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Non-commutative geometry

Basic idea

Commutative C∗-algebras ↔ topological space
Non-commutative C∗-algebras ↔ non-commutative topological space

Spectral Triples (A,H,D)
Spectral Triple ↔ Metric space

A C∗-algebra
H Hilbert space where A is represented
D Dirac operator acting on H

Dimension spectrum

Required for Generalization of local index theorem
Chern cocycle in De-Rahm cohomology ↔ Local index (anomaly) of
Dirac operator(canonical case)
Chern cocycle in Cyclic cohomology ↔ Residue of zeta function for
certain forms involving the Dirac operator in dimension spectrum poles

R. Trinchero (IB, CAB) Non-integer dimension. EAMGyFM 2017 September 27, 2017 6 / 19



Non-commutative geometry

Basic idea

Commutative C∗-algebras ↔ topological space

Non-commutative C∗-algebras ↔ non-commutative topological space

Spectral Triples (A,H,D)
Spectral Triple ↔ Metric space

A C∗-algebra
H Hilbert space where A is represented
D Dirac operator acting on H

Dimension spectrum

Required for Generalization of local index theorem
Chern cocycle in De-Rahm cohomology ↔ Local index (anomaly) of
Dirac operator(canonical case)
Chern cocycle in Cyclic cohomology ↔ Residue of zeta function for
certain forms involving the Dirac operator in dimension spectrum poles

R. Trinchero (IB, CAB) Non-integer dimension. EAMGyFM 2017 September 27, 2017 6 / 19



Non-commutative geometry

Basic idea

Commutative C∗-algebras ↔ topological space
Non-commutative C∗-algebras ↔ non-commutative topological space

Spectral Triples (A,H,D)
Spectral Triple ↔ Metric space

A C∗-algebra
H Hilbert space where A is represented
D Dirac operator acting on H

Dimension spectrum

Required for Generalization of local index theorem
Chern cocycle in De-Rahm cohomology ↔ Local index (anomaly) of
Dirac operator(canonical case)
Chern cocycle in Cyclic cohomology ↔ Residue of zeta function for
certain forms involving the Dirac operator in dimension spectrum poles

R. Trinchero (IB, CAB) Non-integer dimension. EAMGyFM 2017 September 27, 2017 6 / 19



Non-commutative geometry

Basic idea

Commutative C∗-algebras ↔ topological space
Non-commutative C∗-algebras ↔ non-commutative topological space

Spectral Triples (A,H,D)
Spectral Triple ↔ Metric space

A C∗-algebra
H Hilbert space where A is represented
D Dirac operator acting on H

Dimension spectrum

Required for Generalization of local index theorem
Chern cocycle in De-Rahm cohomology ↔ Local index (anomaly) of
Dirac operator(canonical case)
Chern cocycle in Cyclic cohomology ↔ Residue of zeta function for
certain forms involving the Dirac operator in dimension spectrum poles

R. Trinchero (IB, CAB) Non-integer dimension. EAMGyFM 2017 September 27, 2017 6 / 19



Non-commutative geometry

Basic idea

Commutative C∗-algebras ↔ topological space
Non-commutative C∗-algebras ↔ non-commutative topological space

Spectral Triples (A,H,D)
Spectral Triple ↔ Metric space

A C∗-algebra

H Hilbert space where A is represented
D Dirac operator acting on H

Dimension spectrum

Required for Generalization of local index theorem
Chern cocycle in De-Rahm cohomology ↔ Local index (anomaly) of
Dirac operator(canonical case)
Chern cocycle in Cyclic cohomology ↔ Residue of zeta function for
certain forms involving the Dirac operator in dimension spectrum poles

R. Trinchero (IB, CAB) Non-integer dimension. EAMGyFM 2017 September 27, 2017 6 / 19



Non-commutative geometry

Basic idea

Commutative C∗-algebras ↔ topological space
Non-commutative C∗-algebras ↔ non-commutative topological space

Spectral Triples (A,H,D)
Spectral Triple ↔ Metric space

A C∗-algebra
H Hilbert space where A is represented

D Dirac operator acting on H

Dimension spectrum

Required for Generalization of local index theorem
Chern cocycle in De-Rahm cohomology ↔ Local index (anomaly) of
Dirac operator(canonical case)
Chern cocycle in Cyclic cohomology ↔ Residue of zeta function for
certain forms involving the Dirac operator in dimension spectrum poles

R. Trinchero (IB, CAB) Non-integer dimension. EAMGyFM 2017 September 27, 2017 6 / 19



Non-commutative geometry

Basic idea

Commutative C∗-algebras ↔ topological space
Non-commutative C∗-algebras ↔ non-commutative topological space

Spectral Triples (A,H,D)
Spectral Triple ↔ Metric space

A C∗-algebra
H Hilbert space where A is represented
D Dirac operator acting on H

Dimension spectrum

Required for Generalization of local index theorem
Chern cocycle in De-Rahm cohomology ↔ Local index (anomaly) of
Dirac operator(canonical case)
Chern cocycle in Cyclic cohomology ↔ Residue of zeta function for
certain forms involving the Dirac operator in dimension spectrum poles

R. Trinchero (IB, CAB) Non-integer dimension. EAMGyFM 2017 September 27, 2017 6 / 19



Non-commutative geometry

Basic idea

Commutative C∗-algebras ↔ topological space
Non-commutative C∗-algebras ↔ non-commutative topological space

Spectral Triples (A,H,D)
Spectral Triple ↔ Metric space

A C∗-algebra
H Hilbert space where A is represented
D Dirac operator acting on H

Dimension spectrum

Required for Generalization of local index theorem
Chern cocycle in De-Rahm cohomology ↔ Local index (anomaly) of
Dirac operator(canonical case)
Chern cocycle in Cyclic cohomology ↔ Residue of zeta function for
certain forms involving the Dirac operator in dimension spectrum poles

R. Trinchero (IB, CAB) Non-integer dimension. EAMGyFM 2017 September 27, 2017 6 / 19



Non-commutative geometry

Basic idea

Commutative C∗-algebras ↔ topological space
Non-commutative C∗-algebras ↔ non-commutative topological space

Spectral Triples (A,H,D)
Spectral Triple ↔ Metric space

A C∗-algebra
H Hilbert space where A is represented
D Dirac operator acting on H

Dimension spectrum

Required for Generalization of local index theorem

Chern cocycle in De-Rahm cohomology ↔ Local index (anomaly) of
Dirac operator(canonical case)
Chern cocycle in Cyclic cohomology ↔ Residue of zeta function for
certain forms involving the Dirac operator in dimension spectrum poles

R. Trinchero (IB, CAB) Non-integer dimension. EAMGyFM 2017 September 27, 2017 6 / 19



Non-commutative geometry

Basic idea

Commutative C∗-algebras ↔ topological space
Non-commutative C∗-algebras ↔ non-commutative topological space

Spectral Triples (A,H,D)
Spectral Triple ↔ Metric space

A C∗-algebra
H Hilbert space where A is represented
D Dirac operator acting on H

Dimension spectrum

Required for Generalization of local index theorem
Chern cocycle in De-Rahm cohomology ↔ Local index (anomaly) of
Dirac operator(canonical case)

Chern cocycle in Cyclic cohomology ↔ Residue of zeta function for
certain forms involving the Dirac operator in dimension spectrum poles

R. Trinchero (IB, CAB) Non-integer dimension. EAMGyFM 2017 September 27, 2017 6 / 19



Non-commutative geometry

Basic idea

Commutative C∗-algebras ↔ topological space
Non-commutative C∗-algebras ↔ non-commutative topological space

Spectral Triples (A,H,D)
Spectral Triple ↔ Metric space

A C∗-algebra
H Hilbert space where A is represented
D Dirac operator acting on H

Dimension spectrum

Required for Generalization of local index theorem
Chern cocycle in De-Rahm cohomology ↔ Local index (anomaly) of
Dirac operator(canonical case)
Chern cocycle in Cyclic cohomology ↔ Residue of zeta function for
certain forms involving the Dirac operator in dimension spectrum poles

R. Trinchero (IB, CAB) Non-integer dimension. EAMGyFM 2017 September 27, 2017 6 / 19



Non-commutative geometry

R. Trinchero (IB, CAB) Non-integer dimension. EAMGyFM 2017 September 27, 2017 7 / 19



Example of space with non-integer dimension1

• Spectral triple. Dirac operator

A is the commutative C ∗-algebra of smooth functions over the
n-dimensional torus T n n ∈ N.

H is the Hilbert space of square integrable sections of a spinor bundle
over T n.

Dα : H → H is a self-adjoint linear operator given by,

Dα = D(1 + D2)−α, α > 0

where D is the n-dimensional Dirac operator, i.e. D = iγµ∂µ

1R.T.’12
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Example of space with non-integer dimension

• Discrete dimension spectrum

Essentialy given by the poles of the zeta function for the Dirac
operator given by,

ζDα
b (z) = Tr [π(b) |Dα|−z ]

For this case the poles are located at,

z =
n − 2k(1− δα,0)

1− 2α
, k = 0, 1, 2, · · ·

which are interpreted as giving the dimensions of different parts of
this space.
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Differential algebra

Differential,
π(δf ) = df = [Dα, f ]

which leads to,

df = (1 + D2)−α(Df ) + [(1 + D2)−αf − f (1 + D2)−α]iγ · ∂

which, for α 6= 0, is a non-multiplicative operator.

Junk forms,
π(ω) = 0 but π(δω) 6= 0

Example canonical triple(α = 0):

ω = f δf − (δf )f , δω = δf δf

and,
π(ω) = iγµ(f (∂µf )− (∂µf )f ) = 0
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Differential algebra

but,
π(δω) = −γµγν∂µf ∂ν f = ∂µf ∂ν f 6= 0

No junk forms for α 6= 0, non-multiplicativity of df plays an
important role in this respect.

Forms of any order exists for α 6= 0

For α 6= 0 a vector has an infinite number of components.
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The scalar field

Action,

S =
1

2
< dφ, dφ >

where φ is a 0-form and the norm in the space forms is given by,

< η, η >= trω[ηη†|Dα|−d ]

trω denotes Diximiers trace.

This can be expressed as a Wodzicki’s residue,

trω(A) =
1

n(2π)n

∫
S∗T n

trσA−n(x , ξ)

where σA−n(x , ξ) denotes the term of order −n of the symbol of the
operator A , (x , ξ) denote coordinates over the unit co-sphere on the
cotangent bundle of T n.
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The scalar field

Only the part of this space corresponding to the pole z = n
1−2α is

considered. Leading to,

S = −2[
n
2
]VSn−1

n(2π)n

∫
T n

φ(D2 +
αn

1− 2α
)(1 + D2)−2αφ∗

which is a non-local action in n dimensions.

The propagator for this theory is given by,

D(x − y) =

∫
dnp

(M2 + p2)2α

(p2 + m2)
e−ip·(x−y)

where units has been restored to the coordinates and ,

m2 = M2 αn

1− 2α
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One loop diagrams

Tadpole,
p

ITα (m) =

∫
dnp

(M2 + p2)2α

(p2 + m2)

which leads to,

ITα (m) =
−π

n
2 Γ(1− n

2 − α)

Γ(−α)α
(M2)α+

n
2
−1

2F1(1, 1−α−n

2
, 1−α, 1−m2

M2
)

For 0 ≤ α < 1/2 the hypergeometric function divided by Γ(−α)α
present no poles. Singularities come from Γ(1− n

2 − α) in the
numerator, which coincide with the ones appearing in dimensional
regularization.
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One loop diagrams

A loop involving two free propagators,

p+k

p

Same result as for the tadpole diagram. Singularities coincide with
the ones appearing in dimensional regularization. Finite result for
0 < α < 1/2.

The magic of analytic continuation. For 0 < α < 1/2 ultraviolet
behaviour of propagator is worse than for α = 0 however in that
region there are no divergences. This is in sharp contrast with
commonly employed regularizations that improve convergence by
improving ultraviolet behaviour of propagators in momentum space.
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Physical theories in non-integer dimensions. Unitariry and
reflection positivity.2

Is it possible to consider theories on non-integer dimensional spaces as
physical theories?

Do they provide a unitary evolution?

Working in Euclidean space this last question has an affirmative
answer if the property of reflection positivity holds.

Reflection positivity guanrantees the existence of a positive definite
inner product on a Hilbert space when going to Minkowski space.

Reflection positivity basics: Consider Rd+1 and the plane xd+1 = 0,
let R+

d+1 denote the points with xd+1 > 0 and θ the reflection on
xd+1 = 0. The the requirement of reflection positivity for a theory
with propagator S(x − y) is,

(θf , f ) ≥ 0 , Support(f ) ⊂ R+
d+1

where the scalar product (, ) is defined by,

2R.T.’17
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Physical theories in non-integer dimensions. Unitariry and
reflection positivity.

(f , g) =

∫
dd+1x dd+1y f̄ (x)S(x − y)g(y)

and θf = f (θx) , θx = (−xd+1, x̄).

It turns out that reflection positivity(RP) holds for 0 < α < 1
n+2 and

that RP does not hold for α < 0.

This result partially coincide with the ones of the so called conformal
bootstrap. In this approach, non-integer dimension is incorporated by
assuming that for non-integer dimension the antisymmetrization of
objects with n-indices with d < n does not vanish3.
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Conclusions and outlook
Comparison with dimensional regularization: There is no knowm
Lagrangian formulation of the widely employed dimensional
regularization technique. It is done separatedly for each integral
appearing in a calculation of Feynman diagrams. The present
approach can be viewed as a regularization scheme that is
implementable at the Lagrangian level and presents the same
singularity structure as dimensional regularization.

Comparison with non-commutative field theory(NCFT): In the present
approach no non-commutativity of the coordinates is assumed.
Non-commutativity enters at the level of the differential algebra
through the deformed choice of the Dirac operator. Also,
contributions are finite which is not what happens in NCCFT.
Furthermore covariance is not spoiled as happens in NCFT’s.
Physical theories in non-integer dimension: It has been shown that for
the case of a scalar field reflection positivity holds and therefore for
these theories the question of wether physical space has integer
dimension or not can be properly addressed.
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Conclusions and outlook

Higher order forms theories: A very important feature of this
approach is the fact that it is based on a well defined differential
geometry. This allows to consider the generalization of any field
theory defined in differential geometric terms to these deformed
spaces. This includes gauge theories and gravity theories. Of course
the resulting theories deserve to be studied in detail.

The ε-expansion and the conformal bootstrap: It is worth considering
the corresponding computations in the present approach. In particular
the isometries of these spaces play an important role in this respect.
The NCG approach corresponds for these isometries to the
computation of conserved quantities at the level of fields.
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