A representation for the *n*-generated free algebra in the subvariety of BL-algebras generated by $[0,1]_{ extbf{MV}} \oplus [0,1]_{ extbf{G}}$

M. Busaniche, J. L. Castiglioni and N. Lubomirsky

CONICET - IMAL - UNLP

XIV Congreso Dr. Antonio Monteiro - May 31, 2017

Examples of BL-algebras

Standard MV-algebra $[0,1]_{MV}$:

$$\left\langle [0,1], \left\{ \begin{array}{ll} 0 & \text{if } x+y \leq 1 \\ x+y-1 & \text{oherwise} \end{array} \right., \left\{ \begin{array}{ll} 1 & \text{if } x \leq y \\ 1-x+y & \text{otherwise} \end{array} \right., 0 \right\rangle$$

Standard Gödel-algebra $[0,1]_{\mbox{G\"{o}del}}$:

$$\left\langle [0,1], \left\{ \begin{array}{ll} x & \text{if } x \leq y \\ y & \text{oherwise} \end{array}, \left\{ \begin{array}{ll} 1 & \text{if } x \leq y \\ y & \text{otherwise} \end{array}, 0 \right. \right\}$$

Examples of free algebras: the case of MV-algebras

Chang's Algebraic Completeness Theorem

The standard MV-algebra

$$\langle [0,1], max(0,x+y-1), min(1,1-x+y), 0 \rangle$$

is generic for the variety of MV-algebras (BL algebras with $\neg \neg x = x$).

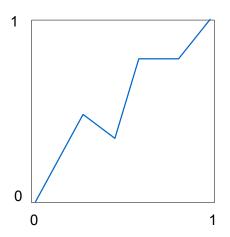
Consider the MV-algebra \mathcal{M}_n of all functions $f:[0,1]^n \to [0,1]$ endowed with the pointwise standard MV-operations:

$$(f \cdot g)(x) = max(0, f(x) + g(x) - 1),$$

 $(f \rightarrow g)(x) = min(1, 1 - f(x) + g(x)), \ \bot(x) = 0.$

McNaughton's Representation Theorem

The free n-generated MV-algebra is the subalgebra of \mathcal{M}_n of all continuous piecewise linear functions $f:[0,1]^n \to [0,1]$ where each one of the finitely many linear pieces has integer coefficients.



Examples of free algebras: the case of Gödel hoops

Gödel hoops are the \perp -free subreducts of Gödel algebras.

Gödel hoop form a variety G.

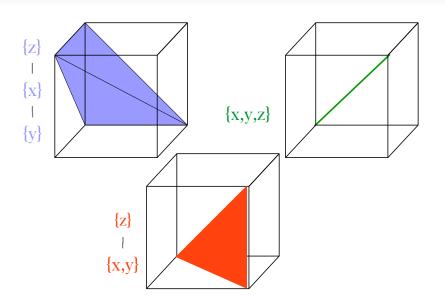
The standard Gödel hoop is $[0,1]_{\mathbf{G}}$.

Definition

Let \mathcal{R} be the set which contains all the subsets of $[0,1]^n$ given by:

$$R \in \mathcal{R} \text{ iff } R = \{(x_{\sigma(1)}, \dots, x_{\sigma(n)}) : x_{\sigma(1)} \square \dots \square x_{\sigma(n)}\}$$

for $\square \in \{=,<\}$ and σ a permutation of $\{1,\ldots,n\}$.



Free *n*-generated Gödel hoops

Theorem

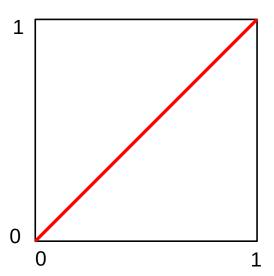
The algebra of functions $f:[0,1]^n \to [0,1]$ such that for every $R \in \mathcal{R}$

$$f|_R = 1$$
 o
 $f|_R = x_i$ with $i \in \{1, \dots, n\}$

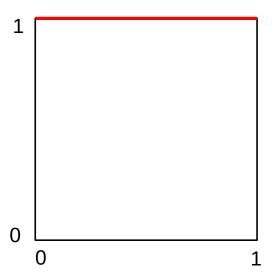
equipped with the pointwise operations \cdot and \rightarrow is the free Gödel hoops algebra over n-generators. ¹

We will write $Free_{\mathcal{G}}(n)$ to refer to this free algebra.

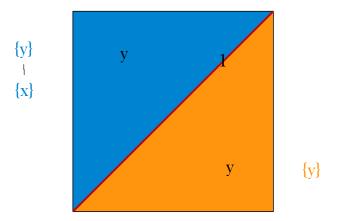
The case of one variable



The case of one variable



The case of two variables



Ordinal sum

Let $\mathbf{R} = (R, *_{\mathbf{R}}, \rightarrow_{\mathbf{R}}, \top)$ and $\mathbf{S} = (R, *_{\mathbf{S}}, \rightarrow_{\mathbf{S}}, \top)$ be two hoops such that $R \cap S = \{\top\}$. We define the ordinal sum $R \oplus S$ of these two hoops as the hoop given by $(R \cup S, *, \rightarrow, \top)$ where the operations $(*, \rightarrow)$ are defined as follows:

$$x * y \begin{cases} x *_{\mathbf{R}} y & \text{if } x, y \in R, \\ x *_{\mathbf{S}} y & \text{if } x, y \in S, \\ x & \text{if } x \in R \setminus \{\top\} \text{ and } y \in S, \\ y & \text{if } y \in R \setminus \{\top\} \text{ and } x \in S. \end{cases}$$

$$x \to y \begin{cases} \top & \text{if } x \in R \setminus \{\top\} \text{ and } y \in S, \\ x \to_{\mathbf{R}} y & \text{if } x, y \in R, \\ x \to_{\mathbf{S}} y & \text{if } x, y \in S, \\ y & \text{if } y \in R \setminus \{\top\} \text{ and } x \in S. \end{cases}$$

- $Free_{\mathcal{BL}}(n)$ is generated by the algebra $(n+1)[0,1]_{MV}$. This fact allows us to characterize the free n-generated BL-algebra $Free_{\mathcal{BL}}(n)$ as the algebra of functions $f:(n+1)[0,1]_{MV}^n \to (n+1)[0,1]_{MV}$ generated by the projections.
- S. Bova and S. Aguzzoli gave a representation of the free-n-generated BL-algebra. ², ³

We study the subvariety $\mathcal{MG}\subseteq\mathcal{BL}$ generated by the ordinal sum of the algebra $[0,1]_{\textbf{MV}}$ and the Gödel hoop $[0,1]_{\textbf{G}}$, that is, generated by $\mathfrak{A}=[0,1]_{\textbf{MV}}\oplus[0,1]_{\textbf{G}}$.

²S. Bova, PhD thesis, BL-functions and Free BL-algebra,2008

³S. Aguzzoli and S. Bova, The free *n*-generated BL-algebra, Ann. Pure Appl. Logic, Vol. 161, 9, p.1144–1170, 2010

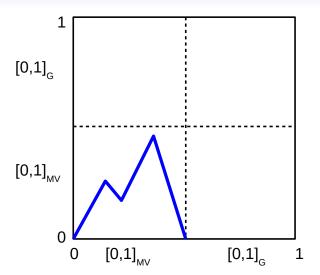
- [0,1]_G is decomposable as an infinite ordinal sum of two-elements Boolean algebra, the idea is to treat it as a whole block (dense elements).
- The elements in $[0,1]_{MV}$ are usually called regular elements of \mathfrak{A} .
- Advantage: The number n of generators of the free algebra does not increase the generating chain.
- That gives an idea of the role of the regular elements and the role of the dense elements.
- To give a functional representation for the free algebra $Free_{\mathcal{MG}}(n)$ we decompose the domain $[0,1]_{\mathbf{MV}} \oplus [0,1]_{\mathbf{G}}$ in a finite number of pieces. In each piece a function $F \in Free_{\mathcal{V}}(n)$ coincides either with McNaughton functions or functions on the free algebra in the variety of Gödel hoops.
- \mathcal{MG} : $\mathcal{BL} + (\neg \neg x \to x)^2 = (\neg \neg x \to x)$.

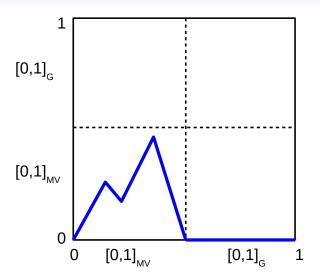
$Free_{\mathcal{MG}}(1)$

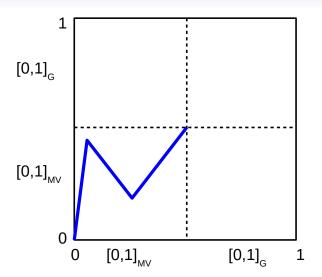
Proposition

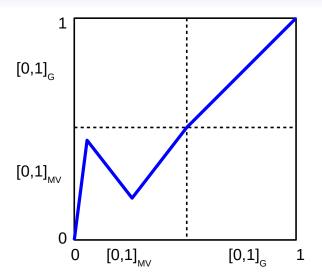
Let $\alpha(x)$ be a BL-term in one variable that we evaluate in \mathfrak{A} . Then:

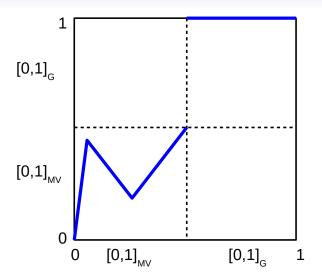
- If $\alpha_{\mathfrak{A}}(1) = 1$ then $\alpha_{\mathcal{V}}(x)$ is a function of $Free_{\mathcal{G}}(1)$ for each $x \in [0,1]_{\mathbf{G}}$.
- If $\alpha_{\mathfrak{A}}(1) = 0$ then $\alpha_{\mathcal{V}}(x) = 0$ for each $x \in [0,1]_{\mathbf{G}}$.







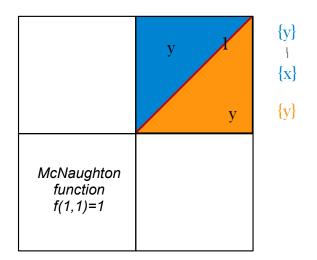




$Free_{\mathcal{MG}}(2)$

As before, if $\alpha(x, y)$ is a BL-term and we evaluate it in $\mathfrak A$ we have:

- If $\alpha_{\mathfrak{A}}(1,1)=1$ then there is a function $g\in \mathit{Free}_{\mathcal{G}}(2)$ such that $\alpha_{\mathfrak{A}}(x,y)=g(x,y)$ for every $(x,y)\in [0,1]^2_{\mathbf{G}}$.
- If $\alpha_{\mathfrak{A}}(1,1)=0$ then $\alpha_{\mathfrak{A}}(x,y)=0$ for every $(x,y)\in [0,1]^2_{\mathbf{G}}$.



	0
McNaughton function f(1,1)=0	

Proposition

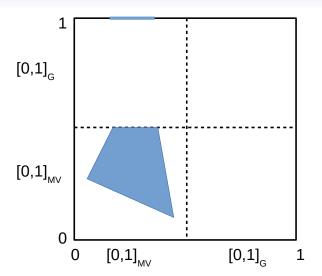
Let $\alpha(x,y)$ and $a \in [0,1]_{MV} \setminus \{1\}$. Then, if we evaluate α on \mathcal{MG} , it holds:

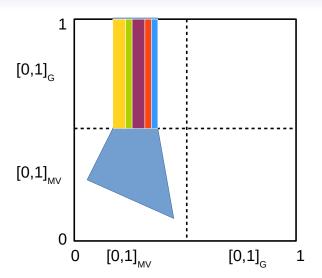
- If $\alpha_{\mathcal{MG}}(\mathsf{a},1) = c \in [0,1]_{MV} \setminus \{1\}$ then $\alpha_{\mathcal{MG}}(\mathsf{a},b) = c$ for every $b \in [0,1]_G$,
- If $\alpha_{\mathcal{MG}}(\mathsf{a},1)=1$ then there is a function $g\in \mathsf{Free}_{\mathcal{G}}(1)$ such that $\alpha_{\mathcal{MG}}(\mathsf{a},b)=g(b)$ for every $b\in [0,1]_{\mathcal{G}}$.

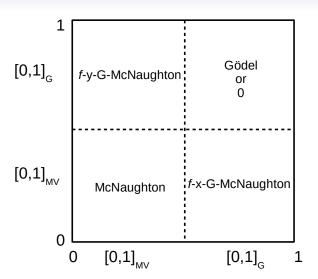
Definition

Let $f \in Free_{\mathcal{MV}}(2)$. If $A = \{x \in [0,1]_{MV} : f(x,1) = 1\}$ and $B = [0,1]_{MV} \setminus A$, we will say that $g : [0,1]_{MV} \times (0,1]_G \to \mathcal{MG}$ is an f-y-G-McNaughton function if:

- 1. For each $x_0 \in B$, $g(x_0, y) = f(x_0, 1)$, for every $y \in (0, 1]_G$.
- 2. There is a regular triangulation Δ of A which determines the simplexes $\sigma_1, \ldots, \sigma_n$ and functions $g_1, \ldots, g_n \in Free_{\mathcal{G}}(1)$ such that $g(x, y) = g_i(y)$, fur every x in the interior of σ_i .







$$Free_{\mathcal{MG}}(n)$$

Let $F \in Free_{\mathcal{MG}}(n)$. Then:

• For every $\bar{x} \in ([0,1]_{\mathbf{MV}})^n$,

$$F(\bar{x}) = f(\bar{x})$$

where f is a function of $Free_{\mathcal{MV}}(n)$.

For the rest of the domain, the functions depend on this function $f:([0,1]_{MV})^n \to [0,1]_{MV}$:

- On $([0,1]_{\mathbf{G}})^n$:
 - 1. If $f(\bar{1}) = 0$, then

$$F(\bar{x})=0$$

for every $\bar{x} \in ([0,1]_{\mathbf{G}})^n$.

2. If $f(\bar{1}) = 1$, then

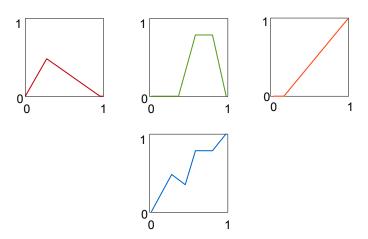
$$F(\bar{x}) = g(\bar{x})$$

for a function $g \in Free_{\mathcal{G}}(n)$, for every $\bar{x} \in ([0,1]_{\mathbf{G}})^n$.

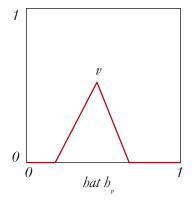
Let $B = \{x_{\sigma(1)}, \dots x_{\sigma(m)}\} \subsetneq \{x_1, \dots, x_n\}$ and R_B be the subset of $([0,1]_{MV} \oplus [0,1]_G)^n$ where $x_i \in B$ if and only if $x_i \in [0,1]_G$. For every $\bar{x} \in R_B$ we also define \tilde{x} as:

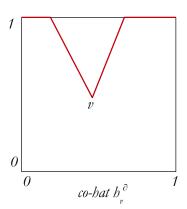
$$\tilde{x}_i = \begin{cases} x_i & \text{if} \quad x_i \notin B \\ \\ 1 & \text{if} \quad x_i \in B \end{cases}$$

- 1. If $f(\tilde{x}) < 1$ then $F(\bar{x}) = f(\tilde{x})$.
 - 2. If $f(\tilde{x}) = 1$, then there is a regular triangulation Δ of $f^{-1}(1) \wedge R_B$ which determines the simplices S_1, \ldots, S_k and k Gödel functions h_1, \ldots, h_n in n-m variables $x_{\sigma(m+1)}, \ldots, x_{\sigma(n)}$ such that $F(\bar{x}) = h_i(x_{\sigma(m+1)}, \ldots, x_{\sigma(n)})$ for each point $(x_{\sigma(1)}, \ldots, x_{\sigma(m)})$ in the interior of S_i .

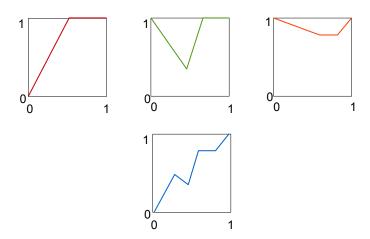


⁴Aguzzoli, S., Bova, S., The free *n*-generated BL-algebra, Ann. Pure Appl. Logic, 2010 vol. 161, N. 9, pag. 1144-1170.

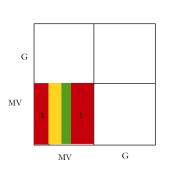


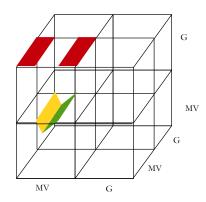


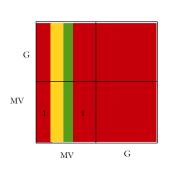
⁴Aguzzoli, S., Bova, S., The free *n*-generated BL-algebra, Ann. Pure Appl. Logic, 2010 vol. 161, N. 9, pag. 1144-1170.

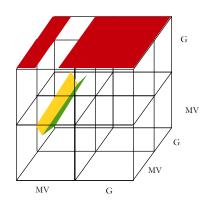


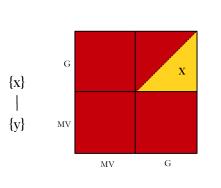
⁴Aguzzoli, S., Bova, S., The free *n*-generated BL-algebra, Ann. Pure Appl. Logic, 2010 vol. 161, N. 9, pag. 1144-1170.

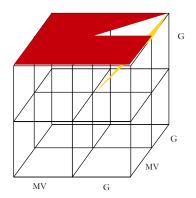


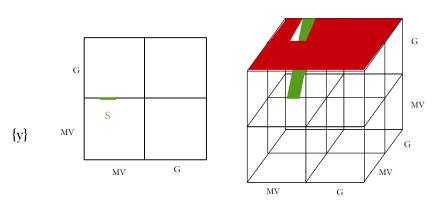












Thank you!