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Motivation

e Renormalization group and the e expansion

Critical Exponents in 3.99 Dimensions*®

Kenneth G. Wilson and Michael E. Fisher
Laboratory of Nuclear Studies and Baker Laboratory, Cownell University, Ithaca, New York 14850
(Received 11 October 1971)

Critical are for ion d =4 - ¢ with ¢ small, using renorma-
lization-group techniques. To order € the exponent v is 1++€ for an Ising=like model
and 1++€ for an X¥ model.

A generalized Ising model is solved here for may be more difficult for exact calculations to
dimension d =4 - € with € small, Critical expo- higher orders in &, The exponents will be calcu-
nents' are obtained to order € or €’. For d>4 lated using a recursion formula derived else-
the exponents are mean-field exponents' indepen-  where® which represents critical behavior ap-
dent of €; below d =4 the exponents vary continu- proximately in three dimensions but turns out to
ously with ¢. For example, the susceptibility ex-  be exact to order ¢ (see the end of this paper).
ponent y is 1+3¢€ to order € for €>0, and 1 ex- Exponents will also be obtained for the classical
actly for €<0. The definitions for nonintegral d planar Heisenberg model (XY model) and a modi-
are trivial for the calculations reported here but fied form of Baxter’s eight-vertex model,?

240
VorumE 28, NUMBER 4 PHYSICAL REVIEW LETTERS 24 JANUARY 1972
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Motivation

e Dimensional regularization

I NUOVO CIMENTO Vor. 12B, N. 1 11 Novembre 1972

Dimensional Renormalization: The Number of Dimensions
as a Regularizing Parameter.

C. G. Boruini and J.J., GIAMBIAGT

Departamento de Fisica, Facultad de Ciencias Exaclas
Unaversidad Nacional de La Plata

Summary. — We perform an analytic extension of quantum electro-
dynamics matrix elements as (analytic) functions of the number of di-
mensions of space {v). The usual divergences appear as poles for v integer.
The renormalization of those matrix elements (for » arbitrary) leads to
expressions which are free of ultraviolet divergences forvequal to 4. This
shows that » can be used as an analytic regularizing parameter with
advantages over the usual analytic regularization method. In particular,
gauge invariance is mantained for any ».
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Nuclear Physics B44 (1972) 189-213. North-Holland Publishing Company

REGULARIZATION AND RENORMALIZATION
OF GAUGE FIELDS

G.’t HOOFT and M. VELTMAN
Institute for Theoretical Physics * University of Utrechi

Received 21 February 1972

Abstract: A new regularization and renormalization procedure is presented. It is particularly
well suited for the treatment of gauge theories, The method works for theories that were
known to be renormalizable as well as for Yang-Mills type theories. Overlapping diver-
gencies arc disentangled. The procedure respects unitarity, causality and allows shifts of
integration variables. In non-anomalous cases also Ward identities are satisfied at all stages.
It is transparent when anomalies, such as the Bell-Jackiw-Adler anomaly, may oceur.

DA



@ Basic idea

i
a

«Or «Fr < . ’ N



@ Basic idea

e Commutative C*-algebras <> topological space

it
a

<O «Fr < > > DA



@ Basic idea

e Commutative C*-algebras <> topological space

e Non-commutative C*-algebras <+ non-commutative topological space

<O «Fr < » > DA



o Basic idea
e Commutative C*-algebras <> topological space

e Non-commutative C*-algebras <+ non-commutative topological space
@ Spectral Triples (A, #, D)
Spectral Triple <> Metric space

«O>» «(Fr «Zr «E» Q>



o Basic idea
e Commutative C*-algebras <> topological space

e Non-commutative C*-algebras <+ non-commutative topological space
@ Spectral Triples (A, #, D)

o A C*-algebra

«O>» «(Fr «Zr «E» Q>

Spectral Triple <> Metric space



Non-commutative geometry

@ Basic idea

e Commutative C*-algebras <> topological space
e Non-commutative C*-algebras <+ non-commutative topological space

@ Spectral Triples (A, #, D)
Spectral Triple <+ Metric space

o A C*-algebra
e H Hilbert space where A is represented

R. Trinchero (1B, CAB) Non-integer dimension. EAMGyFM 2017 September 27, 2017 6 /19



Non-commutative geometry

@ Basic idea

e Commutative C*-algebras <> topological space
e Non-commutative C*-algebras <+ non-commutative topological space

@ Spectral Triples (A, #, D)
Spectral Triple <+ Metric space

o A C*-algebra
e H Hilbert space where A is represented
e D Dirac operator acting on ‘H

R. Trinchero (1B, CAB) Non-integer dimension. EAMGyFM 2017 September 27, 2017 6 /19



Non-commutative geometry

@ Basic idea

e Commutative C*-algebras <> topological space
e Non-commutative C*-algebras <+ non-commutative topological space

@ Spectral Triples (A, #, D)
Spectral Triple <+ Metric space

o A C*-algebra
e H Hilbert space where A is represented
e D Dirac operator acting on ‘H

@ Dimension spectrum

R. Trinchero (1B, CAB) Non-integer dimension. EAMGyFM 2017 September 27, 2017 6 /19



Non-commutative geometry

@ Basic idea

e Commutative C*-algebras <> topological space
e Non-commutative C*-algebras <+ non-commutative topological space

@ Spectral Triples (A, #, D)
Spectral Triple <+ Metric space

o A C*-algebra
e H Hilbert space where A is represented
e D Dirac operator acting on ‘H

@ Dimension spectrum
e Required for Generalization of local index theorem

R. Trinchero (1B, CAB) Non-integer dimension. EAMGyFM 2017 September 27, 2017 6 /19



Non-commutative geometry

@ Basic idea

e Commutative C*-algebras <> topological space
e Non-commutative C*-algebras <+ non-commutative topological space

@ Spectral Triples (A, #, D)
Spectral Triple <+ Metric space

o A C*-algebra
e H Hilbert space where A is represented
e D Dirac operator acting on ‘H

@ Dimension spectrum

e Required for Generalization of local index theorem
e Chern cocycle in De-Rahm cohomology <« Local index (anomaly) of
Dirac operator(canonical case)

R. Trinchero (1B, CAB) Non-integer dimension. EAMGyFM 2017 September 27, 2017 6 /19
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@ Basic idea

e Commutative C*-algebras <> topological space
e Non-commutative C*-algebras <+ non-commutative topological space

@ Spectral Triples (A, #, D)
Spectral Triple <+ Metric space
o A C*-algebra
e H Hilbert space where A is represented
e D Dirac operator acting on ‘H

@ Dimension spectrum
e Required for Generalization of local index theorem
e Chern cocycle in De-Rahm cohomology <« Local index (anomaly) of
Dirac operator(canonical case)
e Chern cocycle in Cyclic cohomology <+ Residue of zeta function for
certain forms involving the Dirac operator in dimension spectrum poles
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Non-commutative geometry

G ic And Fu i 1 Analysi 1016-443X/95/0200174-7081.50+40.20/0

Vel. 5, No. 2 (1995) © 1995 Birkhiuser Verlag, Basel

THE LOCAL INDEX FORMULA
IN NONCOMMUTATIVE GEOMETRY

A. CoNNES AND H. Moscovicr

We dedicate this paper to Misha Gromov

Abstract

In noncommutative geometry a geometric space is described from a spectral
vantage point, as a triple (.4, H, D) consisting of a *-algebra .4 represented in
a Hilbert space H together with an unbounded selfadjoint operator D, with
compact resolvent, which interacts with the algebra in a bounded fashion.
This paper contributes to the advancement of this point of view in two
significant ways: (1) by showing that any pseudogroup of transformations of
a manifold gives rise to such a spectral triple of finite summability degree,
and (2) by proving a general, in some sense universal, local index formula
for arbitrary spectral triples of finite summability degree, in terms of the
Dixmier trace and its residue-type extension.
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e Spectral triple. Dirac operator
n-dimensional torus T" n e N.

o A is the commutative C*-algebra of smooth functions over the
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Example of space with non-integer dimension®

e Spectral triple. Dirac operator
o A is the commutative C*-algebra of smooth functions over the
n-dimensional torus T" n & N.

@ 7 is the Hilbert space of square integrable sections of a spinor bundle
over T".
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Example of space with non-integer dimension®

e Spectral triple. Dirac operator

o A is the commutative C*-algebra of smooth functions over the
n-dimensional torus T" n & N.

@ 7 is the Hilbert space of square integrable sections of a spinor bundle
over T".

e D, : H — H is a self-adjoint linear operator given by,
Dy =D(1+ D% a>0

where D is the n-dimensional Dirac operator, i.e. D = iv,0,

'R.T.'12
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e Discrete dimension spectrum

o Essentialy given by the poles of the zeta function for the Dirac
operator given by,

(5 (2) = Tr[m(b) |Dal ]
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Example of space with non-integer dimension

e Discrete dimension spectrum
@ Essentialy given by the poles of the zeta function for the Dirac
operator given by,

Cp*(z) = Tr[m(b) |Dal™?]
@ For this case the poles are located at,

n—2k(1—(5a0)
p—t 2 k: 12 DY
4 1_2a ) 07 ) Y

which are interpreted as giving the dimensions of different parts of
this space.
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o Differential,
w(0f) = df = [Da, f]
which leads to,

df = (1+ D?)~*(Df) +[(1 + D*)~*f — f(1 + D*)™*)iy- 0

which, for o £ 0, is a non-multiplicative operator.
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Differential algebra
@ Differential,
w(0f) = df = [Da, f]
which leads to,
df = (14 D*)~%(Df) + [(1 + D?)~%f — f(1 + D*)"iy - 9

which, for o £ 0, is a non-multiplicative operator.

@ Junk forms,
m(w) =0 but m(éw)#0

Example canonical triple(ae = 0):
w=Ffof — (0F)f ,0w = 6fof
and,

m(w) = iu(F(9uf) = (9uf)f) = 0

R. Trinchero (1B, CAB) Non-integer dimension. EAMGyFM 2017 September 27, 2017
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but,

m(0w) = =Y Oufo,f = 0uf0,f #0

@ No junk forms for v # 0, non-multiplicativity of df plays an
important role in this respect.
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but,
m(0w) = =Y Oufo,f = 0uf0,f #0

@ No junk forms for v # 0, non-multiplicativity of df plays an
important role in this respect.

@ Forms of any order exists for a # 0

@ For e # 0 a vector has an infinite number of components.
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@ Action,
1

S= 5 < do,dop >
where ¢ is a 0-form and the norm in the space forms is given by,

< n,n >= try[n'|Da =]
tr,, denotes Diximiers trace.
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The scalar field

@ Action, .
S= 5 < d¢,dop >

where ¢ is a 0-form and the norm in the space forms is given by,
< 1,1 >= tr[nm'|Dal ]

tr,, denotes Diximiers trace.

@ This can be expressed as a Wodzicki's residue,
(A) = o [ ot (6)
r, = r X
¢ n(271')" S* TN Uﬁn ’

where oA (x, &) denotes the term of order —n of the symbol of the
operator A, (x,&) denote coordinates over the unit co-sphere on the
cotangent bundle of T".
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@ Only the part of this space corresponding to the pole z =
considered. Leading to,
5 _ 2[ ]VSn 1

=15 IS
D2
“n(2m)" / i

an

which is a non-local action in n dimensions

5o 1+ D)7
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The scalar field

@ Only the part of this space corresponding to the pole z = 5~
considered. Leading to,

AV s an
=== D?
S n(2m)"  J1o (D" + 1 -2«

)(1+ D) 2"

which is a non-local action in n dimensions.

@ The propagator for this theory is given by,
M?2 +p2)2a .
Dix—y) = [ apME TP iptey)
(x—y) / g
where units has been restored to the coordinates and ,

an
m2 = M2
1 -2«
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One loop diagrams

e Tadpole,

M2 2\2a
) = [apl R0
(p? + m?)
which leads to,
—mal(1— 5—Q), o aun n m?
M2t lo R (L l—a——, 1—a, 1——

fCaje (M)A lmamg, 1-a 1-4)

For 0 < a < 1/2 the hypergeometric function divided by I'(—a)«

present no poles. Singularities come from I'(1 — 5 — «) in the

numerator, which coincide with the ones appearing in dimensional

regularization.

I1T(m) =
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@ A loop involving two free propagators,
p

prk
Same result as for the tadpole diagram. Singularities coincide with
O<a<1/2

the ones appearing in dimensional regularization. Finite result for
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One loop diagrams

@ A loop involving two free propagators,
p

ptk

Same result as for the tadpole diagram. Singularities coincide with
the ones appearing in dimensional regularization. Finite result for
O<a<1/2

@ The magic of analytic continuation. For 0 < v < 1/2 ultraviolet
behaviour of propagator is worse than for &« = 0 however in that
region there are no divergences. This is in sharp contrast with
commonly employed regularizations that improve convergence by
improving ultraviolet behaviour of propagators in momentum space.
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Physical theories in non-integer dimensions. Unitariry and
reflection positivity.?

@ Is it possible to consider theories on non-integer dimensional spaces as
physical theories?

@ Do they provide a unitary evolution?

@ Working in Euclidean space this last question has an affirmative
answer if the property of reflection positivity holds.

*RT.17
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@ Working in Euclidean space this last question has an affirmative
answer if the property of reflection positivity holds.
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Physical theories in non-integer dimensions. Unitariry and
reflection positivity.?

@ Is it possible to consider theories on non-integer dimensional spaces as
physical theories?

@ Do they provide a unitary evolution?

@ Working in Euclidean space this last question has an affirmative
answer if the property of reflection positivity holds.

@ Reflection positivity guanrantees the existence of a positive definite
inner product on a Hilbert space when going to Minkowski space.

@ Reflection positivity basics: Consider Ry11 and the plane x441 =0,

let R:}H denote the points with x411 > 0 and 8 the reflection on

X4+1 = 0. The the requirement of reflection positivity for a theory

with propagator S(x — y) s,

(0f,f) >0 , Support(f) C R}, ,

where the scalar product (,) is defined by,

*RT.17
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(f.g) = / L 4y F(x)S(x — y)e(y)
and 6f = f(6x) ,0x = (—xg+1, X)-

that RP does not hold for o« < 0.

e It turns out that reflection positivity(RP) holds for 0 < o < ﬁ and

3Rychk0v’15 «O>r «Fr «Er «=)» = A
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Physical theories in non-integer dimensions. Unitariry and
reflection positivity.

(f.g) = /dd“X d¥ly F(x)S(x — y)g(y)
and 0f = f(0x) ,0x = (—xg41,X).

e It turns out that reflection positivity(RP) holds for 0 < a < —5 and
that RP does not hold for @ < 0.

@ This result partially coincide with the ones of the so called conformal
bootstrap. In this approach, non-integer dimension is incorporated by
assuming that for non-integer dimension the antisymmetrization of
objects with n-indices with d < n does not vanish3.

*Rychkov'15
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Conclusions and outlook

o Comparison with dimensional regularization: There is no knowm
Lagrangian formulation of the widely employed dimensional
regularization technique. It is done separatedly for each integral
appearing in a calculation of Feynman diagrams. The present
approach can be viewed as a regularization scheme that is
implementable at the Lagrangian level and presents the same
singularity structure as dimensional regularization.
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e Comparison with non-commutative field theory(NCFT): In the present
approach no non-commutativity of the coordinates is assumed.
Non-commutativity enters at the level of the differential algebra
through the deformed choice of the Dirac operator. Also,
contributions are finite which is not what happens in NCCFT.
Furthermore covariance is not spoiled as happens in NCFT's.
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regularization technique. It is done separatedly for each integral
appearing in a calculation of Feynman diagrams. The present
approach can be viewed as a regularization scheme that is
implementable at the Lagrangian level and presents the same
singularity structure as dimensional regularization.

e Comparison with non-commutative field theory(NCFT): In the present
approach no non-commutativity of the coordinates is assumed.
Non-commutativity enters at the level of the differential algebra
through the deformed choice of the Dirac operator. Also,
contributions are finite which is not what happens in NCCFT.
Furthermore covariance is not spoiled as happens in NCFT's.

@ Physical theories in non-integer dimension: It has been shown that for
the case of a scalar field reflection positivity holds and therefore for
these theories the question of wether physical space has integer
dimension or not can be properly addressed.
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Conclusions and outlook

@ Higher order forms theories: A very important feature of this
approach is the fact that it is based on a well defined differential
geometry. This allows to consider the generalization of any field
theory defined in differential geometric terms to these deformed
spaces. This includes gauge theories and gravity theories. Of course
the resulting theories deserve to be studied in detail.
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Conclusions and outlook

@ Higher order forms theories: A very important feature of this
approach is the fact that it is based on a well defined differential
geometry. This allows to consider the generalization of any field
theory defined in differential geometric terms to these deformed
spaces. This includes gauge theories and gravity theories. Of course
the resulting theories deserve to be studied in detail.

@ The e-expansion and the conformal bootstrap: It is worth considering
the corresponding computations in the present approach. In particular
the isometries of these spaces play an important role in this respect.
The NCG approach corresponds for these isometries to the
computation of conserved quantities at the level of fields.
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