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Let X be a nonvoid set and let A = [0, 1]X be the MV-algebra of
all functions from X to the unit real interval [0, 1]. Let ∃ be the
classical functional existential quantifier defined on A given by
∃f =

∨
x∈X f (x). Then the operator ∃ satisfies the following

condition:

∃f = 1 if and only if f −1(1− ε, 1] 6= ∅ for every ε > 0.
Analogously the universal quantifier ∀ defined by ∃f =

∧
x∈X f (x)

satisfies
∀f = 0 if and only if f −1[0, ε) 6= ∅ for every ε > 0.
Notation: we write ∃1 = ∃ and ∃0 = ∀.
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General Problem: for each constant c ∈ [0, 1] find an operator ∃c

defined on A satisfying the analog conditions for the operators ∃0

and ∃1, i.e.
(P) ∃c f = c if and only if f −1(c − ε, c + ε) 6= ∅ for every ε > 0, or
equivalently, the inverse image of every neighborhood of c is
non-empty.
expressed by means of the infinite connectives

∨
,
∧

and the usual
connectives of MV-algebras.

In this talk we give a positive answer provided c = 1
2 .
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Definition
Given f : X → [0, 1] we define the operator ∃ 1

2
on A given by the

formula:
∃ 1

2
f = [

∨
x∈X f (x)] ∧ [

∧
x∈X (f (x) ∨ ¬f (x))]

Then the operator satisfies condition (P) when c = 1
2 . The proof

is immediate consequence of the identity:
a ∨ ¬a = |a− 1

2 |+
1
2 for all a ∈ [0, 1].
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Definition
Let 〈A,⊕,¬, 0, 〉 be an MV-algebra. An operator ∃ 1

2
: A → A is

said to be a demiquantifier provided it satisfies the following
conditions:

(DM1) ∃ 1
2
0 = 0

(DM2) x ∧ ¬x ≤ ∃ 1
2
(x ∧ ¬x))

(DM3) ∃ 1
2
(x ∧ ∃ 1

2
y) = ∃ 1

2
x ∧ ∃ 1

2
y

(DM4) ∃ 1
2
2x = 2∃ 1

2
x ∧ ¬∃ 1

2
(2x ∧ ¬2x)

(DM5) ∃ 1
2
x ≤ x ∨ ¬x

(DM6) ∃ 1
2
(∃ 1

2
x ⊕ ∃ 1

2
y) = ∃ 1

2
x ⊕ ∃ 1

2
y

(DM7) ∃ 1
2
(¬∃ 1

2
x) = ¬∃ 1

2
x

(DM8) x ∧ ¬∃ 1
2
(x ∧ ¬x) ≤ ∃ 1

2
x

(DM9) ∃ 1
2
(2x � ∃ 1

2
(y ∧ ¬y)) = 2∃ 1

2
x � ∃ 1

2
(y ∧ ¬y)
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It is plain that the class of MV-algebras endowed with a
demiquantifier determines a variety which is denoted by D. Note
that axioms (DM1), (DM6) and (DM7) imply the image of the
operator ∃ 1

2
is a subalgebra of A; while axioms (DM1) and (DM7)

imply ∃ 1
2
1 = 1.

Recall that a monadic MV-algebra is an algebra
A = 〈A,⊕,¬,∃, 0, 〉 of type (2,1,1,0) where 〈A,⊕,¬, 0, 〉 is an
MV-algebra and ∃ satisfies the following equations:

(MV1) x = x ∧ ∃x ,

(MV2) ∃(x ∨ y) = ∃x ∨ ∃y ,

(MV3) ∃(∃x ⊕ ∃y) = ∃x ⊕ ∃y ,

(MV4) ∃(¬∃x) = (¬∃x ,

(MV5) ∃(x ⊕ x) = ∃x ⊕ ∃x ,

(MV6) ∃(x � x) = ∃x � ∃x .

The variety of monadic MV-algebras will be denoted by M.
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Theorem
Let A = 〈A,⊕,¬,∃, 0, 〉 be an algebra in M. Then the operator
∃ 1

2
defined by:

∃ 1
2
x = ∃x ∧ ¬∃(x ∧ ¬x)

for all x ∈ A is a demiquantifier. Moreover, ∃ 1
2
x = ∃x for all

x ∈ A− and ∃ 1
2
x = ¬∃¬x = ∀x for all x ∈ A+.
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Given an MV-algebra A, a fixed point of A is an element c of A
(necessarily unique) such that ¬c = c .

Lemma
Let A be an MV-algebra having a fixed point. Then the following
conditions hold for every x ∈ A.

(i) x = (x ∧ c)⊕ (x � c).

(ii) x2 = 2(x � c).
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Proposition

Let (A,∃ 1
2
) be an algebra in D and assume that c is a fixed point

of A. Then the operator ∃ 1
2

satisfies the following identities:

(a) ∃ 1
2
c = c.

(b) c � ∃ 1
2
x = ∃ 1

2
(c � x) ∧ (c � ¬∃ 1

2
(x ∧ ¬x)).

(c) ∃ 1
2
(x ∧ ¬x) = ∃ 1

2
x ∧ ¬∃ 1

2
x.

(d) ∃ 1
2
((x ∧ ¬x)� ∃ 1

2
y) = ∃ 1

2
(x ∧ ¬x)� ∃ 1

2
y
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Let 〈A,⊕,¬, 0, 〉 be an MV-algebra. Recall that an MV-ideal of A
is a lattice ideal of A closed under the sum ⊕. It is well known
that the correspondence ≡7→ {x ∈ A : x ≡ 0} is a bijection
between Con(A) and the MV-ideals of A. Our next result will be
to extend this result to the algebras in D provided the underlying
MV-algebra has a fixed point.

Theorem
Let (A,∃ 1

2
) be an algebra in D and let c be a fixed point of A.

Then the correspondence ≡7→ {x ∈ A : x ≡ 0} establishes a
bijection between Con(A,∃ 1

2
) and the MV-ideals of A which are

closed under the operator ∃ 1
2
. Moreover, if (A,∃ 1

2
) is subdirectly

irreducible then ∃ 1
2
(A) is a subdirectly irreducible MV-algebra. In

particular it is an MV-chain.
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We know that every algebra in M induces an algebra in D. Our
next task will be to prove that the converse holds provided the
underlying MV-algebras have a fixed point.

Theorem
Let A = 〈A,⊕,¬,∃ 1

2
, 0, 〉 be an algebra in D. The the operator

∃ : A → A defined by:

∃̂x = ∃ 1
2
(x ∧ c)⊕ ∃ 1

2
(x � c)

for all x ∈ A, is an existential quantifier where c is a fixed point of
A.
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THE INTERDEFINABILITY THEOREM

Theorem
Let A be an MV-algebra having a fixed point c. Then the following
conditions hold:

(a) If ∃ : A → A is an existential quantifier then ∃̂ 1
2

= ∃.

(b) If ∃ 1
2

: A → A is a demiquantifier, then (∃̂ 1
2
) 1

2
= ∃ 1

2
.
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