f(F) \subseteq F'$.

The functor NH: $\textbf{HF} \rightarrow \textbf{N}$ is given by NH(H,F) = N(H,F) and if

$$(H,F) \xrightarrow{f} (H',F')$$

The equivalence

We define the category **HF**:

- Objects: pairs (H, F), where H is a Heyting algebra and F one of its filters such that Ds_H(H) ⊆ F.
- Morphisms: $f : (H, F) \rightarrow (H', F')$, where $f : H \rightarrow H'$ is a Heyting algebra morphism such that $f(F) \subseteq F'$.

The functor NH: $HF \rightarrow N$ is given by NH(H, F) = N(H, F) and if

$$(H,F) \xrightarrow{f} (H',F')$$

$$N(H, F) \xrightarrow{\mathsf{NHf}} N(H', F')$$

The equivalence

We define the category **HF**:

- Objects: pairs (H, F), where H is a Heyting algebra and F one of its filters such that Ds_H(H) ⊆ F.
- Morphisms: $f : (H, F) \rightarrow (H', F')$, where $f : H \rightarrow H'$ is a Heyting algebra morphism such that $f(F) \subseteq F'$.

The functor NH: $HF \rightarrow N$ is given by NH(H, F) = N(H, F) and if

$$(H,F) \xrightarrow{f} (H',F')$$

$$N(H,F) \xrightarrow{\text{NHf}} N(H',F')$$

 $\mathsf{NHf}((\mathsf{x},\mathsf{y})) = (\mathsf{f}(\mathsf{x}),\mathsf{f}(\mathsf{y})).$

The equivalence

Every Nelson algebra A is isomorphic to the subalgebra h(A) of V(H(A)) and it is easy to see that $\pi_1(h(A)) = H(A)$.

・ロン ・四と ・日と ・日と

2

The equivalence

Every Nelson algebra A is isomorphic to the subalgebra h(A) of V(H(A)) and it is easy to see that $\pi_1(h(A)) = H(A)$. By the previous Lemma, there exists a filter E in H(A) such that A is isomorphic to N(H(A), E).

The equivalence

Every Nelson algebra A is isomorphic to the subalgebra h(A) of V(H(A)) and it is easy to see that $\pi_1(h(A)) = H(A)$. By the previous Lemma, there exists a filter E in H(A) such that A is isomorphic to N(H(A), E). The filter is $E = \{|a| \lor | \sim a| : a \in A\}$.

<ロ> (日) (日) (日) (日) (日)

The equivalence

Every Nelson algebra A is isomorphic to the subalgebra h(A) of V(H(A)) and it is easy to see that $\pi_1(h(A)) = H(A)$. By the previous Lemma, there exists a filter E in H(A) such that A is isomorphic to N(H(A), E). The filter is $E = \{|a| \lor | \sim a| : a \in A\}$.

Going in the other direction, given a a Nelson algebra A, let F(A) be the filter $\{|a \lor \sim a| : a \in A\}$. The functor

 $HN: \mathbf{N} \to \mathbf{HF}.$

$$\mathsf{HN}(\mathsf{A}) = (\mathsf{H}(\mathsf{A}),\mathsf{F}(\mathsf{A}))$$

イロト イヨト イヨト イヨト

The equivalence

If $f: A \to A'$ is a Nelson algebra morphism, then for each

$A \xrightarrow{f} A'$

The equivalence

If $f: A \to A'$ is a Nelson algebra morphism, then for each

$$(H(A), F(A)) \xrightarrow{\mathsf{HNf}} (H(A'), F(A'))$$
$$|x| \in H(A), \mathsf{HNf}(|x|) = |\mathsf{f}(x)|.$$

The equivalence

If $f : A \rightarrow A'$ is a Nelson algebra morphism, then for each

$$(H(A), F(A)) \xrightarrow{\mathsf{HNf}} (H(A'), F(A'))$$

 $|x| \in H(A), HNf(|x|) = |f(x)|.$ The functors NH and HN establish the equivalence between **N** and **HF**.

イロト イヨト イヨト イヨト