Selfextensional logics with a nearlattice term

LUCIANO GONZÁLEZ

Facultad de Ciencias Exactas y Naturales Universidad Nacional de La Pampa

XIV Congreso Dr. Antonio Monteiro Bahía Blanca 2017 We propose a definition of when a ternary term m can be considered as a distributive nearlattice term (DN-term) for a sentential logic S. We show that a selfextensional logics with a DN-term m can be characterized as the logics S for which there exists a class of algebras K such that the $\{m\}$ -reduct of the algebras of K are distributive nearlattices (DN-algebras) and the consequence relation of S can be defined using the order induced by m.

Distributive nearlattice

Definition

A distributive nearlattice (DN-algebra) is an algebra $\langle A, m \rangle$ of type (3) such that the following identities hold:

$$m(x,y,x) = x$$

- m(m(x, y, z), m(y, m(u, x, z), z), w) = m(w, w, m(y, m(x, u, z), z))
- m(x, x, m(y, z, w)) = m(m(x, x, y), m(x, x, z), w).

Proposition

Let $\langle A, m \rangle$ be a DN-algebra. If we define

 $x \vee y := m(x, x, y),$

then $\langle A, \lor \rangle$ is a join-semilattice such that for every $a \in A$, $\langle \uparrow a, \land_a, \lor \rangle$ is a distributive lattice. Moreover

 $m(x, y, z) = (x \lor z) \land_z (y \lor z).$

Distributive nearlattice

Definition

A distributive nearlattice (DN-algebra) is an algebra $\langle A, m \rangle$ of type (3) such that the following identities hold:

$$m(x,y,x) = x$$

m(m(x, y, z), m(y, m(u, x, z), z), w) = m(w, w, m(y, m(x, u, z), z))

$$m(x, x, m(y, z, w)) = m(m(x, x, y), m(x, x, z), w).$$

Proposition

Let $\langle A, m \rangle$ be a DN-algebra. If we define

 $x \lor y := m(x, x, y),$

then $\langle A, \vee \rangle$ is a join-semilattice such that for every $a \in A$, $\langle \uparrow a, \land_a, \vee \rangle$ is a distributive lattice. Moreover

 $m(x, y, z) = (x \lor z) \land_z (y \lor z).$

Selfextensional logics

Definition

Let $S = \langle Fm(\mathcal{L}), \vdash_S \rangle$ be a sentential logic. The **Frege relation** ΛS of S is the binary relation on $Fm(\mathcal{L})$ defined as:

 $(\varphi, \psi) \in \Lambda S \iff \varphi \vdash_S \psi \text{ and } \psi \vdash_S \varphi.$

Definition

A sentential logic S is said to be **selfextensional** if ΛS is a congruence on *Fm*.

Definition

Let S be a selfextensional logic. Let us denote:

• Alg(S) the canonical class of algebras associated with S;

• $K_S = \mathbb{V}(Fm/\Lambda S)$ called the intrinsic variety of *S*.

Selfextensional logics

Definition

Let $S = \langle Fm(\mathcal{L}), \vdash_S \rangle$ be a sentential logic. The **Frege relation** ΛS of S is the binary relation on $Fm(\mathcal{L})$ defined as:

$$(\varphi, \psi) \in \Lambda S \iff \varphi \vdash_S \psi \text{ and } \psi \vdash_S \varphi.$$

Definition

A sentential logic S is said to be **selfextensional** if ΛS is a congruence on *Fm*.

Definition

Let S be a selfextensional logic. Let us denote:

- Alg(S) the canonical class of algebras associated with S;
- $K_S = \mathbb{V}(Fm/\Lambda S)$ called the intrinsic variety of S.

Selfextensional logics

Definition

Let $S = \langle Fm(\mathcal{L}), \vdash_S \rangle$ be a sentential logic. The **Frege relation** ΛS of S is the binary relation on $Fm(\mathcal{L})$ defined as:

$$(\varphi, \psi) \in \Lambda S \iff \varphi \vdash_S \psi \text{ and } \psi \vdash_S \varphi.$$

Definition

A sentential logic S is said to be **selfextensional** if ΛS is a congruence on *Fm*.

Definition

Let S be a selfextensional logic. Let us denote:

- Alg(S) the canonical class of algebras associated with S;
- $K_{S} = \mathbb{V}(Fm/\Lambda S)$ called the intrinsic variety of S.

Let ${\mathcal L}$ be an arbitrary similarity type.

Definition

A class of algebras K is called **DN-class** if there is a ternary term *m* and for every algebra *A* of K, the *m*-reduct $\langle A, m^A \rangle$ is a DN-algebra.

Let m be a ternary term of \mathcal{L} . We consider:

• $x \lor y := m(x, x, y);$

and for every natural number *n*, we define inductively $m^{n-1}(x_1, \ldots, x_n, y)$ as follows:

•
$$m^0(x_1, y) := m(x_1, x_1, y) = x_1 \lor y;$$

• $m^{n-1}(x_1,\ldots,x_n,y) := m(m^{n-2}(x_1,\ldots,x_{n-1},y),x_n,y).$

Let ${\mathcal L}$ be an arbitrary similarity type.

Definition

A class of algebras K is called **DN-class** if there is a ternary term *m* and for every algebra *A* of K, the *m*-reduct $\langle A, m^A \rangle$ is a DN-algebra.

Let m be a ternary term of \mathcal{L} . We consider:

• $x \lor y := m(x, x, y);$

and for every natural number *n*, we define inductively $m^{n-1}(x_1, \ldots, x_n, y)$ as follows:

•
$$m^0(x_1, y) := m(x_1, x_1, y) = x_1 \lor y;$$

• $m^{n-1}(x_1,\ldots,x_n,y) := m(m^{n-2}(x_1,\ldots,x_{n-1},y),x_n,y).$

Let ${\mathcal L}$ be an arbitrary similarity type.

Definition

A class of algebras K is called **DN-class** if there is a ternary term *m* and for every algebra *A* of K, the *m*-reduct $\langle A, m^A \rangle$ is a DN-algebra.

Let *m* be a ternary term of \mathcal{L} . We consider:

• $x \lor y := m(x, x, y);$

and for every natural number *n*, we define inductively $m^{n-1}(x_1, \ldots, x_n, y)$ as follows:

•
$$m^0(x_1, y) := m(x_1, x_1, y) = x_1 \lor y;$$

• $m^{n-1}(x_1, \dots, x_n, y) := m(m^{n-2}(x_1, \dots, x_{n-1}, y), x_n, y).$

Definition \Lambda

A sentential logic S is said to be **DN-based** if and only if there is a ternary term m and DN-class of algebras K and it holds that

 $\varphi_1, \dots, \varphi_n \vdash_{\mathcal{S}} \varphi \iff (\forall A \in \mathbf{K}) (\forall h \in \operatorname{Hom}(Fm, A))$ $m^{n-1}(h\varphi_1, \dots, h\varphi_n, h\varphi) \le h\varphi$ $(h\varphi_1 \lor h\varphi) \land_{h\varphi} \dots \land_{h\varphi} (h\varphi_n \lor h\varphi) \le$

It follows that

$$\varphi_1, \dots, \varphi_n \vdash_{\mathcal{S}} \varphi \iff \mathbf{K} \models m^{n-1}(\varphi_1, \dots, \varphi_n, \varphi) \approx \varphi$$
$$\iff \mathbb{V}(\mathbf{K}) \models m^{n-1}(\varphi_1, \dots, \varphi_n, \varphi) \approx \varphi$$

Definition \Lambda

A sentential logic S is said to be **DN-based** if and only if there is a ternary term m and DN-class of algebras K and it holds that

 $\varphi_1, \dots, \varphi_n \vdash_{\mathcal{S}} \varphi \iff (\forall A \in \mathbf{K}) (\forall h \in \operatorname{Hom}(Fm, A))$ $m^{n-1}(h\varphi_1, \dots, h\varphi_n, h\varphi) \le h\varphi$ $(h\varphi_1 \lor h\varphi) \land_{h\varphi} \dots \land_{h\varphi} (h\varphi_n \lor h\varphi) \le h\varphi.$

It follows that

$$\varphi_1, \dots, \varphi_n \vdash_{\mathcal{S}} \varphi \iff \mathbf{K} \models m^{n-1}(\varphi_1, \dots, \varphi_n, \varphi) \approx \varphi$$
$$\iff \mathbb{V}(\mathbf{K}) \models m^{n-1}(\varphi_1, \dots, \varphi_n, \varphi) \approx \varphi$$

Definition

A sentential logic S is said to be **DN-based** if and only if there is a ternary term m and DN-class of algebras K and it holds that

 $\varphi_1, \dots, \varphi_n \vdash_{\mathcal{S}} \varphi \iff (\forall A \in \mathbf{K}) (\forall h \in \operatorname{Hom}(Fm, A))$ $m^{n-1}(h\varphi_1, \dots, h\varphi_n, h\varphi) \le h\varphi$ $(h\varphi_1 \lor h\varphi) \land_{h\varphi} \dots \land_{h\varphi} (h\varphi_n \lor h\varphi) \le h\varphi.$

It follows that

$$\varphi_1, \dots, \varphi_n \vdash_{\mathcal{S}} \varphi \iff \mathbf{K} \models m^{n-1}(\varphi_1, \dots, \varphi_n, \varphi) \approx \varphi$$
$$\iff \mathbb{V}(\mathbf{K}) \models m^{n-1}(\varphi_1, \dots, \varphi_n, \varphi) \approx \varphi$$

$$\varphi \dashv _{\mathcal{S}} \psi \iff \mathbf{K} \models \varphi \approx \psi \iff \mathbb{V}(\mathbf{K}) \models \varphi \approx \psi.$$

Definition

A sentential logic S is said to be **DN-based** if and only if there is a ternary term m and DN-class of algebras K and it holds that

 $\varphi_1, \dots, \varphi_n \vdash_{\mathcal{S}} \varphi \iff (\forall A \in \mathsf{K})(\forall h \in \operatorname{Hom}(Fm, A))$ $m^{n-1}(h\varphi_1, \dots, h\varphi_n, h\varphi) \le h\varphi$ $(h\varphi_1 \lor h\varphi) \land_{h\varphi} \dots \land_{h\varphi} (h\varphi_n \lor h\varphi) \le h\varphi.$

It follows that

$$\varphi_1, \dots, \varphi_n \vdash_{\mathcal{S}} \varphi \iff \mathbf{K} \models m^{n-1}(\varphi_1, \dots, \varphi_n, \varphi) \approx \varphi$$
$$\iff \mathbb{V}(\mathbf{K}) \models m^{n-1}(\varphi_1, \dots, \varphi_n, \varphi) \approx \varphi$$

$$\varphi \twoheadrightarrow_{\mathcal{S}} \psi \iff \mathbf{K} \models \varphi \approx \psi \iff \mathbb{V}(\mathbf{K}) \models \varphi \approx \psi.$$

Let S be a DN-based logic. Then, for all $\varphi, \psi, \chi \in Fm$, the following properties hold:

(B1) $\varphi \lor \psi \vdash_{S} \chi$ if and only if $\varphi \vdash_{S} \chi$ and $\psi \vdash_{S} \chi$;

(B2) $m(\varphi, \psi, \chi) \vdash_{S} \varphi \lor \chi$ and $m(\varphi, \psi, \chi) \vdash_{S} \psi \lor \chi$;

(B3) $\varphi \lor \chi, \psi \lor \chi \vdash_{\mathcal{S}} m(\varphi, \psi, \chi);$

(B4) if $\varphi_1, \ldots, \varphi_n \vdash_S \varphi$, then $m^{n-1}(\varphi_1, \ldots, \varphi_n, \varphi) \vdash_S \varphi$.

Proof.

 $\varphi \vdash_{\mathcal{S}} \psi \iff (\forall A \in \mathbf{K})(\forall h \in \operatorname{Hom}(Fm, A))(h(\varphi) \le h(\psi))^{\vartriangle}$

• Since for all $A \in K$, \vee is a join operation on A;

Let S be a DN-based logic. Then, for all $\varphi, \psi, \chi \in Fm$, the following properties hold:

(B1) $\varphi \lor \psi \vdash_{S} \chi$ if and only if $\varphi \vdash_{S} \chi$ and $\psi \vdash_{S} \chi$;

(B2) $m(\varphi, \psi, \chi) \vdash_{S} \varphi \lor \chi$ and $m(\varphi, \psi, \chi) \vdash_{S} \psi \lor \chi$;

(B3) $\varphi \lor \chi, \psi \lor \chi \vdash_{\mathcal{S}} m(\varphi, \psi, \chi);$

(B4) if $\varphi_1, \ldots, \varphi_n \vdash_S \varphi$, then $m^{n-1}(\varphi_1, \ldots, \varphi_n, \varphi) \vdash_S \varphi$.

Proof.

 $\varphi \vdash_{\mathcal{S}} \psi \iff (\forall A \in \mathbf{K})(\forall h \in \operatorname{Hom}(Fm, A))(h(\varphi) \le h(\psi))$

• Since for all $A \in K$, \vee is a join operation on A;

Let S be a DN-based logic. Then, for all $\varphi, \psi, \chi \in Fm$, the following properties hold:

(B1) $\varphi \lor \psi \vdash_{S} \chi$ if and only if $\varphi \vdash_{S} \chi$ and $\psi \vdash_{S} \chi$;

(B2) $m(\varphi, \psi, \chi) \vdash_{S} \varphi \lor \chi$ and $m(\varphi, \psi, \chi) \vdash_{S} \psi \lor \chi$;

(B3) $\varphi \lor \chi, \psi \lor \chi \vdash_{\mathcal{S}} m(\varphi, \psi, \chi);$

(B4) if $\varphi_1, \ldots, \varphi_n \vdash_S \varphi$, then $m^{n-1}(\varphi_1, \ldots, \varphi_n, \varphi) \vdash_S \varphi$.

Proof.

$\varphi \vdash_{\mathcal{S}} \psi \iff (\forall A \in \mathbf{K})(\forall h \in \operatorname{Hom}(Fm, A))(h(\varphi) \le h(\psi)) \land \land$

• Since for all $A \in K$, \lor is a join operation on A;

Let S be a DN-based logic. Then, for all $\varphi, \psi, \chi \in Fm$, the following properties hold:

(B1) $\varphi \lor \psi \vdash_{S} \chi$ if and only if $\varphi \vdash_{S} \chi$ and $\psi \vdash_{S} \chi$;

(B2) $m(\varphi, \psi, \chi) \vdash_{S} \varphi \lor \chi$ and $m(\varphi, \psi, \chi) \vdash_{S} \psi \lor \chi$;

 $(\mathsf{B3}) \ \varphi \lor \chi, \psi \lor \chi \vdash_{\mathcal{S}} m(\varphi, \psi, \chi);$

(B4) if $\varphi_1, \ldots, \varphi_n \vdash_S \varphi$, then $m^{n-1}(\varphi_1, \ldots, \varphi_n, \varphi) \vdash_S \varphi$.

Proof.

- $\varphi \vdash_{\mathcal{S}} \psi \iff (\forall A \in \mathbf{K})(\forall h \in \operatorname{Hom}(Fm, A))(h(\varphi) \le h(\psi))^{\wedge}$
- Since for all $A \in K$, \lor is a join operation on A;

Let S be a DN-based logic. Then, for all $\varphi, \psi, \chi \in Fm$, the following properties hold:

- $(\mathsf{B1}) \ \varphi \lor \psi \vdash_{\mathcal{S}} \chi \text{ if and only if } \varphi \vdash_{\mathcal{S}} \chi \text{ and } \psi \vdash_{\mathcal{S}} \chi;$
- (B2) $m(\varphi, \psi, \chi) \vdash_{\mathcal{S}} \varphi \lor \chi$ and $m(\varphi, \psi, \chi) \vdash_{\mathcal{S}} \psi \lor \chi$;

(B3) $\varphi \lor \chi, \psi \lor \chi \vdash_{\mathcal{S}} m(\varphi, \psi, \chi);$

(B4) if $\varphi_1, \ldots, \varphi_n \vdash_S \varphi$, then $m^{n-1}(\varphi_1, \ldots, \varphi_n, \varphi) \vdash_S \varphi$.

Proof.

- $\varphi \vdash_{\mathcal{S}} \psi \iff (\forall A \in \mathbf{K})(\forall h \in \operatorname{Hom}(Fm, A))(h(\varphi) \le h(\psi))^{\triangle}$
- Since for all $A \in K$, \lor is a join operation on A;
- and since $m(a, b, c) = (a \lor c) \land_c (b \lor c)$

Let S be a DN-based logic. Then, for all $\varphi, \psi, \chi \in Fm$, the following properties hold:

- $(\mathsf{B1}) \ \varphi \lor \psi \vdash_{\mathcal{S}} \chi \text{ if and only if } \varphi \vdash_{\mathcal{S}} \chi \text{ and } \psi \vdash_{\mathcal{S}} \chi;$
- (B2) $m(\varphi, \psi, \chi) \vdash_{\mathcal{S}} \varphi \lor \chi$ and $m(\varphi, \psi, \chi) \vdash_{\mathcal{S}} \psi \lor \chi$;
- $(\mathsf{B3}) \ \varphi \lor \chi, \psi \lor \chi \vdash_{\mathcal{S}} m(\varphi, \psi, \chi);$

(B4) if $\varphi_1, \ldots, \varphi_n \vdash_S \varphi$, then $m^{n-1}(\varphi_1, \ldots, \varphi_n, \varphi) \vdash_S \varphi$.

Proof.

- $\varphi \vdash_{\mathcal{S}} \psi \iff (\forall A \in \mathbf{K})(\forall h \in \operatorname{Hom}(Fm, A))(h(\varphi) \le h(\psi))^{\triangle}$
- Since for all $A \in K$, \lor is a join operation on A;
- and since $m(a, b, c) = (a \lor c) \land_c (b \lor c)$

Let S be a DN-based logic. Then, for all $\varphi, \psi, \chi \in Fm$, the following properties hold:

- $(\mathsf{B1}) \ \varphi \lor \psi \vdash_{\mathcal{S}} \chi \text{ if and only if } \varphi \vdash_{\mathcal{S}} \chi \text{ and } \psi \vdash_{\mathcal{S}} \chi;$
- (B2) $m(\varphi, \psi, \chi) \vdash_{\mathcal{S}} \varphi \lor \chi$ and $m(\varphi, \psi, \chi) \vdash_{\mathcal{S}} \psi \lor \chi$;
- $(\mathsf{B3}) \ \varphi \lor \chi, \psi \lor \chi \vdash_{\mathcal{S}} m(\varphi, \psi, \chi);$
- (B4) if $\varphi_1, \ldots, \varphi_n \vdash_{\mathcal{S}} \varphi$, then $m^{n-1}(\varphi_1, \ldots, \varphi_n, \varphi) \vdash_{\mathcal{S}} \varphi$.

Proof.

- $\varphi \vdash_{\mathcal{S}} \psi \iff (\forall A \in \mathbf{K})(\forall h \in \operatorname{Hom}(Fm, A))(h(\varphi) \le h(\psi))^{\wedge}$
- Since for all $A \in K$, \lor is a join operation on A;
- and since $m(a, b, c) = (a \lor c) \land_c (b \lor c)$

Let ${\mathcal S}$ be a DN-based logic. Then ${\mathcal S}$ is selfextensional and $\mathbb{V}(K)=K_{\mathcal S}.$

Proof.

S is selfextensional because

$$(\varphi,\psi)\in\Lambda S\iff\varphi\dashv\vdash_{S}\psi\iff\mathbb{V}(\mathbb{K})\models\varphi\approx\psi.$$

Then

 $\mathbb{V}(\mathbb{K}) \models \varphi \approx \psi \iff \varphi \dashv_{\mathsf{S}} \psi \iff \mathbb{K}_{\mathcal{S}} \models \varphi \approx \psi.$

Let S be a DN-based logic. Then S is selfextensional and $\mathbb{V}(K) = K_S$.

Proof.

 ${\mathcal S}$ is selfextensional because

$$(\varphi,\psi)\in\Lambda\mathcal{S}\iff\varphi\dashv\vdash_{\mathcal{S}}\psi\iff\mathbb{V}(\mathsf{K})\models\varphi\approx\psi.$$

Then

$$\mathbb{V}(\mathbf{K}) \models \varphi \approx \psi \iff \varphi \Vdash_{\mathcal{S}} \psi \iff \mathbf{K}_{\mathcal{S}} \models \varphi \approx \psi.$$

Definition

Let S be a sentential logic. A ternary term m is said to be a **DN-term** of S if S satisfies properties (B1)-(B4) with respect to m.

Theorem

Let S be logic and m a ternary term of S. Then, S is a DN-based logic relative to m if and only if S is selfextensional and m is a DN-term.

Proof.

 (\Rightarrow) It follows from the two previous proposition.

Definition

Let S be a sentential logic. A ternary term m is said to be a **DN-term** of S if S satisfies properties (B1)-(B4) with respect to m.

Theorem

Let S be logic and m a ternary term of S. Then, S is a DN-based logic relative to m if and only if S is selfextensional and m is a DN-term.

Proof.

 (\Rightarrow) It follows from the two previous proposition.

Definition

Let S be a sentential logic. A ternary term m is said to be a **DN-term** of S if S satisfies properties (B1)-(B4) with respect to m.

Theorem

Let S be logic and m a ternary term of S. Then, S is a DN-based logic relative to m if and only if S is selfextensional and m is a DN-term.

Proof.

 (\Rightarrow) It follows from the two previous proposition.

Let S be logic and m a ternary term of S. Then, S is a DN-based logic relative to m if and only if S is selfextensional and m is a DN-term.

Proof.

(\Leftarrow) Since *S* is selfextensional, ΛS is a congruence on *Fm* and thus $Fm^* := Fm/\Lambda S$ is an algebra. By properties (B1)-(B4) we have that $\langle Fm^*, m^* \rangle$, with

$$m^*(\overline{\varphi}, \overline{\psi}, \overline{\chi}) = \overline{m(\varphi, \psi, \chi)},$$

is a DN-algebra and moreover, S is a DN-based logic with respect to $\{Fm^*\}$.

Let ${\mathcal S}$ be a DN-based logic. Then:

• Alg(S) = K_S;

2 Alg(S) is a variety;

3 S is DN-based relative to Alg(S).

Let ${\mathcal S}$ be a DN-based logic. Then:

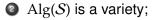
• Alg(S) = K_S;

2 Alg(S) is a variety;

3 S is DN-based relative to Alg(S).

Let ${\mathcal S}$ be a DN-based logic. Then:

• Alg(
$$S$$
) = K _{S} ;



3 S is DN-based relative to Alg(S).

Let ${\mathcal S}$ be a DN-based logic. Then:

• Alg(
$$S$$
) = K_S;

- **2** Alg(S) is a variety;
- **③** S is DN-based relative to Alg(S).

Let \mathcal{L} be an algebraic language and m a ternary term of \mathcal{L} .

- S_m(L) := {S : S is a DN-based and non-pseudo axiomatic logic}.
- K_m(L) := {K : K is a subvariety of the variety over L
 axiomatized by the DN-algebra equations}.

Theorem

 $S_m(\mathcal{L})$ and $\mathbb{K}_m(\mathcal{L})$ are dual order-isomorphic.

 $\mathcal{S} \mapsto \mathcal{K}_{\mathcal{S}}$

$K \mapsto \mathcal{S}_k$

$$\begin{split} \varphi_1, \dots, \varphi_n \vdash_{\mathcal{S}_{\mathcal{K}}} \varphi &\iff (\forall A \in \mathcal{K}) (\forall h \in \operatorname{Hom}(Fm, A)) \\ m^{n-1}(h\varphi_1, \dots, h\varphi_n, h\varphi) \leq h\varphi \\ \emptyset \vdash_{\mathcal{S}_{\mathcal{K}}} \varphi &\iff (\forall A \in \mathcal{K}) (\forall h \in \operatorname{Hom}(Fm, A)) \\ (\forall a \in A) (a \leq h(\varphi)). \end{split}$$

Let *L* be an algebraic language and *m* a ternary term of *L*. \$m(L) := {S : S is a DN-based and non-pseudo axiomatic logic}.

 K_m(L) := {K : K is a subvariety of the variety over L
 axiomatized by the DN-algebra equations}.

Theorem

 $\mathbb{S}_m(\mathcal{L})$ and $\mathbb{K}_m(\mathcal{L})$ are dual order-isomorphic.

 $\mathcal{S} \mapsto \mathrm{K}_{\mathcal{S}}$

$K \mapsto \mathcal{S}_k$

 $\varphi_{1}, \dots, \varphi_{n} \vdash_{\mathcal{S}_{K}} \varphi \iff (\forall A \in K)(\forall h \in \operatorname{Hom}(Fm, A))$ $m^{n-1}(h\varphi_{1}, \dots, h\varphi_{n}, h\varphi) \leq h\varphi$ $\emptyset \vdash_{\mathcal{S}_{K}} \varphi \iff (\forall A \in K)(\forall h \in \operatorname{Hom}(Fm, A))$ $(\forall a \in A)(a \leq h(\varphi)).$

Let \mathcal{L} be an algebraic language and m a ternary term of \mathcal{L} .

- \$\mathbf{S}_m(\mathcal{L}) := {\mathcal{S} : \mathcal{S}\$ is a DN-based and non-pseudo axiomatic logic}.
- K_m(L) := {K : K is a subvariety of the variety over L
 axiomatized by the DN-algebra equations}.

Theorem

 $\mathbb{S}_m(\mathcal{L})$ and $\mathbb{K}_m(\mathcal{L})$ are dual order-isomorphic.

 $\mathcal{S} \mapsto \mathrm{K}_{\mathcal{S}}$

$K \mapsto \mathcal{S}_K$

 $\varphi_{1}, \dots, \varphi_{n} \vdash_{\mathcal{S}_{K}} \varphi \iff (\forall A \in K)(\forall h \in \operatorname{Hom}(Fm, A))$ $m^{n-1}(h\varphi_{1}, \dots, h\varphi_{n}, h\varphi) \leq h\varphi$ $\emptyset \vdash_{\mathcal{S}_{K}} \varphi \iff (\forall A \in K)(\forall h \in \operatorname{Hom}(Fm, A))$ $(\forall a \in A)(a \leq h(\varphi)).$

Let \mathcal{L} be an algebraic language and m a ternary term of \mathcal{L} .

- \$\mathbf{S}_m(\mathcal{L}) := {\mathcal{S} : \mathcal{S}\$ is a DN-based and non-pseudo axiomatic logic}.
- K_m(L) := {K : K is a subvariety of the variety over L
 axiomatized by the DN-algebra equations}.

Theorem

 $\mathfrak{S}_m(\mathcal{L})$ and $\mathbb{K}_m(\mathcal{L})$ are dual order-isomorphic.

$\mathcal{S} \mapsto \mathrm{K}_{\mathcal{S}}$

$K \mapsto \mathcal{S}_K$

 $\varphi_{1}, \dots, \varphi_{n} \vdash_{\mathcal{S}_{K}} \varphi \iff (\forall A \in K) (\forall h \in \operatorname{Hom}(Fm, A))$ $m^{n-1}(h\varphi_{1}, \dots, h\varphi_{n}, h\varphi) \leq h\varphi$ $\emptyset \vdash_{\mathcal{S}_{K}} \varphi \iff (\forall A \in K) (\forall h \in \operatorname{Hom}(Fm, A))$ $(\forall a \in A)(a \leq h(\varphi)).$

Let \mathcal{L} be an algebraic language and m a ternary term of \mathcal{L} .

- \$\mathbf{S}_m(\mathcal{L}) := {\mathcal{S} : \mathcal{S}\$ is a DN-based and non-pseudo axiomatic logic}.
- K_m(L) := {K : K is a subvariety of the variety over L
 axiomatized by the DN-algebra equations}.

Theorem

 $S_m(\mathcal{L})$ and $\mathbb{K}_m(\mathcal{L})$ are dual order-isomorphic.

$\mathcal{S} \mapsto K_{\mathcal{S}}$

$K \mapsto \mathcal{S}_k$

$$\begin{split} \varphi_{1}, \dots, \varphi_{n} \vdash_{\mathcal{S}_{K}} \varphi &\iff (\forall A \in K) (\forall h \in \operatorname{Hom}(Fm, A)) \\ m^{n-1}(h\varphi_{1}, \dots, h\varphi_{n}, h\varphi) \leq h\varphi \\ \emptyset \vdash_{\mathcal{S}_{K}} \varphi &\iff (\forall A \in K) (\forall h \in \operatorname{Hom}(Fm, A)) \\ (\forall a \in A)(a \leq h(\varphi)). \end{split}$$

Let \mathcal{L} be an algebraic language and m a ternary term of \mathcal{L} .

- \$\mathbf{S}_m(\mathcal{L}) := {\mathcal{S} : \mathcal{S}\$ is a DN-based and non-pseudo axiomatic logic}.
- K_m(L) := {K : K is a subvariety of the variety over L
 axiomatized by the DN-algebra equations}.

Theorem

 $S_m(\mathcal{L})$ and $\mathbb{K}_m(\mathcal{L})$ are dual order-isomorphic.

 $\mathcal{S} \mapsto K_{\mathcal{S}}$

 $K \mapsto \mathcal{S}_K$

$$\begin{split} \varphi_1, \dots, \varphi_n \vdash_{\mathcal{S}_{\mathsf{K}}} \varphi & \longleftrightarrow \quad (\forall A \in \mathsf{K})(\forall h \in \operatorname{Hom}(Fm, A)) \\ m^{n-1}(h\varphi_1, \dots, h\varphi_n, h\varphi) & \leq h\varphi \\ \emptyset \vdash_{\mathcal{S}_{\mathsf{K}}} \varphi & \longleftrightarrow \quad (\forall A \in \mathsf{K})(\forall h \in \operatorname{Hom}(Fm, A)) \\ (\forall a \in A)(a \leq h(\varphi)). \end{split}$$

Muchas Gracias!

 I. Chajda, R. Halaš, and J. Kühr. Semilattice structures, volume 30. Heldermann, Lemgo, 2007.

[2] R. Jansana.
 Selfextensional logics with implication.
 In J-Y. Beziau, editor, *Logica Universalis*, pages 65–88.
 Springer, 2005.

[3] R. Jansana.

Selfextensional logics with a conjunction.

Studia Logica, 84(1):63–104, 2006.