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Circular-arc graphs

I The intersection graph of a set A of arcs on a circle is a graph
having one vertex for each arc in A and such that two different
vertices are adjacent if and only if the corresponding arcs have
nonempty intersection.

I A graph G is a circular-arc graph (Tucker, 1971) if G is the
intersection graph of some set A of arcs on a circle; if so, the set A

is called a circular-arc model of G.

I The class of circular-arc graph is clearly closed by vertex removals
and thus has some minimal forbidden induced subgraph
characterization.



Forbidden structures and recognition algorithms

I Forbidden structures for the class of circular-arc graphs and its main
subclasses, as well as efficient algorithms for finding such structures,
have received a great deal of attention (Tucker, 1974; Trotter and
Moore, 1976; Bang-Jensen and Hell, 1994; Feder et al., 1999; Hell
and Huang, 2004; Lin et al., 2007; Lin and Szwarcfiter, 2008;
Bonomo et al., 2009; Kaplan and Nussbaum, 2009; Joeris et al.,
2011; Lin et al., 2013; Francis et al., 2014; Cao et al., 2015; Francis
et al., 2015; Soulignac, 2015; Safe, 2016).

I A complete characterization by forbidden structures for the class of
circular-arc graphs, together with an O(n3)-time algorithm for
finding one such forbidden structure in any given graph that is not a
circular-arc graph, was recently given in (Francis et al., 2015).

I Linear-time recognition algorithms for circular-arc graphs were
proposed in (McConnell, 2003; Kaplan and Nussbaum, 2006)



Helly circular-arc graphs

I A family of sets has the Helly property (Berge, 1973), or simply is
Helly, if every nonempty subfamily of pairwise intersecting sets has
nonempty total intersection.

I A Helly circular-arc graph (sometimes also Θ circular-arc graph) is a
circular-arc graph admitting a Helly circular-arc model.

I These graphs were introduced by Gavril (1974).

I The class of Helly circular-arc graph is clearly closed by vertex
removals and thus has some minimal forbidden induced subgraph
characterization.



Recognition algorithms and forbidden structures

Gavril (1974) derived an O(n3)-time recognition algorithm for them
based on the circular-ones property for columns of their clique-matrices.

Joeris et al. (2011) gave a linear-time recognition algorithm for Helly
circular-arc graphs. (The definition of obstacles is given later on).

Theorem (Joeris et al., 2011)
Given a circular-arc graph G, it is possible find in linear time either a
Helly circular-arc model of G or an obstacle induced in G.
Moreover, if a circular-arc model of G is given as input, the time bound
reduces to O(n).

Joeris et al.’s algorithm is certifying, meaning that it produces an
easy-to-check certificate for the correctness of its answer:

I If the input is a Helly circular-arc graph, their algorithm answers
‘yes’ together with a positive certificate, which consists of a Helly
circular-arc model of the input graph.

I Otherwise, the answer is ‘no’ together with a negative certificate,
which consists of an induced subgraph of the input graph that
belongs to a family of graphs called obstacles (Joeris et al., 2011).



Obstacles

That an induced obstacle serves as a certificate of the ‘no’ answer follows
from the structural result below.

Theorem (Joeris et al., 2011)
A circular-arc graph G is a Helly circular-arc graph if and only if G
contains no induced obstacle.

The above theorem gives a characterization of Helly circular-arc graphs
by forbidden induced subgraphs restricted to circular-arc graphs.

This characterization is not by minimal forbidden induced circular-arc
subgraphs because:

I There are obstacle that contain obstacles with fewer vertices as
induced subgraphs.

I THere are obstacles which are not circular-arc graphs.



Minimal circular-arc obstacles

Minimal circular-arc obstacles
We say an obstacle is minimal if it contains no induced obstacle having
fewer vertices.
A minimal circular-arc obstacle is an obstacle that is both minimal and a
circular-arc graph.

Joeris et al.’s characterization clearly holds replacing ‘obstacle’ by
‘minimal circular-arc obstacle’:

Theorem (Joeris et al., 2011)
A circular-arc graph G is a Helly circular-arc graph if and only if G
contains no induced minimal circular-arc obstacle.

This is the characterization for the class of Helly circular-arc graphs by
minimal forbidden induced subgraphs restricted to circular-arc graphs.

A partial list of minimal circular-arc obstacles was given in Bonomo et al.
(2014).



Our contributions

1. In this work, we introduce essential obstacles, a refinement of the
notion of obstacles, and prove that essential obstacles are precisely
the minimal circular-arc obstacles or, equivalently, the minimal
forbidden induced circular-arc subgraphs for the class of Helly
circular-arc graphs (where by a circular-arc subgraph we mean a
subgraph which is a circular-arc graph).

2. Moreover, we show that, given any obstacle, it is possible to find in
linear time a minimal forbidden induced subgraph for the class of
Helly circular-arc graphs contained in it as an induced subgraph.
Hence, given any negative certificate produced by Joeris et al.’s
algorithm, it is possible to obtain a minimal negative certificate
while preserving the linear time bound.



Our contributions

3. No characterization by forbidden induced subgraphs is known for
Helly circular-arc graphs in the general case (i.e., not restricted to
circular-arc graphs). As a partial result, we give the minimal
forbidden induced subgraph characterization of Helly circular-arc
graphs restricted to graphs containing no induced claw and no
induced 5-wheel and show that it is possible to find in linear time, in
any given graph that is not a Helly circular-arc graph, an induced
subgraph isomorphic to claw, 5-wheel, or some minimal forbidden
induced subgraph for the class of Helly circular-arc graphs.

claw 5-wheel



Obstacles

Obstacle enumerations and witnesses
An obstacle enumeration in a graph G is a circular enumeration
Q = v1, v2, . . . , vk of the k > 3 vertices of a clique Q and, for each
i ∈ {1, . . . ,k}, a linear enumeration Wi consisting of one or two vertices
of G such that one of the following holds (subindices are modulo k):

(O1) Wi = wi where NG(wi) ∩Q = {vi, vi+1};

(O2) Wi = ui, zi where NG(ui) ∩Q = {vi}, NG(zi) ∩Q = {vi+1}, and
uizi ∈ E(G).

vi vi+1

wi

vi vi+1

ui zi

The vertices in the set W(Q) formed by the vertices in the enumerations
W1, . . . ,Wk are the witnesses of Q.



Obstacles

Obstacles (Joeris et al., 2011)
An obstacle is a graph G admitting an obstacle enumeration Q such that
V(G) = V(Q) ∪W(Q).

v2v1

v4 v3

w1

z4

z3 = u4 z2 = u3

u2

v2v1

v4 v3

w1

z4

z3 = u4z2 = u3

u2

Except for those edges required by the definition of obstacle enumeration
(u2z2, u3z3, and u4z4) adjacencies among white vertices are arbitrary.
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Obstacles
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Obstacles may not be minimal or circular-arc

I Not only there are obstacles which contain other obstacles as
induced subgraphs:

I As noticed already by Joeris et al. (2011), obstacles may not be
circular-arc graphs.

C6 is not circular-arc



Valid edges

In order to introduce essential obstacles, we define valid edges.

Valid edges
Let Q be an obstacle enumeration in a graph G and let Q = V(Q). Given
an edge y1y2 of G joining two witnesses y1 and y2 of Q, we say the edge
y1y2 is valid if either NG(y1) ∩Q and NG(y2) ∩Q are comparable (i.e.,
one is a subset of the other) or y1 and y2 occur together in some witness
enumeration of Q.

Roughly speaking, if the witnesses of Q are labeled as in the definition of
obstacles, then the edge y1y2 is valid if and only if y1y2 equals uizi,
zi−1wi, zi−1ui, or wi−1ui for some i ∈ {1, . . . ,k}.

vi
vi+1vi−1

wi

zi−1

ui−1
vi

vi+1vi−1

uizi−1

ui−1 zi
vi

vi+1
vi−1

zi

uiwi−1



Essential obstacles

We are ready to define essential enumerations and obstacles.

Essential enumerations
An obstacle enumeration Q is essential if every edge joining two of its
witnesses is valid.

Essential obstacle
An obstacle is essential if there is an essential obstacle enumeration of it.

I Each of the blue edges may or may not be present.

I No other edges between white vertices are allowed.
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Essential obstacles: Main results

Our main structural result is the the following.

Theorem
Essential obstacles are precisely the minimal forbidden induced
circular-arc subgraphs for the class of Helly circular-arc graphs.

For the proof, we show that:
I each essential obstacle is a minimal circular-arc obstacle (i.e., is

circular-arc and removing any single vertex leads to a Helly
circular-arc graph); and

I each minimal circular-arc obstacle having some non-essential
obstacle enumeration also has some essential obstacle enumeration
and thus is an essential obstacle.



Essential obstacles: Main results

Our main algorithmic result is the following.

Theorem
Given a graph G and an obstacle enumeration Q in G, it is possible to
find in linear time either an essential obstacle enumeration of some
induced subgraph of G or an induced subgraph of G that is a minimal
forbidden induced subgraph for the class of circular-arc graphs.
Moreover, if G is a circular-arc graph, given a circular-arc model of G and
an obstacle enumeration Q in G, an essential obstacle enumeration of
some induced subgraph of G can be found in O(n) time.

Together with Joeris et al. (2011), implies a linear-time recognition
algorithm with minimal negative certificates if the input is circular-arc.

Corollary
Given a circular-arc graph G, it is possible to find in linear time either a
Helly circular-arc model of G or an essential obstacle enumeration of
some minimal forbidden induced subgraph for the class of Helly
circular-arc graphs contained in G as an induced subgraph.
Moreover, if a circular-arc model of G is given as input, the time bound
reduces to O(n).



What about non-circular-arc graphs?

The absence of induced essential obstacles characterizes those
circular-arc graphs G which are Helly circular-arc graphs.

No analogous forbidden induced subgraph characterization is known if G
is not assumed to be a circular-arc graph.

Here, we give such a characterization restricted to {claw, 5-wheel}-free
graphs.

claw 5-wheel

Notice that no forbidden induced subgraph characterization for
circular-arc graphs restricted to {claw, 5-wheel}-free graphs is known.
It is known for the following more restricted classes: complements of
bipartite graphs (Trotter and Moore, 1976) and to claw-free chordal
graphs (Bonomo et al., 2009).



{claw, 5-wheel}-free Helly circular-arc graphs

We find the minimal forbidden induced subgraph characterization of Helly
circular-arc graphs restricted to {claw, 5-wheel}-free graphs.

Theorem
Let G be {claw, 5-wheel}-free graph. Then, G is a Helly circular-arc graph
if and only if G contains no induced 3K2, P7, F1, F2, H3, net, 2P4, F8,
C6, tent + K1, or Ck + K1 for any k > 4.

F1 F2 H3

net F8 tent + K1

For the proof, we determine explicitly all claw-free essential obstacles and
exploit a recent characterization for concave-round graphs (Safe, 2016).



{claw, 5-wheel}-free Helly circular-arc graphs

Moreover, we obtain a robust linear-time certifying recognition algorithm
for Helly circular-arc graphs restricted to {claw, 5-wheel}-free graphs.

Theorem
There is a linear-time algorithm that, given any graph G that is not a
Helly circular-arc graph, finds an induced subgraph of G isomorphic to
claw, 5-wheel, or one of the following minimal forbidden induced
subgraphs for the class of Helly circular-arc graphs: 3K2, P7, F1, F2, H3,
net, 2P4, F8, C6, tent + K1, or Ck + K1 for any k > 4.

F1 F2 H3

net F8 tent + K1
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Thank you very much for your attention!
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