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elements of F(X) such that for all [, A € F(X) and ¢ € F(X):
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¢ € F(X) such that T 1 ¢.
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» Quotient category QLs whose objects are logics and whose
morphisms are equivalence classes of synonymous morphisms

[f]={g: f<rg}.

10/19



Synonymous morphisms

» If (X1,F1) and (X2, ) are congruential logics and
f,g:(X1,F1) — (X2, F2) flexible translations of logics,

» f are g translations of synonymous.

11/19



Synonymous morphisms

» If (X1,F1) and (X2, ) are congruential logics and
f,g:(X1,F1) — (X2, F2) flexible translations of logics,

» f are g translations of synonymous.

» f<>g if and only if f -} g.

11/19



Synonymous morphisms

» If (X1,F1) and (X2, ) are congruential logics and
f,g:(X1,F1) — (X2, F2) flexible translations of logics,

» f are g translations of synonymous.
» f<>g if and only if f -} g.

» The presentation of classical logics are congruentials.

11/19



Synonymous morphisms

» If (X1,1) and (X2, F2) are congruential logics and
f,g:(X1,F1) — (X2, F2) flexible translations of logics,

» f are g translations of synonymous.
» f<ar=gifand only if f 4+ g.
» The presentation of classical logics are congruentials.

» Any flexible translation between them is a synonymous
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» (X/,1) is a initial object of QLs.
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» X7 such that X7[0] = {c}, £7[2] = {2} and X 7[n] = &
for all 2 # ne N.
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> T fx(y) ¢ if and only if F(I) - (@) for all T < F(X1) and
(;5 S F(Zl)

> fx(,) is the greatest consequence relation such that f is a
flexible translation of logics.

» f not always respect synonymy.

» This is negative because inverse image is used in the
construction of products and equalizers of QLy.
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flexible translation of signatures.

» Let -5 be the supremum of the set R whose elements are the
consequence relation - on F(X1) such that
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Properties of QL

» QLs does not have coproducts.

» The same example serves to see that QLs does not have
coproducts.

» QL¢ has weak coproducts with the coproduct signature.

» If QLs has weak coproducts, it is not with the coproduct

signature.
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» If (X,F) is congruential then is synonymous.

» Category QLS.

» If {(¥;, )} has weak coproduct with the coproduct signature
then it has coproduct.

» Looking for a sufficient condition for existence of weak
coproducts with coproduct signatures.
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THANKS!



