Técnicas de programación lineal entera para el 2-schemes strip cutting problem with a sequencing constraint

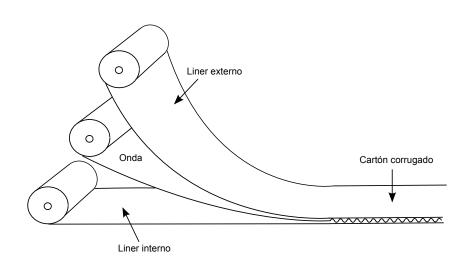
Javier Marenco

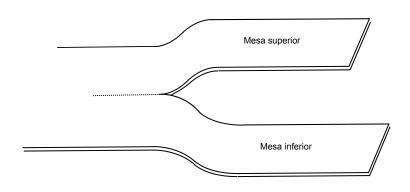
Instituto de Ciencias, Universidad Nacional de General Sarmiento, Argentina Departamento de Computación, FCEyN, Universidad de Buenos Aires, Argentina

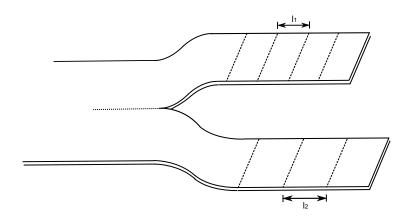
IX Seminario de la Red Latinoamericana de Optimización Discreta y Grafos Bahía Blanca - 11–12 de diciembre de 2018

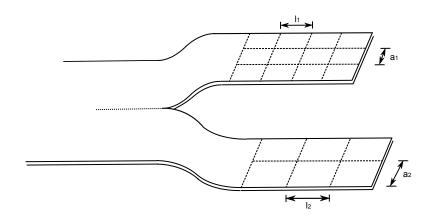
El problema

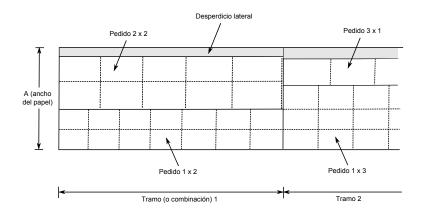
 El 2-schemes strip cutting problem with a sequencing constraint (2-SSCPsc) surge en el contexto de la programación de la producción de planchas de cartón corrugado.











El problema (2-SSCPsc)

Datos:

- Conjunto $\mathcal{P} = \{(l_i, a_i, c_i)\}_{i=1}^n$ de pedidos, cada uno definido por un largo y ancho de plancha, y la cantidad de planchas a cortar.
- Ancho $A \in \mathbb{R}_+$ del papel.
- Refile máximo $\gamma \in [0,1]$, expresado como una fracción de A.
- Tolerancia $t \in [0,1]$ en las cantidades producidas, expresada como una fracción de la cantidad de cada pedido.

Salida: Una secuencia de tramos (cada uno dado por un patrón de corte y sus metros lineales), de modo tal de ...

- ... cumplir con las cantidades de todos los pedidos,
- ... minimizar el refile total, y
- ... programar cada pedido en tramos consecutivos.

Una solución no factible

Tramo	Metros	Patrón de corte			
1	800 m	$2 \times Pedido\ 1$	$2 \times Pedido\ 2$		
2	1800 m	$1 imes ext{Pedido } 1$	2 × Pedido 3		
3	2500 m	$2 \times Pedido\ 1$	$1 imes ext{Pedido 4}$		
4	800 m	$1 imes ext{Pedido 5}$	2 × Pedido 4		
5	1300 m	$1 imes ext{Pedido } 1$	2 × Pedido 6		
6	1800 m	2 × Pedido 4	2 × Pedido 6		

Una solución no factible

Tramo	Metros	Patrón de corte			
1	800 m	$2 \times Pedido\ 1$	$2 \times Pedido 2$		
2	1800 m	$1 imes ext{Pedido } 1$	2 × Pedido 3		
3	2500 m	$2 \times Pedido\ 1$	$1 imes ext{Pedido 4}$		
4	800 m	$1 imes ext{Pedido 5}$	2 × Pedido 4		
5	1300 m	$1 imes ext{Pedido } 1$	2 × Pedido 6		
6	1800 m	2 × Pedido 4	2 × Pedido 6		

Una solución no factible

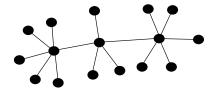
Tramo	Metros	Patrón de corte			
1	800 m	$2 \times Pedido\ 1$	$2 \times Pedido 2$		
2	1800 m	$1 imes ext{Pedido } 1$	2 × Pedido 3		
3	2500 m	2 × Pedido 1	1 × Pedido 4		
*4	1300 m	$1 imes Pedido\ 1$	2 × Pedido 6		
*5	800 m	$1 imes ext{Pedido 5}$	2 × Pedido 4		
6	1800 m	2 × Pedido 4	2 × Pedido 6		

Grafo de patrones

- Definimos el grafo de patrones G = (P, E):
 - Vértices: pedidos a programar.
 - 2 Aristas: $ij \in E$ si existe un patrón de corte en el que participen los pedidos i y j, $i \neq j$.

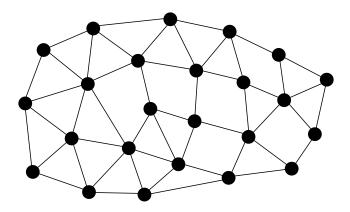
Teorema (Rinaldi y Franz, 2007)

Una solución que satisface las cantidades solicitadas de cada pedido es factible para el 2-SSCPsc si y sólo si las aristas de G correspondientes a los patrones de corte de la solución definen un packing de caterpillars.



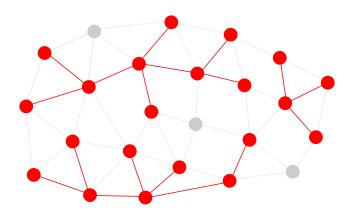
Un caterpillar

Grafo de patrones



• Llamamos packing de caterpillars a la unión disjunta de caterpillars (no necesariamente inducidos) de *G*.

Grafo de patrones

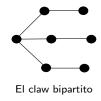


• Llamamos packing de caterpillars a la unión disjunta de caterpillars (no necesariamente inducidos) de *G*.

Modelo de programación entera

- Sea P el conjunto de todos los patrones de corte posibles .
- $y_i \in \mathbb{R}_+$: Metros lineales del patrón $i, i \in P$.
- $x_i \in \{0,1\}$: Especifica si se usa el patrón $i, i \in P$.

Modelo de programación entera



- Un grafo conexo es un caterpillar si y sólo si no contiene ciclos ni claws bipartitos (Lekkerkerker y Boland, 1962).
- Entonces, x induce un packing de caterpillars si ...

$$\begin{split} \sum_{e \in C} x_e & \leq |C| - 1 & \forall C \in \mathsf{cycles}(G), \\ \sum_{e \in B} x_e & \leq 5 & \forall B \in \mathsf{bip\text{-}claws}(G), \\ x & \in \{0, 1\}^{|E|} \end{split}$$

El poliedro de packings de caterpillars

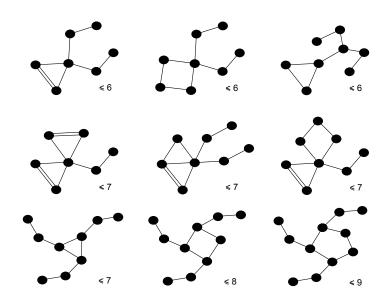
- Estamos interesados en la estructura de la cápsula convexa de las soluciones factibles.
- Nos concentramos en las variables binarias.

Definición

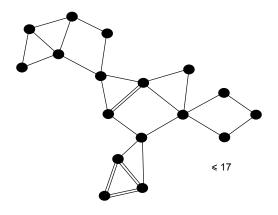
El poliedro de packings de caterpillars asociado al grafo G es

$$\mathit{CPP}(G) = \mathit{conv} \big\{ x \in \{0,1\}^{|E|} : \sum_{e \in C} x_e \le |C| - 1 \quad \forall \ C \in \mathit{ciclos}(G), \\ \sum_{e \in B} x_e \le 5 \qquad \quad \forall \ B \in \mathit{bip-claws}(G) \, \big\}.$$

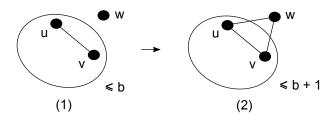
Muchas facetas con estructura!



Pero también muchas sin estructura aparente ...



Procedimientos que preservan facetitud

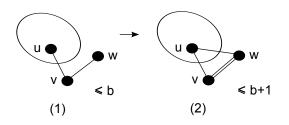


Theorem

Sea (1) una desigualdad válida no trivial.

- (i) La desigualdad (2) es válida para CPP(G).
- (ii) Si (1) define una faceta de CPP(G) y se cumplen [algunas hipótesis esotéricas], entonces (2) define una faceta de CPP(G).

Procedimientos que preservan facetitud

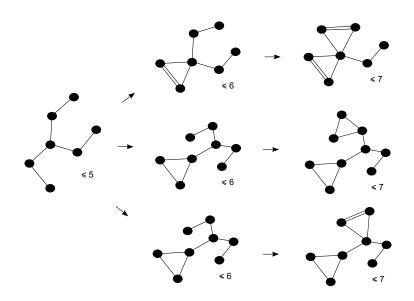


Theorem

Sea (1) una desigualdad válida no trivial.

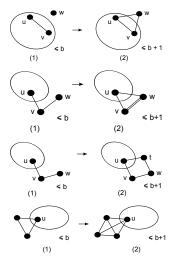
- (i) La desigualdad (2) es válida para CPP(G).
- (ii) Si (1) define una faceta de CPP(G) y se cumplen [más hipótesis esotéricas], entonces (2) define una faceta de CPP(G).

Consecuencias: desigualdades que definen facetas

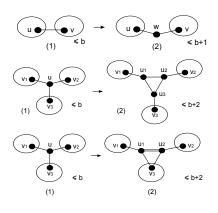


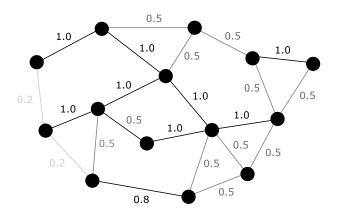
Procedimientos que preservan facetitud

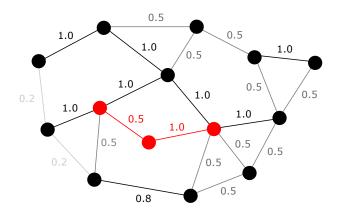
Operadores de extensión

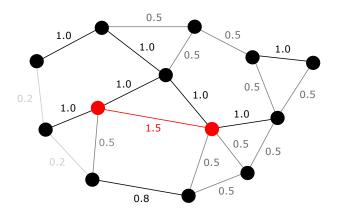


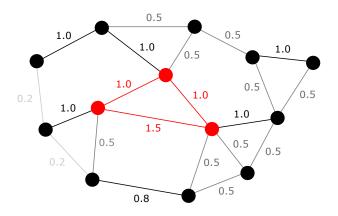
Operadores de [des]contracción

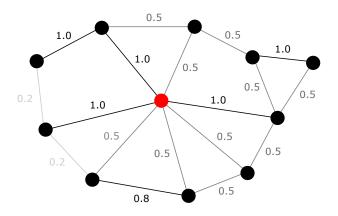


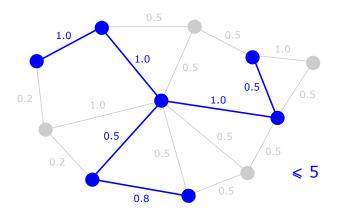


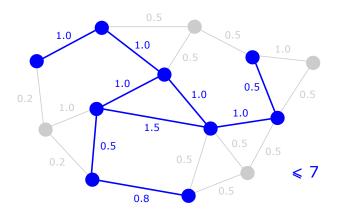


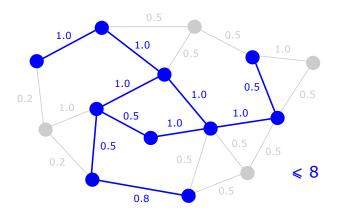


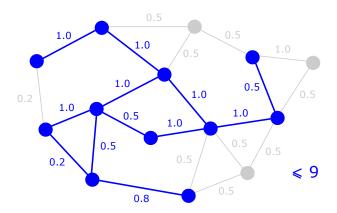


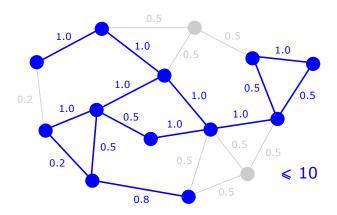












- Dada una solución fraccionaria $x^* \in [0,1]^{|E|}$...
 - Aplicar iterativamente los operadores de contracción hasta que no sea posible aplicar ninguna contracción.
 - ② Buscar restricciones sobre claws bipartitos $\sum_{e \in B} x_e \le 5$ violadas o "casi violadas".
 - Deshacer las contracciones en orden inverso.
 - Aplicar en forma golosa los operadores de extensión a la desigualdad hallada, y agregar todos los cortes generados.
- Se puede implementar en forma muy elegante en un entorno orientado a objetos, definiendo interfaces EXTENSOR y CONTRACTOR.
 - El agregado y configuración de operadores de extensión y contracción es sencillo en este contexto.
 - Se pueden tener tests unitarios para garantizar que los nuevos operadores cumplen el contrato definido por el framework.

Resultados computacionales

• Impacto sobre el valor óptimo de la relajación lineal.

Instance	LR		LR + Cuts			
Instance	Value	Time (sec) Value		Time (sec)	Cuts	
R(10, 0)	1083	0.13	-19.36 %	0.24	152	
R(12, 0)	1538	0.13	-23.57 %	0.33	845	
R(15, 0)	2612	0.14	-33.18 %	0.56	2600	
R(15, 1)	2088	0.15	-31.22 %	0.71	1726	
R(19, 0)	4294	0.16	-34.40 %	1.60	4408	
R(20, 0)	4872.5	0.17	-34.89 %	2.49	3581	
R(20, 1)	4424	0.19	-33.00 %	3.12	4644	
R(24, 0)	7283	0.20	-33.40 %	4.98	5137	
R(25, 0)	7738	0.22	-34.46 %	7.14	5547	
R(25, 1)	6747	0.24	-34.37 %	9.17	6790	
R(28, 0)	9778	0.26	-34.55 %	12.57	9275	
R(30, 0)	11050	0.27	-32.97 %	17.25	8635	
R(32, 0)	12504	0.28	-34.01 %	23.71	9904	

Resultados computacionales

• Comparación entre la ejecución de CPLEX y un algoritmo branch and cut con estos procedimientos de separación, para la optimización sobre CPP(G).

Instancia	Branch and bound			Branch and cut		
IIIStalicia	Valor	Gap	Tiempo	Valor	Gap	Tiempo
R(10, 0)	697	0.00 %	0.87	697	0 %	0.34
R(12, 0)	871	0.00 %	10.03	871	0 %	0.07
R(15, 0)	1083	53.28 %	120.00	1134	0 %	0.12
R(15, 1)	1066	15.53 %	120.00	1094	0 %	0.05
R(19, 0)	1161	171.42 %	120.00	1548	0 %	0.06
R(20, 0)	1336	164.60 %	120.00	1655	0 %	0.08
R(20, 1)	1409	150.84 %	120.00	1722	0 %	0.06
R(24, 0)	****	****	120.00	2076	0 %	0.10
R(25, 0)	****	****	120.00	2138	0 %	0.23
R(25, 1)	1467	290.10 %	120.00	2189	0 %	0.10
R(28, 0)	****	****	120.00	2425	0 %	1.38
R(30, 0)	****	****	120.00	2620	0 %	0.28
R(32, 0)	****	****	120.00	2816	0 %	1.07

Conclusiones

- Los procedimientos que generan desigualdades preservando facetitud permiten explicar muchas (todas?) las facetas de CPP(G), y también permiten el diseño de un procedimiento de separación unificado.
- En los últimos años se han estudiado procedimientos basados en contracciones y extensiones para problemas clásicos.
 - Poliedro de conjuntos estables (Rossi y Smriglio, 2001, Rebennack et al., 2011, Xavier y Campêlo, 2011, Corrêa et al., 2016).
 - 2 Problemas de coloreo (Delle Donne, 2016, Braga et al., 2016).
 - 3 Sistemas de independencia (Fouilhoux et al., 2009).
 - Olique partitioning (Lechford y Vu, 2017).
- Se puede implementar un framework general para la generación de cortes basada en contracciones y extensiones?