Synonymy and categories of logics

Francisco Vibrentis José Luis Castiglioni

Universidad Nacional de La Plata CONICET

- Signature $\Sigma = (\Sigma[n])_{n \in \mathbb{N}_0}$.
- $\Sigma[n]$ set of *n*-ary connectives.

- Signature $\Sigma = (\Sigma[n])_{n \in \mathbb{N}_0}$.
- $\Sigma[n]$ set of *n*-ary connectives.
- $F(\Sigma)$ set of formulas built with signature Σ over the propositional variables $Va = \{p_1, p_2, ...\}$.

- Signature $\Sigma = (\Sigma[n])_{n \in \mathbb{N}_0}$.
- $\Sigma[n]$ set of *n*-ary connectives.
- $F(\Sigma)$ set of formulas built with signature Σ over the propositional variables $Va = \{p_1, p_2, ...\}$.

► $F(\Sigma)[n]$ with $n \in \mathbb{N}$ set of formulas containing exactly the variables $p_1, p_2, ..., p_n$.

- Signature $\Sigma = (\Sigma[n])_{n \in \mathbb{N}_0}$.
- Σ[n] set of n-ary connectives.
- $F(\Sigma)$ set of formulas built with signature Σ over the propositional variables $Va = \{p_1, p_2, ...\}$.
- ► $F(\Sigma)[n]$ with $n \in \mathbb{N}$ set of formulas containing exactly the variables $p_1, p_2, ..., p_n$.
- $F(\Sigma)[0]$ set of formulas without variables.

▶ [Bueno 2004]¹ A flexible translation of signatures $f : \Sigma \to \Sigma'$ is sequence of maps $f[n] : \Sigma[n] \to F(\Sigma')[n]$ with $n \in \mathbb{N}_0$.

¹J. Bueno, M.E. Coniglio, W.A. Carnielli. Finite algebraizability via possible-translations semantics. Proceedings of CombLog04- Workshop on Combination of Logics: Theory and Applications, (editors: W.A. Carnielli,F.M. Dionísio and P. Mateus), (2004), 79-86.

- ▶ [Bueno 2004]¹ A flexible translation of signatures $f : \Sigma \to \Sigma'$ is sequence of maps $f[n] : \Sigma[n] \to F(\Sigma')[n]$ with $n \in \mathbb{N}_0$.
- For example, $\lor \mapsto \neg (\neg p_1 \land \neg p_2)$.

¹J. Bueno, M.E. Coniglio, W.A. Carnielli. Finite algebraizability via possible-translations semantics. Proceedings of CombLog04- Workshop on Combination of Logics: Theory and Applications, (editors: W.A. Carnielli,F.M. Dionísio and P. Mateus), (2004), 79-86.

- ▶ [Bueno 2004]¹ A flexible translation of signatures $f : \Sigma \to \Sigma'$ is sequence of maps $f[n] : \Sigma[n] \to F(\Sigma')[n]$ with $n \in \mathbb{N}_0$.
- For example, $\lor \mapsto \neg(\neg p_1 \land \neg p_2)$.

• Given $f: \Sigma \to \Sigma'$ there is a unique extension $\hat{f}: F(\Sigma) \to F(\Sigma')$ such that:

¹J. Bueno, M.E. Coniglio, W.A. Carnielli. Finite algebraizability via possible-translations semantics. Proceedings of CombLog04- Workshop on Combination of Logics: Theory and Applications, (editors: W.A. Carnielli,F.M. Dionísio and P. Mateus), (2004), 79-86.

- ▶ [Bueno 2004]¹ A flexible translation of signatures $f : \Sigma \to \Sigma'$ is sequence of maps $f[n] : \Sigma[n] \to F(\Sigma')[n]$ with $n \in \mathbb{N}_0$.
- For example, $\lor \mapsto \neg(\neg p_1 \land \neg p_2)$.

• Given $f: \Sigma \to \Sigma'$ there is a unique extension $\hat{f}: F(\Sigma) \to F(\Sigma')$ such that:

1. $\hat{f}(p_i) = p_i$ for every $p_i \in Var$.

¹J. Bueno, M.E. Coniglio, W.A. Carnielli. Finite algebraizability via possible-translations semantics. Proceedings of CombLog04- Workshop on Combination of Logics: Theory and Applications, (editors: W.A. Carnielli,F.M. Dionísio and P. Mateus), (2004), 79-86.

- ▶ [Bueno 2004]¹ A flexible translation of signatures $f : \Sigma \to \Sigma'$ is sequence of maps $f[n] : \Sigma[n] \to F(\Sigma')[n]$ with $n \in \mathbb{N}_0$.
- For example, $\lor \mapsto \neg(\neg p_1 \land \neg p_2)$.

• Given $f: \Sigma \to \Sigma'$ there is a unique extension $\hat{f}: F(\Sigma) \to F(\Sigma')$ such that:

1.
$$\hat{f}(p_i) = p_i$$
 for every $p_i \in Var$.
2. $\hat{f}(c) = f[0](c)$ for every $c \in \Sigma[0]$

¹J. Bueno, M.E. Coniglio, W.A. Carnielli. Finite algebraizability via possible-translations semantics. Proceedings of CombLog04- Workshop on Combination of Logics: Theory and Applications, (editors: W.A. Carnielli,F.M. Dionísio and P. Mateus), (2004), 79-86.

- ▶ [Bueno 2004]¹ A flexible translation of signatures $f : \Sigma \to \Sigma'$ is sequence of maps $f[n] : \Sigma[n] \to F(\Sigma')[n]$ with $n \in \mathbb{N}_0$.
- For example, $\lor \mapsto \neg(\neg p_1 \land \neg p_2)$.

• Given $f: \Sigma \to \Sigma'$ there is a unique extension $\hat{f}: F(\Sigma) \to F(\Sigma')$ such that:

1.
$$\hat{f}(p_i) = p_i$$
 for every $p_i \in Var$.
2. $\hat{f}(c) = f[0](c)$ for every $c \in \Sigma[0]$.
3. $\hat{f}(c(\alpha_1, ..., \alpha_n)) = f[n](c)(\hat{f}(\alpha_1), ..., \hat{f}(\alpha_n))$ for every $\alpha_1, ..., \alpha_n \in F(\Sigma)$ and $c \in \Sigma[n]$ con $n \ge 1$.

¹J. Bueno, M.E. Coniglio, W.A. Carnielli. Finite algebraizability via possible-translations semantics. Proceedings of CombLog04- Workshop on Combination of Logics: Theory and Applications, (editors: W.A. Carnielli,F.M. Dionísio and P. Mateus), (2004), 79-86.

- ▶ [Bueno 2004]¹ A flexible translation of signatures $f : \Sigma \to \Sigma'$ is sequence of maps $f[n] : \Sigma[n] \to F(\Sigma')[n]$ with $n \in \mathbb{N}_0$.
- For example, $\lor \mapsto \neg(\neg p_1 \land \neg p_2)$.

• Given $f: \Sigma \to \Sigma'$ there is a unique extension $\hat{f}: F(\Sigma) \to F(\Sigma')$ such that:

1.
$$\hat{f}(p_i) = p_i$$
 for every $p_i \in Var$.
2. $\hat{f}(c) = f[0](c)$ for every $c \in \Sigma[0]$.
3. $\hat{f}(c(\alpha_1, ..., \alpha_n)) = f[n](c)(\hat{f}(\alpha_1), ..., \hat{f}(\alpha_n))$ for every $\alpha_1, ..., \alpha_n \in F(\Sigma)$ and $c \in \Sigma[n]$ con $n \ge 1$.

► For every $f : \Sigma_1 \to \Sigma_2$ and $g : \Sigma_2 \to \Sigma_3$, the composition $(gf)[n] : \Sigma_1[n] \to F(\Sigma_3)[n]$ is given by $(gf)[n] := \hat{g}f[n]$.

¹J. Bueno, M.E. Coniglio, W.A. Carnielli. Finite algebraizability via possible-translations semantics. Proceedings of CombLog04- Workshop on Combination of Logics: Theory and Applications, (editors: W.A. Carnielli,F.M. Dionísio and P. Mateus), (2004), 79-86.

- ▶ [Bueno 2004]¹ A flexible translation of signatures $f : \Sigma \to \Sigma'$ is sequence of maps $f[n] : \Sigma[n] \to F(\Sigma')[n]$ with $n \in \mathbb{N}_0$.
- For example, $\lor \mapsto \neg(\neg p_1 \land \neg p_2)$.

• Given $f: \Sigma \to \Sigma'$ there is a unique extension $\hat{f}: F(\Sigma) \to F(\Sigma')$ such that:

1.
$$\hat{f}(p_i) = p_i$$
 for every $p_i \in Var$.
2. $\hat{f}(c) = f[0](c)$ for every $c \in \Sigma[0]$.
3. $\hat{f}(c(\alpha_1, ..., \alpha_n)) = f[n](c)(\hat{f}(\alpha_1), ..., \hat{f}(\alpha_n))$ for every $\alpha_1, ..., \alpha_n \in F(\Sigma)$ and $c \in \Sigma[n]$ con $n \ge 1$.

► For every $f : \Sigma_1 \to \Sigma_2$ and $g : \Sigma_2 \to \Sigma_3$, the composition $(gf)[n] : \Sigma_1[n] \to F(\Sigma_3)[n]$ is given by $(gf)[n] := \hat{g}f[n]$.

• Category S_f .

¹J. Bueno, M.E. Coniglio, W.A. Carnielli. Finite algebraizability via possible-translations semantics. Proceedings of CombLog04- Workshop on Combination of Logics: Theory and Applications, (editors: W.A. Carnielli,F.M. Dionísio and P. Mateus), (2004), 79-86.

• A consequence relation \vdash is a relation between subsets and elements of $F(\Sigma)$ such that for all $\Gamma, \Delta \subseteq F(\Sigma)$ and $\varphi \in F(\Sigma)$:

1. $\varphi \in \Gamma \implies \Gamma \vdash \varphi$;

Logics

1.
$$\varphi \in \Gamma \implies \Gamma \vdash \varphi;$$

2. $\Gamma \vdash \varphi$ and $\Gamma \subseteq \Delta \implies \Delta \vdash \varphi;$

Logics

1.
$$\varphi \in \Gamma \Rightarrow \Gamma \vdash \varphi$$
;
2. $\Gamma \vdash \varphi$ and $\Gamma \subseteq \Delta \Rightarrow \Delta \vdash \varphi$;
3. $\Gamma \vdash \varphi$ and $\Delta \vdash \psi$ for every $\psi \in \Gamma \Rightarrow \Delta \vdash \varphi$.

Logics

1.
$$\varphi \in \Gamma \implies \Gamma \vdash \varphi$$
;
2. $\Gamma \vdash \varphi$ and $\Gamma \subseteq \Delta \implies \Delta \vdash \varphi$;
3. $\Gamma \vdash \varphi$ and $\Delta \vdash \psi$ for every $\psi \in \Gamma \implies \Delta \vdash \varphi$.
• (Σ, \vdash) is a logic.

▶ A flexible translation of logics $f : (\Sigma_1, \vdash_1) \rightarrow (\Sigma_2, \vdash_2)$ is a $f : \Sigma_1 \rightarrow \Sigma_2$, such that $\hat{f}(\Gamma) \vdash_2 \hat{f}(\phi)$ for all $\Gamma \subseteq F(\Sigma)$ and $\phi \in F(\Sigma)$ such that $\Gamma \vdash_1 \phi$.

- ▶ A flexible translation of logics $f : (\Sigma_1, \vdash_1) \rightarrow (\Sigma_2, \vdash_2)$ is a $f : \Sigma_1 \rightarrow \Sigma_2$, such that $\hat{f}(\Gamma) \vdash_2 \hat{f}(\phi)$ for all $\Gamma \subseteq F(\Sigma)$ and $\phi \in F(\Sigma)$ such that $\Gamma \vdash_1 \phi$.
- Category L_f .

- ▶ A flexible translation of logics $f : (\Sigma_1, \vdash_1) \rightarrow (\Sigma_2, \vdash_2)$ is a $f : \Sigma_1 \rightarrow \Sigma_2$, such that $\hat{f}(\Gamma) \vdash_2 \hat{f}(\phi)$ for all $\Gamma \subseteq F(\Sigma)$ and $\phi \in F(\Sigma)$ such that $\Gamma \vdash_1 \phi$.
- Category L_f .

► *L_f* has coproducts, initial object, weak products, weak terminal object, weak equalizers.

- ▶ A flexible translation of logics $f : (\Sigma_1, \vdash_1) \rightarrow (\Sigma_2, \vdash_2)$ is a $f : \Sigma_1 \rightarrow \Sigma_2$, such that $\hat{f}(\Gamma) \vdash_2 \hat{f}(\phi)$ for all $\Gamma \subseteq F(\Sigma)$ and $\phi \in F(\Sigma)$ such that $\Gamma \vdash_1 \phi$.
- Category L_f .
- ► *L_f* has coproducts, initial object, weak products, weak terminal object, weak equalizers.
- ► L_f does not have terminal object or non-empty products.

▶ [Caleiro 2007]² $f \dashv \vdash f'$ if and only if $f, f' : (\Sigma_1, \vdash_1) \rightarrow (\Sigma_2, \vdash_2)$ and $\hat{f}(\alpha) \dashv \vdash_2 \hat{g}(\alpha)$ for all $\alpha \in F(\Sigma_1)$.

²C. Caleiro, R. Gonçalves. Equipollent logical systems. Logica Universalis: Towards a General Theory of Logic (editor: J.-Y. Béziau), (2007), 97-110.

[Caleiro 2007]² f ⊣⊢ f' if and only if
f, f': (Σ₁, ⊢₁) → (Σ₂, ⊢₂) and f̂(α) ⊣⊢₂ ĝ(α) for all α ∈ F(Σ₁).
It is a congruence relation on L_f, i.e. f ⊣⊢ f', then

 $hfg \dashv \vdash hf'g$ for every g and h.

²C. Caleiro, R. Gonçalves. Equipollent logical systems. Logica Universalis: Towards a General Theory of Logic (editor: J.-Y. Béziau), (2007), 97-110.

► [Caleiro 2007]² $f \dashv \vdash f'$ if and only if $f, f' : (\Sigma_1, \vdash_1) \rightarrow (\Sigma_2, \vdash_2)$ and $\hat{f}(\alpha) \dashv \vdash_2 \hat{g}(\alpha)$ for all $\alpha \in F(\Sigma_1)$. ► It is a congruence relation on L_f , i.e. $f \dashv \vdash f'$, then

 $hfg \dashv \vdash hf'g$ for every g and h.

• Quotient category QL_f where $[f] = \{g : f \dashv \vdash g\}$.

²C. Caleiro, R. Gonçalves. Equipollent logical systems. Logica Universalis: Towards a General Theory of Logic (editor: J.-Y. Béziau), (2007), 97-110.

- [Caleiro 2007]² $f \dashv \vdash f'$ if and only if
- $f, f': (\Sigma_1, \vdash_1) \to (\Sigma_2, \vdash_2) \text{ and } \hat{f}(\alpha) \dashv \vdash_2 \hat{g}(\alpha) \text{ for all } \alpha \in F(\Sigma_1).$
- ▶ It is a congruence relation on L_f , i.e. $f \dashv \vdash f'$, then $hfg \dashv \vdash hf'g$ for every g and h.
- Quotient category QL_f where $[f] = \{g : f \dashv \vdash g\}$.
- ► *QL_f* has weak coproducts, initial object, products, terminal object, equalizers y coequalizers.

²C. Caleiro, R. Gonçalves. Equipollent logical systems. Logica Universalis: Towards a General Theory of Logic (editor: J.-Y. Béziau), (2007), 97-110.

- [Caleiro 2007]² $f \dashv \vdash f'$ if and only if
- $f, f': (\Sigma_1, \vdash_1) \to (\Sigma_2, \vdash_2) \text{ and } \hat{f}(\alpha) \dashv \vdash_2 \hat{g}(\alpha) \text{ for all } \alpha \in F(\Sigma_1).$
- ▶ It is a congruence relation on L_f , i.e. $f \dashv \vdash f'$, then $hfg \dashv \vdash hf'g$ for every g and h.
- Quotient category QL_f where $[f] = \{g : f \dashv \vdash g\}$.
- ► *QL_f* has weak coproducts, initial object, products, terminal object, equalizers y coequalizers.
- It does not have coproducts.

²C. Caleiro, R. Gonçalves. Equipollent logical systems. Logica Universalis: Towards a General Theory of Logic (editor: J.-Y. Béziau), (2007), 97-110.

▶ [Mendes 2016]³ (Σ , \vdash) is **congruential** if for every $\alpha(p_{i_1}, ..., p_{i_n}), \beta(p_{i_1}, ..., p_{i_n}) \in F(\Sigma)$ such that $\alpha \dashv \vdash \beta$, and for all $\{(\phi_1, \psi_1), ..., (\phi_n, \psi_n)\}$ such that $\phi_1 \dashv \vdash \psi_1, ..., \phi_n \dashv \vdash \psi_n$, then $\alpha(\phi_1, ..., \phi_n) \dashv \vdash \beta(\psi_1, ..., \psi_n)$.

³C. Mendes, H. Mariano. Towards a good notion of categories of logics. Preprint arXiv:1404.3780v2(2016).

- ▶ [Mendes 2016]³ (Σ , \vdash) is **congruential** if for every $\alpha(p_{i_1}, ..., p_{i_n}), \beta(p_{i_1}, ..., p_{i_n}) \in F(\Sigma)$ such that $\alpha \dashv \vdash \beta$, and for all $\{(\phi_1, \psi_1), ..., (\phi_n, \psi_n)\}$ such that $\phi_1 \dashv \vdash \psi_1, ..., \phi_n \dashv \vdash \psi_n$, then $\alpha(\phi_1, ..., \phi_n) \dashv \vdash \beta(\psi_1, ..., \psi_n)$.
- QL_f^c where objects are congruential logics.

³C. Mendes, H. Mariano. Towards a good notion of categories of logics. Preprint arXiv:1404.3780v2(2016).

- ▶ [Mendes 2016]³ (Σ , \vdash) is **congruential** if for every $\alpha(p_{i_1}, ..., p_{i_n}), \beta(p_{i_1}, ..., p_{i_n}) \in F(\Sigma)$ such that $\alpha \dashv \vdash \beta$, and for all $\{(\phi_1, \psi_1), ..., (\phi_n, \psi_n)\}$ such that $\phi_1 \dashv \vdash \psi_1, ..., \phi_n \dashv \vdash \psi_n$, then $\alpha(\phi_1, ..., \phi_n) \dashv \vdash \beta(\psi_1, ..., \psi_n)$.
- QL_f^c where objects are congruential logics.
- It has all limits and colimits.

³C. Mendes, H. Mariano. Towards a good notion of categories of logics. Preprint arXiv:1404.3780v2(2016).

- ▶ [Mendes 2016]³ (Σ , \vdash) is **congruential** if for every $\alpha(p_{i_1}, ..., p_{i_n}), \beta(p_{i_1}, ..., p_{i_n}) \in F(\Sigma)$ such that $\alpha \dashv \vdash \beta$, and for all $\{(\phi_1, \psi_1), ..., (\phi_n, \psi_n)\}$ such that $\phi_1 \dashv \vdash \psi_1, ..., \phi_n \dashv \vdash \psi_n$, then $\alpha(\phi_1, ..., \phi_n) \dashv \vdash \beta(\psi_1, ..., \psi_n)$.
- QL_f^c where objects are congruential logics.
- It has all limits and colimits.
- Our objective is to obtain from L_f a quotient category with good categorical properties without restricting the objects.

³C. Mendes, H. Mariano. Towards a good notion of categories of logics. Preprint arXiv:1404.3780v2(2016).

- ▶ [Mendes 2016]³ (Σ , \vdash) is **congruential** if for every $\alpha(p_{i_1}, ..., p_{i_n}), \beta(p_{i_1}, ..., p_{i_n}) \in F(\Sigma)$ such that $\alpha \dashv \vdash \beta$, and for all $\{(\phi_1, \psi_1), ..., (\phi_n, \psi_n)\}$ such that $\phi_1 \dashv \vdash \psi_1, ..., \phi_n \dashv \vdash \psi_n$, then $\alpha(\phi_1, ..., \phi_n) \dashv \vdash \beta(\psi_1, ..., \psi_n)$.
- QL_f^c where objects are congruential logics.
- It has all limits and colimits.
- Our objective is to obtain from L_f a quotient category with good categorical properties without restricting the objects.
- We ended up restricting the morphisms.

³C. Mendes, H. Mariano. Towards a good notion of categories of logics. Preprint arXiv:1404.3780v2(2016).

▶ [Smiley 1962]⁴ The formulas α are β of a logic (Σ , \vdash) are synonymous if $\phi(\alpha) \dashv \vdash \phi(\beta)$ for all $\phi(p) \in F(\Sigma)$ formula.

⁴T. Smiley. The independence of connectives. Journal of Symbolic Logic 27, (1962), 426-436.

- ▶ [Smiley 1962]⁴ The formulas α are β of a logic (Σ , \vdash) are synonymous if $\phi(\alpha) \dashv \vdash \phi(\beta)$ for all $\phi(p) \in F(\Sigma)$ formula.
- Notation $\alpha \lhd \rhd \beta$.

⁴T. Smiley. The independence of connectives. Journal of Symbolic Logic 27, (1962), 426-436.

- ▶ [Smiley 1962]⁴ The formulas α are β of a logic (Σ , \vdash) are **synonymous** if $\phi(\alpha) \dashv \vdash \phi(\beta)$ for all $\phi(p) \in F(\Sigma)$ formula.
- Notation $\alpha \lhd \rhd \beta$.
- If $\alpha \lhd \rhd \beta$ then $\alpha \dashv \vdash \beta$.

⁴T. Smiley. The independence of connectives. Journal of Symbolic Logic 27, (1962), 426-436.

- ▶ [Smiley 1962]⁴ The formulas α are β of a logic (Σ , \vdash) are **synonymous** if $\phi(\alpha) \dashv \vdash \phi(\beta)$ for all $\phi(p) \in F(\Sigma)$ formula.
- Notation $\alpha \lhd \rhd \beta$.
- If $\alpha \lhd \rhd \beta$ then $\alpha \dashv \vdash \beta$.
- If the logic is congruential, $\alpha \dashv \vdash \beta \Leftrightarrow \alpha \lhd \triangleright \beta$.

⁴T. Smiley. The independence of connectives. Journal of Symbolic Logic 27, (1962), 426-436.

• $\lhd \triangleright$ is a equivalence relation on $F(\Sigma)$.

- $\lhd \triangleright$ is a equivalence relation on $F(\Sigma)$.
- ▶ $f \lhd \rhd g$ if and only if $f, g : (\Sigma_1, \vdash_1) \rightarrow (\Sigma_2, \vdash_2)$ and $\hat{f}(\alpha) \lhd \succ_2 \hat{g}(\alpha)$ for all $\alpha \in F(\Sigma_1)$.

- $\lhd \triangleright$ is a equivalence relation on $F(\Sigma)$.
- ▶ $f \lhd \rhd g$ if and only if $f, g : (\Sigma_1, \vdash_1) \rightarrow (\Sigma_2, \vdash_2)$ and $\hat{f}(\alpha) \lhd \succ_2 \hat{g}(\alpha)$ for all $\alpha \in F(\Sigma_1)$.
- $\lhd \rhd$ is it not a congruence on L_f .

▶ $f: (\Sigma_1, \vdash_1) \to (\Sigma_2, \vdash_2)$ is a translation of synonymous if f is a flexible translation of logics such that $\hat{f}(\alpha) \lhd \succ_2 \hat{f}(\beta)$ for all $\alpha, \beta \in F(\Sigma)$ such that $\alpha \lhd \succ_1 \beta$.

▶ $f: (\Sigma_1, \vdash_1) \to (\Sigma_2, \vdash_2)$ is a translation of synonymous if f is a flexible translation of logics such that $\hat{f}(\alpha) \lhd \succ_2 \hat{f}(\beta)$ for all $\alpha, \beta \in F(\Sigma)$ such that $\alpha \lhd \succ_1 \beta$.

• L_s the category whose objects are logics and whose morphisms are translations of synonymous.

- ▶ $f: (\Sigma_1, \vdash_1) \to (\Sigma_2, \vdash_2)$ is a translation of synonymous if f is a flexible translation of logics such that $\hat{f}(\alpha) \lhd \succ_2 \hat{f}(\beta)$ for all $\alpha, \beta \in F(\Sigma)$ such that $\alpha \lhd \succ_1 \beta$.
- ► *L_s* the category whose objects are logics and whose morphisms are translations of synonymous.
- $\lhd \triangleright$ is a congruence on L_s .

▶ $f: (\Sigma_1, \vdash_1) \to (\Sigma_2, \vdash_2)$ is a translation of synonymous if f is a flexible translation of logics such that $\hat{f}(\alpha) \lhd \succ_2 \hat{f}(\beta)$ for all $\alpha, \beta \in F(\Sigma)$ such that $\alpha \lhd \succ_1 \beta$.

• L_s the category whose objects are logics and whose morphisms are translations of synonymous.

• $\lhd \triangleright$ is a congruence on L_s .

• Quotient category QL_s whose objects are logics and whose morphisms are equivalence classes of synonymous morphisms $[f] = \{g : f \lhd \rhd g\}.$

- ▶ If (Σ_1, \vdash_1) and (Σ_2, \vdash_2) are congruential logics and $f, g : (\Sigma_1, \vdash_1) \rightarrow (\Sigma_2, \vdash_2)$ flexible translations of logics,
- f are g translations of synonymous.

- ▶ If (Σ_1, \vdash_1) and (Σ_2, \vdash_2) are congruential logics and $f, g : (\Sigma_1, \vdash_1) \rightarrow (\Sigma_2, \vdash_2)$ flexible translations of logics,
- f are g translations of synonymous.
- $f \lhd \rhd g$ if and only if $f \dashv \vdash g$.

- ▶ If (Σ_1, \vdash_1) and (Σ_2, \vdash_2) are congruential logics and $f, g : (\Sigma_1, \vdash_1) \rightarrow (\Sigma_2, \vdash_2)$ flexible translations of logics,
- f are g translations of synonymous.
- $f \lhd \rhd g$ if and only if $f \dashv \vdash g$.
- The presentation of classical logics are congruentials.

- If (Σ_1, \vdash_1) and (Σ_2, \vdash_2) are congruential logics and $f, g: (\Sigma_1, \vdash_1) \rightarrow (\Sigma_2, \vdash_2)$ flexible translations of logics,
- f are g translations of synonymous.
- $f \lhd \rhd g$ if and only if $f \dashv \vdash g$.
- The presentation of classical logics are congruentials.
- ► Any flexible translation between them is a synonymous morphism.

Equivalents logics

• (Σ_1, \vdash_1) and (Σ_2, \vdash_2) are equivalents on QL_s if there exists $f : (\Sigma_1, \vdash_1) \rightarrow (\Sigma_2, \vdash_2)$ and $g : (\Sigma_2, \vdash_2) \rightarrow (\Sigma_1, \vdash_1)$ translation of synonymous such that $gf \lhd {\succ} id_{(\Sigma_1, \vdash_1)}$ and $fg \lhd {\succ} id_{(\Sigma_2, \vdash_2)}$.

Equivalents logics

- (Σ_1, \vdash_1) and (Σ_2, \vdash_2) are equivalents on QL_s if there exists $f : (\Sigma_1, \vdash_1) \rightarrow (\Sigma_2, \vdash_2)$ and $g : (\Sigma_2, \vdash_2) \rightarrow (\Sigma_1, \vdash_1)$ translation of synonymous such that $gf \lhd \rhd id_{(\Sigma_1, \vdash_1)}$ and $fg \lhd \succ id_{(\Sigma_2, \vdash_2)}$.
- The presentations of classical logics are equivalents.

▶ *QL_s* has initial object.

- ▶ *QL_s* has initial object.
 - Σ_I such that $\Sigma_I[n] = \emptyset$ for all $n \in \mathbb{N}_0$.
 - $\Gamma \vdash_I \phi$ if and only if $\phi \in \Gamma$.
 - (Σ_I, \vdash_I) is a initial object of QL_s .

- ▶ *QL_s* has initial object.
 - Σ_I such that $\Sigma_I[n] = \emptyset$ for all $n \in \mathbb{N}_0$.
 - $\Gamma \vdash_{I} \phi$ if and only if $\phi \in \Gamma$.
 - (Σ_I, \vdash_I) is a initial object of QL_s .
- *QL_s* has terminal object.

- ▶ *QL_s* has initial object.
 - Σ_I such that $\Sigma_I[n] = \emptyset$ for all $n \in \mathbb{N}_0$.
 - $\Gamma \vdash_I \phi$ if and only if $\phi \in \Gamma$.
 - (Σ_I, \vdash_I) is a initial object of QL_s .
- *QL_s* has terminal object.

• Σ_T such that $\Sigma_T[0] = \{c_0\}, \Sigma_T[2] = \{c_2\}$ and $\Sigma_T[n] = \emptyset$ for all $2 \neq n \in \mathbb{N}$.

- $\Gamma \vdash_{\mathcal{T}} \phi$ for all $\Gamma \subseteq F(\Sigma_{\mathcal{T}})$ and $\phi \in F(\Sigma_{\mathcal{T}})$.
- (Σ_T, \vdash_T) is a terminal object of QL_s .

▶ Let Σ_1 be a signature, (Σ_2, \vdash_2) a logic and $f : \Sigma_1 \to \Sigma_2$ a flexible translation of signatures.

▶ Let Σ_1 be a signature, (Σ_2, \vdash_2) a logic and $f : \Sigma_1 \to \Sigma_2$ a flexible translation of signatures.

► The inverse image of (Σ_2, \vdash_2) under f is $(\Sigma_1, \vdash_{f^*(\vdash_2)})$.

▶ Let Σ_1 be a signature, (Σ_2, \vdash_2) a logic and $f : \Sigma_1 \to \Sigma_2$ a flexible translation of signatures.

- The inverse image of (Σ_2, \vdash_2) under f is $(\Sigma_1, \vdash_{f^*(\vdash_2)})$.
- $\Gamma \vdash_{f^*(\vdash_2)} \phi$ if and only if $\hat{f}(\Gamma) \vdash_2 \hat{f}(\phi)$ for all $\Gamma \subseteq F(\Sigma_1)$ and $\phi \in F(\Sigma_1)$.

▶ Let Σ_1 be a signature, (Σ_2, \vdash_2) a logic and $f : \Sigma_1 \to \Sigma_2$ a flexible translation of signatures.

- ► The inverse image of (Σ_2, \vdash_2) under f is $(\Sigma_1, \vdash_{f^*(\vdash_2)})$.
- $\Gamma \vdash_{f^*(\vdash_2)} \phi$ if and only if $\hat{f}(\Gamma) \vdash_2 \hat{f}(\phi)$ for all $\Gamma \subseteq F(\Sigma_1)$ and $\phi \in F(\Sigma_1)$.

• $\vdash_{f^*(\vdash_2)}$ is the greatest consequence relation such that f is a flexible translation of logics.

▶ Let Σ_1 be a signature, (Σ_2, \vdash_2) a logic and $f : \Sigma_1 \to \Sigma_2$ a flexible translation of signatures.

- The inverse image of (Σ_2, \vdash_2) under f is $(\Sigma_1, \vdash_{f^*(\vdash_2)})$.
- $\Gamma \vdash_{f^*(\vdash_2)} \phi$ if and only if $\hat{f}(\Gamma) \vdash_2 \hat{f}(\phi)$ for all $\Gamma \subseteq F(\Sigma_1)$ and $\phi \in F(\Sigma_1)$.

• $\vdash_{f^*(\vdash_2)}$ is the greatest consequence relation such that f is a flexible translation of logics.

• f not always respect synonymy.

▶ Let Σ_1 be a signature, (Σ_2, \vdash_2) a logic and $f : \Sigma_1 \to \Sigma_2$ a flexible translation of signatures.

- The inverse image of (Σ_2, \vdash_2) under f is $(\Sigma_1, \vdash_{f^*(\vdash_2)})$.
- $\Gamma \vdash_{f^*(\vdash_2)} \phi$ if and only if $\hat{f}(\Gamma) \vdash_2 \hat{f}(\phi)$ for all $\Gamma \subseteq F(\Sigma_1)$ and $\phi \in F(\Sigma_1)$.

• $\vdash_{f^*(\vdash_2)}$ is the greatest consequence relation such that f is a flexible translation of logics.

- ► f not always respect synonymy.
- This is negative because inverse image is used in the construction of products and equalizers of QL_f .

▶ Let Σ_1 be a signature, (Σ_2, \vdash_2) a logic and $f : \Sigma_1 \to \Sigma_2$ a flexible translation of signatures.

- ▶ Let Σ_1 be a signature, (Σ_2, \vdash_2) a logic and $f : \Sigma_1 \to \Sigma_2$ a flexible translation of signatures.
- ▶ Let \vdash_s be the supremum of the set *R* whose elements are the consequence relation \vdash on *F*(Σ_1) such that $f : (\Sigma_1, \vdash) \rightarrow (\Sigma_2, \vdash_2)$ is a translation of synonymous.

- ▶ Let Σ_1 be a signature, (Σ_2, \vdash_2) a logic and $f : \Sigma_1 \to \Sigma_2$ a flexible translation of signatures.
- ► Let \vdash_s be the supremum of the set *R* whose elements are the consequence relation \vdash on $F(\Sigma_1)$ such that $f : (\Sigma_1, \vdash) \rightarrow (\Sigma_2, \vdash_2)$ is a translation of synonymous.
- This supremum is not always a maximum.

▶ *QL_s* does not have coproducts.

- *QL_s* does not have coproducts.
- The same example serves to see that QL_f does not have coproducts.

- *QL_s* does not have coproducts.
- The same example serves to see that QL_f does not have coproducts.
- ► *QL_f* has weak coproducts with the coproduct signature.

- *QL_s* does not have coproducts.
- The same example serves to see that QL_f does not have coproducts.
- ► *QL_f* has weak coproducts with the coproduct signature.
- If QL_s has weak coproducts, it is not with the coproduct signature.

• That the translations preserve synonymy is desirable.

- That the translations preserve synonymy is desirable.
- The synonymy relation can be useful in other context.

- That the translations preserve synonymy is desirable.
- The synonymy relation can be useful in other context.
- It is dificult to work in QL_s .

- That the translations preserve synonymy is desirable.
- The synonymy relation can be useful in other context.
- It is dificult to work in QL_s .
- QL_s does not have good categorical properties (Does not have coproducts).

- That the translations preserve synonymy is desirable.
- The synonymy relation can be useful in other context.
- It is dificult to work in QL_s .
- QL_s does not have good categorical properties (Does not have coproducts).
- Looking for other categories.

• For example we can restrict the objects.

- For example we can restrict the objects.
- ► (Σ, \vdash) is a **synonymous logic** if for every $\alpha(p_{i_1}, ..., p_{i_n}), \beta(p_{i_1}, ..., p_{i_n}) \in F(\Sigma)$ such that $\alpha \lhd \triangleright \beta$, and for all $\{(\phi_1, \psi_1), ..., (\phi_n, \psi_n)\}$ such that $\phi_1 \lhd \triangleright \psi_1, ..., \phi_n \lhd \triangleright \psi_n$, then $\alpha(\phi_1, ..., \phi_n) \lhd \triangleright \beta(\psi_1, ..., \psi_n).$

- For example we can restrict the objects.
- ► (Σ, \vdash) is a **synonymous logic** if for every $\alpha(p_{i_1}, ..., p_{i_n}), \beta(p_{i_1}, ..., p_{i_n}) \in F(\Sigma)$ such that $\alpha \lhd \rhd \beta$, and for all $\{(\phi_1, \psi_1), ..., (\phi_n, \psi_n)\}$ such that $\phi_1 \lhd \rhd \psi_1, ..., \phi_n \lhd \rhd \psi_n$, then $\alpha(\phi_1, ..., \phi_n) \lhd \rhd \beta(\psi_1, ..., \psi_n).$
- \blacktriangleright If (Σ, \vdash) is congruential then is synonymous.

• For example we can restrict the objects.

► (Σ, \vdash) is a **synonymous logic** if for every $\alpha(p_{i_1}, ..., p_{i_n}), \beta(p_{i_1}, ..., p_{i_n}) \in F(\Sigma)$ such that $\alpha \lhd \rhd \beta$, and for all $\{(\phi_1, \psi_1), ..., (\phi_n, \psi_n)\}$ such that $\phi_1 \lhd \rhd \psi_1, ..., \phi_n \lhd \rhd \psi_n$, then $\alpha(\phi_1, ..., \phi_n) \lhd \rhd \beta(\psi_1, ..., \psi_n).$

- \blacktriangleright If (Σ, \vdash) is congruential then is synonymous.
- Category QL_s^s .

• For example we can restrict the objects.

► (Σ, \vdash) is a **synonymous logic** if for every $\alpha(p_{i_1}, ..., p_{i_n}), \beta(p_{i_1}, ..., p_{i_n}) \in F(\Sigma)$ such that $\alpha \lhd \rhd \beta$, and for all $\{(\phi_1, \psi_1), ..., (\phi_n, \psi_n)\}$ such that $\phi_1 \lhd \rhd \psi_1, ..., \phi_n \lhd \rhd \psi_n$, then $\alpha(\phi_1, ..., \phi_n) \lhd \rhd \beta(\psi_1, ..., \psi_n).$

- \blacktriangleright If (Σ, \vdash) is congruential then is synonymous.
- Category QL_s^s .

• If $\{(\Sigma_i, \vdash_i)\}$ has weak coproduct with the coproduct signature then it has coproduct.

• For example we can restrict the objects.

► (Σ, \vdash) is a **synonymous logic** if for every $\alpha(p_{i_1}, ..., p_{i_n}), \beta(p_{i_1}, ..., p_{i_n}) \in F(\Sigma)$ such that $\alpha \lhd \rhd \beta$, and for all $\{(\phi_1, \psi_1), ..., (\phi_n, \psi_n)\}$ such that $\phi_1 \lhd \rhd \psi_1, ..., \phi_n \lhd \rhd \psi_n$, then $\alpha(\phi_1, ..., \phi_n) \lhd \rhd \beta(\psi_1, ..., \psi_n).$

- \blacktriangleright If (Σ, \vdash) is congruential then is synonymous.
- Category QL^s.

• If $\{(\Sigma_i, \vdash_i)\}$ has weak coproduct with the coproduct signature then it has coproduct.

• Looking for a sufficient condition for existence of weak coproducts with coproduct signatures.

THANKS!