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Independence number of products of Kneser graphs



Preliminaries

G = (V,E), where V is the vertex-set and E is the edge-set.

A set S C V is independent (or stable) in G if any u,v € S
are non-adjacent in G.

Independence number of products of Kneser graphs



Preliminaries

G = (V,E), where V is the vertex-set and E is the edge-set.

A set S C V is independent (or stable) in G if any u,v € S
are non-adjacent in G.
a(G) = maximum cardinality of an independent set in G.

Independence number of products of Kneser graphs



Preliminaries

G = (V,E), where V is the vertex-set and E is the edge-set.
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Most common products of graphs

The vertex set of the product of two graphs G and H is equal
to V(G) x V(H) while their edge-sets are as follows:
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Most common products of graphs

The vertex set of the product of two graphs G and H is equal
to V(G) x V(H) while their edge-sets are as follows:

In the cartesian product GUH, two vertices (g1, h1) and
(g2, ho) are adjacent when (g1g> € E(G) and hy = hy) or
(g1 = & and h1hy, € E(H)).
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Most common products of graphs

The vertex set of the product of two graphs G and H is equal
to V(G) x V(H) while their edge-sets are as follows:

In the cartesian product GOH, two vertices (g, h1) and

(g2, ho) are adjacent when (g1g> € E(G) and hy = hy) or

(gl = &2 and h1h2 € E(H))
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Most common products of graphs

The vertex set of the product of two graphs G and H is equal
to V(G) x V(H) while their edge-sets are as follows:
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Most common products of graphs

The vertex set of the product of two graphs G and H is equal
to V(G) x V(H) while their edge-sets are as follows:

In the strong product G X1 H, two vertices (g1, hi) and (g2, ho)
are adjacent when (g12, € E(G) and hy = hy) or (g1 = g» and
hiha € E(H)) or (g182 € E(G) and hih, € E(H)).
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Most common products of graphs

The vertex set of the product of two graphs G and H is equal
to V(G) x V(H) while their edge-sets are as follows:

In the strong product G Xl H, two vertices (g1, h1) and (g», h»)
are adjacent when (g1g> € E(G) and hy = hy) or (g1 = g» and
hihy € E(H)) or (g1g2 € E(G) and hih, € E(H))

In the lexicographical product G o H, two vertices (g1, h1) and
(g2, ho) are adjacent when g1g» € E(G) or (g1 = g» and
hihy € E(H))
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hihy € E(H))

Independence number of products of Kneser graphs



Kneser graphs

The Kneser graph K(n, k) has as vertices all k-element
subsets of the set [n] = {1,...,n} and an edge between two
subsets if and only if they are disjoint.
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Kneser graphs

The Kneser graph K(n, k) has as vertices all k-element
subsets of the set [n] = {1,...,n} and an edge between two
subsets if and only if they are disjoint.
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\ (1,5) 23/
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Kneser graphs

The Kneser graph K(n, k) has as vertices all k-element
subsets of the set [n] = {1,...,n} and an edge between two
subsets if and only if they are disjoint.

11,2}

/{3,5}\
{3,4} {4,5}

\ (1,5) 23/

{14y {24}

{2,5}——{1,3}

[Erdés-Ko-Rado, 61] a(K(n, k)) = (77)
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Known results

[Geller and Stahl, 75] a(G o H) = a(G) x a(H).
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Known results

[Geller and Stahl, 75] a(G o H) = a(G) x a(H).

[V-P and Vera, 06] Let G = K(n1, k1) and H = K(n2, k).
Then,

a(G x H) = max{a(G)|V(H)|,a(H)[V(G)[}
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Strong product of Kneser graphs
Obs. a(K(n, k) B K(n, k) > (a(K(n, k)% = (-1
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Strong product of Kneser graphs

Obs. a(K(n, k) B K(n, k) > (a(K(n, k)% = (-1
The Shannon capacity ©(G) of a graph G is defined as

O(G) = sup {/a(Gm).

meN
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Strong product of Kneser graphs
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[Lovasz, 79] ©(K(n, k)) = (Z:i)
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[Lovasz, 79] ©(K(n, k)) = (Z:i)

V(a(K(n, k) B K(n, k) < (Z B 1)
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Strong product of Kneser graphs
Obs. a(K(n, k) B K(n, k) > (a(K(n, k)% = (-1

The Shannon capacity ©(G) of a graph G is defined as

O(G) = sup {/a(Gm).
_—

meN

[Lovasz, 79] ©(K(n, k)) = (Z:i)

V(a(K(n, k) B K(n, k) < (Z B 1)

[Thm.] For any n and any k < n/2 we have
a(K(n, k) B K(n,k)) = (171
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Strong product of Kneser graphs
Obs. a(K(n, k) B K(n, k) > (a(K(n, k)% = (-1

The Shannon capacity ©(G) of a graph G is defined as

O(G) = sup {/a(Gm).
_—

meN

[Lovasz, 79] ©(K(n, k)) = (Z:i)

V(K K B K(n, k) < (Z - 1)

[Thm.] For any n and any k < n/2 we have
a(K(n, k) B K(n,k)) = (171
[Obs.]

a((K(n, k)™) = (Z B D "
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Cartesian product of Kneser graphs K(n, k)

Greedy diagonalisation procedure

45
35
34
25
24
23
K(5,2) .
14
13
12

12 13 14 15 23 24 25 34 35 45

K(5,2)
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Cartesian product of Kneser graphs K(n, k)

Greedy diagonalisation procedure

45
35
34
25
24
23
K(5,2) .
14
13
12

12 13 14 15 23 24 25 34 35 45
K(5,2)
a(K(5,2)0K(5,2)) = 34.



Cartesian product of Kneser graphs K(n, k)

Greedy diagonalisation procedure:
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Cartesian product of Kneser graphs K(n, k)

Greedy diagonalisation procedure:
N2 ey 2 12 12
a(K(n, k)OK(n, k) = (;71)" + (33) "+ + (2kk—11) + (2kk—11)
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Cartesian product of Kneser graphs K(n, k)

Greedy diagonalisation procedure:

pe1N2  me2y2 12 12
a(K(n, k)OK(n, k) = (;71)" + (33) "+ + (2kk—11) + (2kk—11)
Since K(2k — 1, k) is isomorphic to (*. ) isolated vertices

then, K(2k — 1, k)OK(2k — 1, k) is isomorphic to (2kk_—11)2
isolated vertices.
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Cartesian product of Kneser graphs K(n, k)

Greedy diagonalisation procedure:

N2 ne2y2 12 N2
a(K(n, K)OK(n, k) > (771)" + (2D "+ + G5+ ()
Since K(2k — 1, k) is isomorphic to (*. ) isolated vertices
then, K(2k — 1, k)OK(2k — 1, k) is isomorphic to (2~1)°
isolated vertices.
By diagonalisation, o(K(6,2)0K(6,2)) > 59, but
a(K(6,2)0K(6,2)) > 60
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Cartesian product of Kneser graphs K(n, k)

Greedy diagonalisation procedure:

pe1N2  me2y2 12 12
a(K(n k)OK(n, k) > (7)) + (2D "+ + (2kk—11) + (215—11)
Since K(2k — 1, k) is isomorphic to (*. ) isolated vertices
then, K(2k — 1, k)OK(2k — 1, k) is isomorphic to (Qkk_—ll)2
isolated vertices.
By diagonalisation, o(K(6,2)0K(6,2)) > 59, but
a(K(6,2)0K(6,2)) > 60
Let I(x) = {A € V(K(n, k)): x € A}. Then, I(x) is an
independence set in K(n, k) with center in x.
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Cartesian product of Kneser graphs K(n,2)

56
46
45
36
35
34
26
25
K(6, 2)24
23
16::::
o
14::
13;::
12

12 13 14 15 16 23 24 25 26 34 35 36 45 46 56

K(6,2)
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Cartesian product of Kneser graphs K(n,2)

56
46
45
36
35
34
26
25
K(6, 2)24
23
16f:5
150
145
13¢:::
12

12 13 14 15 16 23 24 25 26 34 35 36 45 46 56
K(6,2)

(1(12) x 1(23)) U (1(23) x 1(12)) U (/(31) x 1(31)) U {(12,12), (13, 23), (23,13)}
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Cartesian product of Kneser graphs K(n,2)

After dealing with the subgraph of K(n,2)0K(n,2) induced
by (1(1) U (2)ul(3)) x (I(1)UI(2) U I(3)), reduces to the
independence number of K(n — 3,2)0K(n — 3,2) (as soon as
n > 6). By using a simple induction with respect to three
different bases, a(K(3,2)?") = 9, a(K(4,2)%") = 18, and
a(K(5,2)?7) = 34, we obtain the following result.

Independence number of products of Kneser graphs



Cartesian product of Kneser graphs K(n,2)

After dealing with the subgraph of K(n,2)0K(n,2) induced
by (1(1) U (2)ul(3)) x (I(1)UI(2) U I(3)), reduces to the
independence number of K(n — 3,2)0K(n — 3,2) (as soon as
n > 6). By using a simple induction with respect to three
different bases, a(K(3,2)?") = 9, a(K(4,2)%") = 18, and
a(K(5,2)?7) = 34, we obtain the following result.
Proposition. Let n > 6, and n = t (mod 3). Then

a(K(n,2)0K(n,2)) > 3(n—2)243(n—5)>+- - -+3(t+4)24+(n—t—3)+A;,

where
9 :t=0
A= 18 t=1
34 t=2
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Cartesian product of Kneser graphs K(n,2)

After dealing with the subgraph of K(n,2)0K(n,2) induced
by (1(1) U (2)ul(3)) x (I(1)UI(2) U I(3)), reduces to the
independence number of K(n — 3,2)0K(n — 3,2) (as soon as
n > 6). By using a simple induction with respect to three
different bases, a(K(3,2)?") = 9, a(K(4,2)%") = 18, and
a(K(5,2)?7) = 34, we obtain the following result.
Proposition. Let n > 6, and n = t (mod 3). Then

a(K(n,2)0K(n,2)) > 3(n—2)243(n—5)>+- - -+3(t+4)24+(n—t—3)+A;,

where
9 ;t=0
A= 18 t=1
34 t=2

This bound is bigger by (n — t — 1)/3 than the greedy
diagonalization bound.
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Cartesian product of Kneser graphs K(n,2)

Corollary. If n> 3, then

2n3—3n26+3n+18 . n=0(mod 3)
a(K(n,2)0K(n,2)) > § 20=30430416 . — 1 (;mod 3)

3 2
2n—3n +3n+14 73”6”"*14 ; n=2(mod 3).
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Cartesian product of Kneser graphs K(n,2)

Corollary. If n> 3, then

2n3—3n26+3n+18 . n=0(mod 3)
a(K(n,2)0K(n,2)) > § 20=30430416 . — 1 (;mod 3)

3 2
2n—3n +3n+14 73”6”’"*14 ; n=2(mod 3).

Problem: A better lower bound for a(K(n,2)0K(n,2))?
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Upper bounds for a(K(n,2)"?)

Let H be a graph and let a A;, 1 </ < m, a partition of
V(H), where each subset A; induces a clique in H, with
li = |Ail.
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Upper bounds for a(K(n,2)"?)

Let H be a graph and let a A;, 1 </ < m, a partition of
V(H), where each subset A; induces a clique in H, with

li = |Ai|.

[Klavzar, 05] a(GOH) < 3°7 ay,(G), where ay,(G) denotes
the ¢;-independence number of a graph G.
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Upper bounds for a(K(n,2)"?)

Let H be a graph and let a A;, 1 </ < m, a partition of
V(H), where each subset A; induces a clique in H, with

li = |Ail.

[Klavzar, 05] a(GOH) < 3°7 ay,(G), where ay,(G) denotes
the ¢;-independence number of a graph G.

[Baranyai, 75| K(n, k) can be partitioned into

Oni = [(7)/n/k]] cliques of size wyx = [n/k].
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Upper bounds for a(K(n,2)"?)

Let H be a graph and let a A;, 1 </ < m, a partition of
V/(H), where each subset A; induces a clique in H, with

li = |Ai|.

[Klavzar, 05] a(GOH) < 3°7 ay,(G), where ay,(G) denotes
the ¢;-independence number of a graph G.

[Baranyai, 75| K(n, k) can be partitioned into

Oni = [(})/Ln/k]] cliques of size wyx = [n/k].

Theorem. a(K(n, K)OK(n, k)) < “ﬂ o (K (1, K)).
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l-independence number of K(n,2)

Proposition. For n > 5,
(n=1)4+--+(n—=4£) ; £<n=2

ae(K(n,2)) = (g) 0> n—=2.
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l-independence number of K(n,2)

Proposition. For n > 5,
(n=1)4+--+(n=40) ; £<n=2

ai(K(n,2)) = .
) ; 4>n—2.
Theorem. If n > 5, then
2n3_3n26+3n+18 - n=0 (mod 3)
2”3—3”2# ; n=1(mod 3) p <a(K(n,2)dK(n,2)) <
2n3—3n26+3n+14 . n=2(mod 3).
n(n—1)8(3n—2) - neven

n(n71)8(3n71) - nodd.
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2-independence number of K(2k + 1, k)

[Godsil, 04] an(K(2k +1,k)) < (3) + (%)

Independence number of products of Kneser graphs



2-independence number of K(2k + 1, k)

() + (&%)

[Godsil, 04] ap(K(2k + 1, k)) <
< 26 and a(K(9,4)) < 98.

a2(K(5,2)) < 7, aa(K(7,3))
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2-independence number of K(2k + 1, k)

[Godsil, 04] ap(K(2k +1,k)) < (F) + (%)
a2(K(5,2)) < 7, aa(K(7,3)) < 26 and az(K(9,4)) < 98.

Proposition. For k > 2,

(k) - (_g(k/z) , if k even

ax(K(2k +1,k)) >

(2 , if k odd

2
kK ) (Lkl;zj)
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2-independence number of K(2k + 1, k)

[Godsil, 04] ap(K(2k +1,k)) < (F) + (%)
a2(K(5,2)) < 7, aa(K(7,3)) < 26 and az(K(9,4)) < 98.

Proposition. For k > 2,

(Zkljl) - (_g(k/z) ,if k even
K — () L if kodd

ao(K(5,2)) > 7, as(K(7,3)) > 26 and az(K(9,4)) > 96.
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2-independence number of K(2k + 1, k)

Let k > 2. Let xo = [k]. For 0 </ < k, let X; be the set of
vertices of K(2k + 1, k) defined as: Xy = {xo} and
Xi={y:ye V(K(2k+1,k)),|xo Ny| =i—1}. Note that
Uf'(:o X; forms a partition of the vertex set of K(2k + 1, k).
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2-independence number of K(2k + 1, k)

Let k > 2. Let xo = [k]. For 0 </ < k, let X; be the set of
vertices of K(2k + 1, k) defined as: Xp = {xo} and
Xi={y:ye V(K(2k+1,k)),|xo Ny| =i—1}. Note that
Uf:o X; forms a partition of the vertex set of K(2k + 1, k).
Lemma. Let G; be the subgraph of K(2k + 1, k) induced by
the vertex set X;, for 0 < i < k. Then,
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2-independence number of K(2k + 1, k)

Let k > 2. Let xo = [k]. For 0 </ < k, let X; be the set of
vertices of K(2k + 1, k) defined as: Xp = {xo} and
Xi={y:ye V(K(2k+1,k)),|xo Ny| =i—1}. Note that
Uf:o X; forms a partition of the vertex set of K(2k + 1, k).
Lemma. Let G; be the subgraph of K(2k + 1, k) induced by
the vertex set X;, for 0 < i < k. Then,

1. For 0 < i< k, with i # |£] + 1, the subgraph G; induces an
independent set.
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2-independence number of K(2k + 1, k)

Let k > 2. Let xo = [k]. For 0 </ < k, let X; be the set of
vertices of K(2k + 1, k) defined as: Xp = {xo} and
Xi={y:ye V(K(2k+1,k)),|xo Ny| =i—1}. Note that
Uf:o X; forms a partition of the vertex set of K(2k + 1, k).
Lemma. Let G; be the subgraph of K(2k + 1, k) induced by
the vertex set X;, for 0 < < k. Then,
1. For 0 < i< k, with i # |£] + 1, the subgraph G; induces an
independent set.
2. Let G4 = UlS"SL%J G; and let Gg = UL%JJr?SiSk G;. Then,
the subgraph G (resp. Gg) induces an independent set.
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2-independence number of K(2k + 1, k)

Let k > 2. Let xo = [k]. For 0 </ < k, let X; be the set of
vertices of K(2k + 1, k) defined as: Xp = {xo} and
Xi={y:ye V(K(2k+1,k)),|xo Ny| =i—1}. Note that
Uf:o X; forms a partition of the vertex set of K(2k + 1, k).
Lemma. Let G; be the subgraph of K(2k + 1, k) induced by
the vertex set X;, for 0 < < k. Then,

1. For 0 < i< k, with i # |£] + 1, the subgraph G; induces an
independent set.

2. Let G4 = UlS"SL%J G; and let Gg = UL§J+2SI'S/< G;. Then,
the subgraph G, (resp. Gg) induces an independent set.

3. Let i = | 4] + 1. The subgraph G; is isomorphic to ()
disjoint copies of the direct product graph Ky x K(k +1,k/2)
if k is even, and G; is isomorphic to %([’;ﬁ]) disjoint copies of
the direct product graph K(k, | k/2]) x Ky if k is odd.
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2-independence number of K(2k + 1, k)

Let Ga and Gg the subgraphs of K(2k + 1, k) as defined
before. Let G¢ be the subgraph of K(2k + 1, k) induced by
the vertices in the set X 241 Let k even, then
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2-independence number of K(2k + 1, k)

Let Ga and Gg the subgraphs of K(2k + 1, k) as defined
before. Let G¢ be the subgraph of K(2k + 1, k) induced by
the vertices in the set X 241 Let k even, then

Let Yi={y:y€ Gcand 1€y}, ie, Y1 =GcnI(1).
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2-independence number of K(2k + 1, k)

Let Ga and Gg the subgraphs of K(2k + 1, k) as defined
before. Let G¢ be the subgraph of K(2k + 1, k) induced by
the vertices in the set X 241 Let k even, then

Let Yi={y:y € Gcand1ley} ie, Y1 = GcNnI(1).
Set Wi ={x}U{y:y€eGg}lUYrand Wo ={y:y € Ga}.
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2-independence number of K(2k + 1, k)

Let Ga and Gg the subgraphs of K(2k + 1, k) as defined
before. Let G¢ be the subgraph of K(2k + 1, k) induced by
the vertices in the set X 241 Let k even, then

Let Yi={y:y € Gcand1ley} ie, Y1 = GcNnI(1).
Set Wi ={x}U{y:y€eGg}lUYrand Wo ={y:y € Ga}.

Xo is neither adjacent to any vertex in Gg nor in Y7.
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2-independence number of K(2k + 1, k)

Let Ga and Gg the subgraphs of K(2k + 1, k) as defined
before. Let G¢ be the subgraph of K(2k + 1, k) induced by
the vertices in the set X 241 Let k even, then

Let Yi={y:y € Gcand1ley} ie, Y1 = GcNnI(1).

Set Wi ={x}U{y:y€eGg}lUYrand Wo ={y:y € Ga}.
Xo is neither adjacent to any vertex in Gg nor in Y7.

Let a € Y7 and b € Gp such that a is adjacent to b. By
construction, |a N xg| = k/2 and |b N x| = j, with
k/2+1<j<k—1, and we must have that k/2 + j < k,
which is impossible.
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2-independence number of K(2k + 1, k)

Let Ga and Gg the subgraphs of K(2k + 1, k) as defined
before. Let G¢ be the subgraph of K(2k + 1, k) induced by
the vertices in the set X 241 Let k even, then

Let Yi={y:y € Gcand1ley} ie, Y1 = GcNnI(1).
Set Wi ={x}U{y:y€eGg}lUYrand Wo ={y:y € Ga}.
Xo is neither adjacent to any vertex in Gg nor in Y7.

Let a € Y7 and b € Gp such that a is adjacent to b. By
construction, |aN xp| = k/2 and |bN xp| = J, with
k/2+1<j<k—1, and we must have that k/2 + j < k,
which is impossible.

Thank you !
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