El teorema de foliación simpléctica y la Grassmanniana restringida

Claudia Damaris Alvarado

Dpto. de Matemática, FCE - UNLP

Introducción

- 1 Teorema de foliación simpléctica: Caso finito.
- 2 Teorema de foliación simpléctica: Caso infinito.
- 3 La Grassmanniana restringida.

Variedades de Poisson

Definición (Variedad de Poisson)

Una variedad de Poisson es un par $(M, \{\cdot, \cdot\})$ donde M es una variedad $y \{\cdot, \cdot\}$ es una operación bilineal en $C^{\infty}(M)$ tal que:

- $(C^{\infty}(M), \{\cdot, \cdot\})$ es un álgebra de Lie;
- $\{\cdot,\cdot\}$ es una derivación en cada factor, es decir,

$${fg,h} = {f,h}g + f{g,h},$$

para toda $f, g, h \in C^{\infty}(M)$.

Observación: si $h \in C^{\infty}(M)$, $\exists ! X_h$ en M tal que

$$\{g,h\} = X_h[g] = -X_g[h] = \mathbf{d}g(X_h) = -\mathbf{d}h(X_g),$$

para todo $g \in C^{\infty}(M)$. Llamamos X_h el **campo vectorial Hamiltoniano** de h.

Variedades de Poisson

Definición (Variedad de Poisson)

Una variedad de Poisson es un par $(M, \{\cdot, \cdot\})$ donde M es una variedad $y \{\cdot, \cdot\}$ es una operación bilineal en $C^{\infty}(M)$ tal que:

- $(C^{\infty}(M), \{\cdot, \cdot\})$ es un álgebra de Lie;
- $\{\cdot,\cdot\}$ es una derivación en cada factor, es decir,

$$\{fg,h\} = \{f,h\}g + f\{g,h\},$$

para toda $f, g, h \in C^{\infty}(M)$.

Observación: si $h \in C^{\infty}(M)$, $\exists ! X_h$ en M tal que

$$\{g,h\} = X_h[g] = -X_g[h] = \mathbf{d}g(X_h) = -\mathbf{d}h(X_g),$$

para todo $g \in C^{\infty}(M)$. Llamamos X_h el **campo vectorial Hamiltoniano** de h. Consideramos el conjunto:

$$S_{z_0}(M) = \{ v \in T_{z_0}M : \exists f \in C^{\infty}(M), X_f(z_0) = v \}, z_0 \in M.$$

Es llamada la *distribución característica* de la variedad de Poisson *M*.

Foliación simpléctica

Teorema (Teorema de Foliación Simpléctica)

La distribución característica S(M) de la variedad de Poisson $(M, \{\cdot, \cdot\})$ es completamente integrable, y la estructura de Poisson induce estructuras simplécticas en las hojas de S(M).

Foliación simpléctica

Teorema (Teorema de Foliación Simpléctica)

La distribución característica S(M) de la variedad de Poisson $(M, \{\cdot, \cdot\})$ es completamente integrable, y la estructura de Poisson induce estructuras simplécticas en las hojas de S(M).

Ejemplo (g = álgebra de Lie)

g* es una variedad de Poisson con respecto a cada corchete de Lie-Poisson {·,·}± definido por {f, g}±(x) = ±⟨x, [df(x), dg(x)]⟩, para todo x ∈ g*.
Hojas simplécticas = las órbitas de la representación coadjunta de cualquier grupo de Lie conexo G.

Foliación simpléctica

Teorema (Teorema de Foliación Simpléctica)

La distribución característica S(M) de la variedad de Poisson $(M, \{\cdot, \cdot\})$ es completamente integrable, y la estructura de Poisson induce estructuras simplécticas en las hojas de S(M).

Ejemplo (\mathfrak{g} = álgebra de Lie)

- g* es una variedad de Poisson con respecto a cada corchete de Lie-Poisson {·,·}± definido por {f, g}±(x) = ±⟨x, [df(x), dg(x)]⟩, para todo x ∈ g*. Hojas simplécticas = las órbitas de la representación coadjunta de cualquier grupo de Lie conexo G.
- ② $\Theta = 2$ -cociclo simpléctico de \mathfrak{g} . Sea $\{f,g\}_{\Theta}(x) = \langle x, [\mathbf{d}f(x),\mathbf{d}g(x)] \rangle \Theta(\mathbf{d}f(x),\mathbf{d}g(x)), \ \forall f,g \in \mathcal{C}^{\infty}(\mathfrak{g}^*), \ y \ \forall x \in \mathfrak{g}^*.$ Se denomina la **estructura de Lie-Poisson modificada** de \mathfrak{g}^* asociada al 2-cociclo simpléctico Θ .

Hojas simplécticas = las órbitas de la acción afín $a_{\theta}: G \times \mathfrak{g}^* \longrightarrow \mathfrak{g}^*$ definida por $a_{\theta}(g,\xi) = Ad_g^*\xi + \theta(g)$, para G grupo de Lie conexo g g = cociclo simpléctico de g.

 $\mathfrak{b}=$ espacio de Banach $\mathfrak{b}^*=$ espacio de Banach dual de $\mathfrak{b}.$

 $\mathfrak{b} = \text{espacio de Banach. } \mathfrak{b}^* = \text{espacio de Banach dual de } \mathfrak{b}.$ Vimos: $\mathfrak{g} = \text{álgebra de Lie}, \mathfrak{g}^*$ su dual, admite la estructura de Lie-Poisson.

Definición (EBLP)

 \mathfrak{b} es un **espacio de Banach Lie-Poisson** si su dual \mathfrak{b}^* es un álgebra de Lie-Banach tal que $ad_*^*\mathfrak{b} \subseteq \mathfrak{b} \subseteq \mathfrak{b}^{**}, \forall x \in \mathfrak{b}^*.$

 $\mathfrak{b}=$ espacio de Banach. $\mathfrak{b}^*=$ espacio de Banach dual de $\mathfrak{b}.$

Vimos: $\mathfrak{g} = \text{álgebra de Lie}, \mathfrak{g}^*$ su dual, admite la estructura de Lie-Poisson.

Definición (EBLP)

 \mathfrak{b} es un **espacio de Banach Lie-Poisson** si su dual \mathfrak{b}^* es un álgebra de Lie-Banach tal que $ad_x^*\mathfrak{b} \subseteq \mathfrak{b} \subseteq \mathfrak{b}^{**}, \forall x \in \mathfrak{b}^*.$

El corchete de Poisson de $f,g\in\mathcal{C}^\infty(\mathfrak{b})$ está dado por

$${f,g}(b) = \langle [Df(b), Dg(b)], b \rangle.$$

Si $h \in \mathcal{C}^{\infty}(\mathfrak{b})$, el campo vectorial Hamiltoniano asociado a h está dado por

$$X_h(b) = -\mathrm{ad}_{Dh(b)}^* b.$$

 $\mathfrak{b} = \text{espacio de Banach}$. $\mathfrak{b}^* = \text{espacio de Banach dual de } \mathfrak{b}$.

Vimos: $\mathfrak{g}=$ álgebra de Lie, \mathfrak{g}^* su dual, admite la estructura de Lie-Poisson.

Definición (EBLP)

 \mathfrak{b} es un **espacio de Banach Lie-Poisson** si su dual \mathfrak{b}^* es un álgebra de Lie-Banach tal que $ad_x^*\mathfrak{b} \subseteq \mathfrak{b} \subseteq \mathfrak{b}^{**}, \forall x \in \mathfrak{b}^*.$

El corchete de Poisson de $f,g\in\mathcal{C}^\infty(\mathfrak{b})$ está dado por

$${f,g}(b) = \langle [Df(b), Dg(b)], b \rangle.$$

Si $h \in \mathcal{C}^{\infty}(\mathfrak{b})$, el campo vectorial Hamiltoniano asociado a h está dado por

$$X_h(b) = -\mathrm{ad}_{Dh(b)}^* b.$$

El subespacio vectorial

$$S_{\rho} := \{ \operatorname{ad}_{\xi}^* \rho : \xi \in \mathfrak{b}^* \} \subset \mathfrak{b}$$

es llamado *subespacio característico* en ρ .

$$S:=\{S_{\rho}\}_{\rho\in\mathfrak{b}}$$

la distribución característica de la estructura de Poisson.

Teorema de foliación simpléctica: caso infinito

Estructura de Lie-Poisson: consideramos G grupo de Lie y L_g la traslación a izquierda. Supongamos que

- g admite un predual g*;
- $\operatorname{Ad}_{g}^{*}(\mathfrak{g}_{*}) \subset \mathfrak{g}_{*}$, para cualquier g;
- fijando $\rho \in \mathfrak{g}_*$, el grupo $G_\rho := \{g \in G : \operatorname{Ad}_g^* \rho = \rho\}$ es un subgrupo de Lie de G.

Teorema de foliación simpléctica: caso infinito

Estructura de Lie-Poisson: consideramos G grupo de Lie y L_g la traslación a izquierda. Supongamos que

- g admite un predual g*;
- $\operatorname{Ad}_{g}^{*}(\mathfrak{g}_{*}) \subset \mathfrak{g}_{*}$, para cualquier g;
- fijando $\rho \in \mathfrak{g}_*$, el grupo $G_\rho := \{g \in G : \operatorname{Ad}_g^* \rho = \rho\}$ es un subgrupo de Lie de G.

Entonces

• G/G_{ρ} admite una estructura de variedad suave débilmente simpléctica relativa a la 2-forma

$$(\omega_{\rho})_{[g]}(T_g\pi(T_eL_g\xi),T_g\pi(T_eL_g\eta)):=\langle \rho,[\xi,\eta]\rangle$$

donde $\xi, \eta \in \mathfrak{g}, g \in G, [g] := \pi(g) = gG_{\rho}, y\langle \cdot, \cdot \rangle : \mathfrak{g}_* \times \mathfrak{g} \longrightarrow \mathbb{R}$ es la bilineal canónica entre \mathfrak{g}_* y \mathfrak{g} ;

• Hojas simplécticas del EBLP \mathfrak{g}_* : las componentes conexas de la órbita coadjunta $\mathcal{O} = \{ \mathrm{Ad}_g^* \rho : g \in G \}$.

El espacio proyectivo infinito dimensional

 $\mathcal{H}=$ espacio de Hilbert. $\mathcal{U}(\mathcal{H})=$ operadores unitarios. Su álgebra de Lie está dada por $\mathfrak{u}(\mathcal{H})=\{A\in\mathcal{B}(\mathcal{H}):\,A^*=-A\}.$ $\mathfrak{g}=\mathfrak{u}(\mathcal{H}),\,\mathfrak{g}_*=\mathfrak{G}_1(\mathcal{H})\cap\mathfrak{u}(\mathcal{H}).$

El espacio proyectivo infinito dimensional

 \mathcal{H} = espacio de Hilbert.

 $\mathcal{U}(\mathcal{H})=$ operadores unitarios. Su álgebra de Lie está dada por

$$\mathfrak{u}(\mathcal{H})=\{A\in\mathcal{B}(\mathcal{H}):\,A^*=-A\}.$$

$$\mathfrak{g} = \mathfrak{u}(\mathcal{H}), \mathfrak{g}_* = \mathfrak{G}_1(\mathcal{H}) \cap \mathfrak{u}(\mathcal{H}).$$

Corchete de Lie-Poisson: sean $f, g \in C^{\infty}(\mathfrak{g}_*), x \in \mathfrak{g}_*$

$$\{f,g\}(x) = \operatorname{tr}(x[Df(x),Dg(x)]).$$

Espacio Proyectivo: $x \in \mathcal{H}$, ||x|| = 1, $p_x = \langle \cdot, x \rangle x$

$$\mathbb{P}(\mathcal{H}) = \{upu^* : u \in \mathcal{U}(\mathcal{H})\} \cong S_{\mathcal{H}}/\mathbb{T}$$

es una hoja simpléctica fuerte en \mathfrak{g}_* .

Estructura simpléctica a través de $p_{x_0} \in \mathfrak{g}_*$:

$$(\omega_{p_{x_0}})_{up_{x_0}u^*}([x, up_{x_0}u^*], [y, up_{x_0}u^*]) = itr(p_{x_0}[x, y]) = 2Im\langle xx_0, yx_0\rangle,$$

donde $x, y \in \mathfrak{u}(\mathcal{H})$

La Grassmanniana restringida

```
\mathcal{H}= espacio de Hilbert separable: \mathcal{H}=\mathcal{H}_+\oplus\mathcal{H}_-. p_+ y p_- las proyecciones ortogonales sobre \mathcal{H}_+, \mathcal{H}_-. \mathfrak{G}_2(\mathcal{H})= operadores de Hilbert-Schmidt en \mathcal{H}.
```

La Grassmanniana restringida

```
\mathcal{H}= espacio de Hilbert separable: \mathcal{H}=\mathcal{H}_+\oplus\mathcal{H}_-. p_+ y p_- las proyecciones ortogonales sobre \mathcal{H}_+, \mathcal{H}_-. \mathfrak{G}_2(\mathcal{H})= operadores de Hilbert-Schmidt en \mathcal{H}.
```

Definición

La **Grassmanniana restringida**, Gr_{res} , es el conjunto de todos los subespacios cerrados W de \mathcal{H} tales que:

- **1** la proyección ortogonal $p_+ \mid_W : W \longrightarrow \mathcal{H}_+$ es un operador de Fredholm, y
- 2 la proyección ortogonal $p_-|_W: W \longrightarrow \mathcal{H}_-$ es un operador de Hilbert-Schmidt.

La Grassmanniana restringida

 $\mathcal{H}=$ espacio de Hilbert separable: $\mathcal{H}=\mathcal{H}_+\oplus\mathcal{H}_-$. p_+ y p_- las proyecciones ortogonales sobre \mathcal{H}_+ , \mathcal{H}_- . $\mathfrak{G}_2(\mathcal{H})=$ operadores de Hilbert-Schmidt en \mathcal{H} .

Definición

La **Grassmanniana restringida**, Gr_{res} , es el conjunto de todos los subespacios cerrados W de \mathcal{H} tales que:

- **1** la proyección ortogonal $p_+ \mid_W: W \longrightarrow \mathcal{H}_+$ es un operador de Fredholm, y
- 2 la proyección ortogonal $p_- \mid_W: W \longrightarrow \mathcal{H}_-$ es un operador de Hilbert-Schmidt.

Observación

- $W \in Gr_{res}$ si y sólo si $p_W = \begin{pmatrix} x & a \\ a^* & y \end{pmatrix}$, donde x es Fredholm y $a, y \in \mathfrak{G}_2(\mathcal{H})$.
- $W \in Gr_{res} \Rightarrow dimW = dimW^{\perp} = \infty.$

El grupo unitario restringido

Definición

 $\mathcal{U}_{res} = \{U \in \mathcal{U}(\mathcal{H}) : [d, U] \text{ es un operador de Hilbert-Schmidt}\},$ donde $d := i(p_+ - p_-) \in \mathfrak{u}(\mathcal{H}).$ Es decir,

$$U = \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix} \in \mathcal{U}_{res} \iff u_{12}, u_{21} \text{ son H-S}$$

Componentes conexas de \mathcal{U}_{res} :

$$\mathcal{U}^k_{res} = \{ U \in \mathcal{U}(\mathcal{H}) : \operatorname{ind}(u_{11}) = k \}, \ k \in \mathbb{Z}.$$

Componentes conexas de Gr_{res}:

$$\operatorname{Gr}_{res}^k := \{ W \in \operatorname{Gr}_{res} : \operatorname{ind}(p_+ \mid_W) = k \}, \ k \in \mathbb{Z}.$$

 $U_{res} \curvearrowright Gr_{res}$: $U \cdot W = U(W) \iff U \cdot p_W = Up_W U^*$. La acción es transitiva.

El grupo unitario restringido

Definición

 $\mathcal{U}_{res} = \{U \in \mathcal{U}(\mathcal{H}) : [d, U] \text{ es un operador de Hilbert-Schmidt}\},$ donde $d := i(p_+ - p_-) \in \mathfrak{u}(\mathcal{H}).$ Es decir,

$$U = \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix} \in \mathcal{U}_{res} \iff u_{12}, u_{21} \text{ son } H\text{-}S$$

Componentes conexas de \mathcal{U}_{res} :

$$\mathcal{U}^k_{res} = \{ U \in \mathcal{U}(\mathcal{H}) : \operatorname{ind}(u_{11}) = k \}, \ k \in \mathbb{Z}.$$

Componentes conexas de Gr_{res}:

$$\mathrm{Gr}_{res}^k := \{W \in \mathrm{Gr}_{res} : \ \mathrm{ind}(p_+\mid_W) = k\}, \ k \in \mathbb{Z}.$$

 $\mathcal{U}_{res} \curvearrowright \operatorname{Gr}_{res}: U \cdot W = U(W) \iff U \cdot p_W = Up_W U^*.$

La acción es transitiva.

 $\operatorname{Gr}_{res} = \mathcal{U}_{res}/(\mathcal{U}(\mathcal{H}_+) \times \mathcal{U}(\mathcal{H}_-)) \Rightarrow \operatorname{Gr}_{res}$ es un espacio homogéneo de \mathcal{U}_{res} .

Gr_{res} espacio homogéneo

Identificamos

$$T_{\mathcal{H}_+} Gr_{res} \cong \mathfrak{u}_{res}/(\mathfrak{u}(\mathcal{H}_+) \times \mathfrak{u}(\mathcal{H}_-)) \cong \mathfrak{G}_2(\mathcal{H}_+, H_-)$$

Podemos definir $\omega_{Gr}(X,Y) := 2\mathrm{Im}(\mathrm{tr}(XY^*))$, donde $X,Y \in \mathfrak{G}_2(\mathcal{H}_+,\mathcal{H}_-)$. Así definida, $\omega_{Gr}(X,Y)$ es una forma simpléctica fuerte.

Gr_{res} espacio homogéneo

Identificamos

$$T_{\mathcal{H}_+} Gr_{res} \cong \mathfrak{u}_{res}/(\mathfrak{u}(\mathcal{H}_+) \times \mathfrak{u}(\mathcal{H}_-)) \cong \mathfrak{G}_2(\mathcal{H}_+, H_-)$$

Podemos definir $\omega_{Gr}(X,Y) := 2\mathrm{Im}(\mathrm{tr}(XY^*))$, donde $X,Y \in \mathfrak{G}_2(\mathcal{H}_+,\mathcal{H}_-)$. Así definida, $\omega_{Gr}(X,Y)$ es una forma simpléctica fuerte.

¿Es la Grassmanniana restringida una hoja simpléctica de un EBLP?

Gr_{res} espacio homogéneo

Identificamos

$$T_{\mathcal{H}_{+}}Gr_{res} \cong \mathfrak{u}_{res}/(\mathfrak{u}(\mathcal{H}_{+}) \times \mathfrak{u}(\mathcal{H}_{-})) \cong \mathfrak{G}_{2}(\mathcal{H}_{+}, H_{-})$$

Podemos definir $\omega_{Gr}(X,Y) := 2\mathrm{Im}(\mathrm{tr}(XY^*))$, donde $X,Y \in \mathfrak{G}_2(\mathcal{H}_+,\mathcal{H}_-)$. Así definida, $\omega_{Gr}(X,Y)$ es una forma simpléctica fuerte.

¿Es la Grassmanniana restringida una hoja simpléctica de un EBLP?

Consideramos el grupo de Lie-Hilbert

$$U_2 = \{ a \in \mathcal{U}(\mathcal{H}) : a - id \in \mathfrak{G}_2(\mathcal{H}) \},$$

y su álgebra de Lie

$$\mathfrak{u}_2=\mathfrak{u}(\mathcal{H})\cap\mathfrak{G}_2(\mathcal{H}).$$

Tomando $\operatorname{Gr}^0_{res} = \{W \in \operatorname{Gr}_{res} : \operatorname{ind}(p_+|_W) = 0\}$, tenemos que $U_2 \curvearrowright \operatorname{Gr}^0_{res}$. Más aún esta acción es transitiva.

$\tilde{\mathfrak{u}}_2$ EBLP

Definición

 $\tilde{\mathfrak{u}}_2 := \mathfrak{u}_2 \oplus \mathbb{R}$ es el álgebra de Lie dotada con el corchete

$$[(A,a),(B,b)]_d = ([A,B],s(A,B)).$$

donde, $s(A, B) := tr(A[d, B]) para A, B \in \mathfrak{u}_2$.

 $\tilde{\mathfrak{u}}_2$ es un EBLP, con el corchete de Poisson dado por

$$\{f,g\}_d(\mu,\gamma) := \langle \mu, [D_{\mu}f(\mu), D_{\mu}g(\mu)] \rangle + \gamma s(D_{\mu}f, D_{\mu}g).$$

donde $f, g \in \mathcal{C}^{\infty}(\tilde{\mathfrak{u}}_2), (\mu, \gamma) \in \tilde{\mathfrak{u}}_2.$

$\tilde{\mathfrak{u}}_2$ EBLP

Definición

 $\tilde{\mathfrak{u}}_2 := \mathfrak{u}_2 \oplus \mathbb{R}$ es el álgebra de Lie dotada con el corchete

$$[(A,a),(B,b)]_d = ([A,B],s(A,B)).$$

donde, $s(A, B) := tr(A[d, B]) para A, B \in \mathfrak{u}_2$.

 $\tilde{\mathfrak{u}}_2$ es un EBLP, con el corchete de Poisson dado por

$$\{f,g\}_d(\mu,\gamma) := \langle \mu, [D_{\mu}f(\mu), D_{\mu}g(\mu)] \rangle + \gamma s(D_{\mu}f, D_{\mu}g).$$

donde $f, g \in \mathcal{C}^{\infty}(\tilde{\mathfrak{u}}_2), (\mu, \gamma) \in \tilde{\mathfrak{u}}_2.$

Teorema

- Gr_{res}^0 de Gr_{res} es una hoja simpléctica fuerte en el EBLP $\tilde{\mathfrak{u}}_2$.
- **2** La distribución característica de $\tilde{\mathfrak{u}}_2$ es integrable.

Muchas gracias