What kind of bonus point system makes the rugby teams more offensive?

#### Federico Fioravanti - Fernando Tohmé

XIV Congreso Dr. Antonio Monteiro - 2017

< 🗇 > < 🖃 > <

э

Federico Fioravanti - Fernando Tohmé

#### Motivation

Rugby Union is a game in constant evolution

э

< 🗇 🕨 < 🖻 🕨

- Experimental law variations every year
- Different score systems in the world



# Brocas - Carrillo use Game Theory to find some results on the strategies of football teams depending on the score system

◆ 同 ♪ → 三 ♪

э

Federico Fioravanti - Fernando Tohmé



Use a static model to compare the level of "offensiveness"Use a dynamic model to compare the possible payoffs

э

#### Model

- 2 teams  $i \in \{A, B\}$
- Events  $(a, b) \in N \cup 0 \times N \cup 0$
- Equivalence relations between events
- Strategies  $(\theta^A, \theta^B) \in [\underline{\theta}, \overline{\theta}]^2$
- Team A wins if it scores more tries than team B (no penalty kicks or conversions)

(日) (同) (三) (

э

# Model (cont.)

- $\alpha(\theta^A, \theta^B)$ : probability of team A scoring a try
- $\beta(\theta^A, \theta^B)$  probability of team A receiving a try
- Three different score systems:
  - (NB) 4 points for the victory, 2 for a tie and 0 for losing
  - (+4) 1 extra point for scoring 4 or more tries, and 1 extra point if the losing team loses by only 1 try of difference
  - (3+) 1 extra point if the winning team scores 3 tries more than the losing team, and 1 extra point if the losing team loses by only 1 try of difference

3

## Properties of the probability functions

$$\begin{array}{l} \bullet \ \alpha_1 > 0, \alpha_2 > 0, \alpha_{11} \leq 0, \alpha_{22} > 0 \\ \bullet \ \beta_1 > 0, \beta_2 > 0, \beta_{11} > 0, \beta_{22} \leq 0 \\ \bullet \ \alpha_{12} = \beta_{12} = 0 \end{array}$$

1≣ ≯

Ξ.

.∃⇒ . ∢

• • • • • • • •

Federico Fioravanti - Fernando Tohmé

# Utility function

- $U^{i}((\theta^{A},\theta^{B}),(a,b)) = \alpha(\theta^{A},\theta^{B})f_{i}(a+1,b) + (1-\alpha(\theta^{A},\theta^{B}) \beta(\theta^{A},\theta^{B}))f_{i}(a,b) + \beta(\theta^{A},\theta^{B})f_{i}(a,b+1)$
- $f_i(a, b)$  depends on the score system used
- Find the Nash Equilibrium in every score system and compare the equilibria

(日) (同) (三) (三)

3

#### Example 1

Event (0,0) (+4) and (3+) System  $U^{A} = \alpha 4 + (1 - \alpha - \beta)2 + \beta$  $U^{B} = \alpha + (1 - \alpha - \beta)2 + \beta 4$ The Nash Equilibrium is given by  $\frac{\beta_1}{\alpha_2} = 2$  and  $\frac{\alpha_2}{\beta_2} = 2$ (NB) System  $U^{A} = \alpha 4 + (1 - \alpha - \beta)2$  $U^{B} = (1 - \alpha - \beta)2 + \beta 4$ The Nash Equilibrium is given by  $\frac{\beta_1}{\alpha_1} = 1$  and  $\frac{\alpha_2}{\beta_1} = 1$ 

< < >> < </p>

Federico Fioravanti - Fernando Tohmé

### Example 2

Event (3,1) (+4) and (3+) System  $U^{A} = \alpha 5 + (1 - \alpha - \beta)4 + \beta 4$   $U^{B} = \beta 1$ The Nash Equilibrium is given by  $(\overline{\theta}, \overline{\theta})$ (NB) System  $U^{A} = 4$   $U^{B} = 0$ The Nash Equilibrium is given by  $(\widetilde{\theta}^{A}, \widetilde{\theta}^{B})$ 

(日) (同) (三) (三)

3

Federico Fioravanti - Fernando Tohmé

## Example 3

Event (5,3) (+4) System  $U^A = 5$  $U^{B} = \beta 2$ The Nash Equilibrium is given by  $(\theta^A, \overline{\theta})$ (3+) System  $U^{A} = \alpha 5 + (1 - \alpha - \beta) 4 + \beta 4$  $U^{B} = \beta 1$ The Nash Equilibrium is given by  $(\theta, \theta)$ (NB) System  $U^A = 4$  $U^B = 0$ The Nash Equilibrium is given by  $(\widetilde{\theta}^{A}, \widetilde{\theta}^{B})_{AB}$ 

Federico Fioravanti - Fernando Tohmé

#### Results

Pairwise comparisons indicate that the (+4) system is better than the other score systems

(日) (同) (三) (

э

There is no difference between the (3+) and (NB) systems

### Dynamic Model

- Equilibrium Payoffs of Dynamic Games (Massó Neme (1995))
- Stochastic Games with transition function 0 or 1
- The characterization is in terms of stationary strategies

▲ □ ▶ ▲ □ ▶ ▲

э

#### Dynamic Model

• 
$$G = ((W, w^1), [\underline{\theta}, \overline{\theta}]^2, T)$$

• 
$$W = \{(a,b)\}_{(a,b) \in N \cup 0 imes N \cup 0}, \ w^1 = (0,0)$$

- T is a deterministic transition function
- All our strategies are stationary (do not depend on the history)

э

< (17) > <

# Feasible Payoffs (Massó- Neme (1995))

#### Theorem

A payoff  $v \in \mathbb{R}^n$  is feasible if and only if there exists a set of connected stationary strategies such that v is a convex combination of the utility of each of those strategies

< 回 > < 三 > < 三 >

э

Federico Fioravanti - Fernando Tohmé

#### Feasible Payoffs



<ロ> <同> <同> < 回> < 回>

æ -

Federico Fioravanti - Fernando Tohmé

### Conclusions

- The (+4) systems is better in the two settings
- Rather surprisingly, there is no difference in the static model between (3+) and (NB)

▲ □ ▶ ▲ 三 ▶ ▲

э

The difference appears in the dynamic model



# Find the equilibrium payoffs and compare the three score systems

2

Federico Fioravanti - Fernando Tohmé