Encuentro Argentino de Mecánica Geométrica y Física-Matemática Mar del Plata - Septiembre - 2017

Soluciones explícitas de las ecuaciones cinéticas y potenciales del método de estabilización LCB

Leandro Salomone^{1,2}

en colaboración con ${\sf Sergio} \ {\sf Grillo}^{2,3} \ {\sf y} \quad {\sf Marcela} \ {\sf Zuccalli}^1$

Departamento de Matemática, UNLP, ²CONICET, ³Centro Atómico Bariloche

Sea Q una variedad suave y conexa y $X\in\mathfrak{X}(T^*Q)$ un campo vectorial suave sobre $T^*Q.$ Si $\bar{\alpha}$ es un punto crítico de X (i.e. $X(\bar{\alpha})=0$) decimos que es

1. **estable** si para todo entorno $\bar{\alpha} \in U \subseteq T^*Q$ existe otro entorno $\bar{\alpha} \in U' \subseteq U$ tal que toda curva integral de X comenzando en U' permanece dentro de U,

Sea Q una variedad suave y conexa y $X\in\mathfrak{X}(T^*Q)$ un campo vectorial suave sobre T^*Q . Si $\bar{\alpha}$ es un punto crítico de X (i.e. $X(\bar{\alpha})=0$) decimos que es

- 1. **estable** si para todo entorno $\bar{\alpha} \in U \subseteq T^*Q$ existe otro entorno $\bar{\alpha} \in U' \subseteq U$ tal que toda curva integral de X comenzando en U' permanece dentro de U,
- 2. inestable si no es estable,

Sea Q una variedad suave y conexa y $X\in\mathfrak{X}(T^*Q)$ un campo vectorial suave sobre T^*Q . Si $\bar{\alpha}$ es un punto crítico de X (i.e. $X(\bar{\alpha})=0$) decimos que es

- 1. **estable** si para todo entorno $\bar{\alpha} \in U \subseteq T^*Q$ existe otro entorno $\bar{\alpha} \in U' \subseteq U$ tal que toda curva integral de X comenzando en U' permanece dentro de U,
- 2. inestable si no es estable,
- 3. localmente asintóticamente estable si es estable y además

$$\lim_{t \to \infty} \gamma(t) = \bar{\alpha},$$

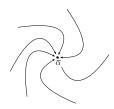
para toda curva integral γ de X comenzando en U'.

Sea Q una variedad suave y conexa y $X\in\mathfrak{X}(T^*Q)$ un campo vectorial suave sobre T^*Q . Si $\bar{\alpha}$ es un punto crítico de X (i.e. $X(\bar{\alpha})=0$) decimos que es

- 1. **estable** si para todo entorno $\bar{\alpha} \in U \subseteq T^*Q$ existe otro entorno $\bar{\alpha} \in U' \subseteq U$ tal que toda curva integral de X comenzando en U' permanece dentro de U,
- 2. inestable si no es estable,
- 3. localmente asintóticamente estable si es estable y además

$$\lim_{t \to \infty} \gamma(t) = \bar{\alpha},$$

para toda curva integral γ de X comenzando en $U^\prime.$



Función de Lyapunov (~1892)

Una función suave $V:T^*Q\to\mathbb{R}$ es una función de Lyapunov para X y $\bar{\alpha}$ si y sólo si

L1: $V \ge 0$ y $V(\alpha) = 0$ sii $\alpha = \bar{\alpha}$;

L2: $\langle dV(\alpha), X(\alpha) \rangle \leq 0 \text{ si } \alpha \neq \bar{\alpha}$

Función de Lyapunov (~1892)

Una función suave $V:T^*Q\to\mathbb{R}$ es una función de Lyapunov para X y $\bar{\alpha}$ si y sólo si

L1: $V \ge 0$ y $V(\alpha) = 0$ sii $\alpha = \bar{\alpha}$;

L2: $\langle dV(\alpha), X(\alpha) \rangle \leq 0$ si $\alpha \neq \bar{\alpha}$

Teorema: Si $\bar{\alpha}$ es un punto crítico de X y V es una función de Lyapunov para X y $\bar{\alpha}$, entonces $\bar{\alpha}$ es estable.

Función de Lyapunov (~1892)

Una función suave $V:T^*Q\to\mathbb{R}$ es una función de Lyapunov para X y $\bar{\alpha}$ si y sólo si

L1: $V \ge 0$ y $V(\alpha) = 0$ sii $\alpha = \bar{\alpha}$;

L2: $\langle dV(\alpha), X(\alpha) \rangle \leq 0$ si $\alpha \neq \bar{\alpha}$

Teorema: Si $\bar{\alpha}$ es un punto crítico de X y V es una función de Lyapunov para X y $\bar{\alpha}$, entonces $\bar{\alpha}$ es estable.

Si V es una función de Lyapunov para X y $\bar{\alpha}$, definiendo

$$\mu(\alpha) := - \langle dV(\alpha), X(\alpha) \rangle,$$

luego toda curva integral γ de X deben cumplir la ecuación

$$\langle dV (\gamma(t)), \gamma'(t) \rangle = -\mu (\gamma(t)).$$

Este es el denominado Vínculo de Lyapunov (Grillo, 2009).

Consideremos un Hamiltoniano H y un punto crítico inestable $\bar{\alpha}$ del campo vectorial Hamiltoniano asociado X_H . Sea $W \subset T^*Q$ un subfibrado de T^*Q .

Consideremos un Hamiltoniano H y un punto crítico inestable $\bar{\alpha}$ del campo vectorial Hamiltoniano asociado X_H . Sea $W\subset T^*Q$ un subfibrado de T^*Q .

Problema de estabilización

Hallar un campo vectorial vertical $Y \subset \mathrm{vlift}(W)$ tal que $\bar{\alpha}$ es un punto crítico (asintóticamente) estable de $X := X_H + Y$.

Consideremos un Hamiltoniano H y un punto crítico inestable $\bar{\alpha}$ del campo vectorial Hamiltoniano asociado X_H . Sea $W\subset T^*Q$ un subfibrado de T^*Q .

Problema de estabilización

Hallar un campo vectorial vertical $Y \subset \operatorname{vlift}(W)$ tal que $\bar{\alpha}$ es un punto crítico (asintóticamente) estable de $X := X_H + Y$.

Un **método de estabilización (de Lyapunov)** F es un procedimiento que resuelve el problema anterior (exhibiendo una función de Lyapunov) para una familia de ternas $(H,\bar{\alpha},W)$. El campo Y se denomina **ley o señal de control**.

Consideremos un Hamiltoniano H y un punto crítico inestable $\bar{\alpha}$ del campo vectorial Hamiltoniano asociado X_H . Sea $W\subset T^*Q$ un subfibrado de T^*Q .

Problema de estabilización

Hallar un campo vectorial vertical $Y \subset \operatorname{vlift}(W)$ tal que $\bar{\alpha}$ es un punto crítico (asintóticamente) estable de $X := X_H + Y$.

Un **método de estabilización (de Lyapunov)** F es un procedimiento que resuelve el problema anterior (exhibiendo una función de Lyapunov) para una familia de ternas $(H, \bar{\alpha}, W)$. El campo Y se denomina **ley o** señal de control.

Dados dos métodos F y F' definidos para la misma familia de ternas $(H,\bar{\alpha},W)$, decimos que F contiene a F' $(F'\subseteq F)$ si toda ley de control de F' es también ley de control de F.

Consideremos un Hamiltoniano H y un punto crítico inestable $\bar{\alpha}$ del campo vectorial Hamiltoniano asociado X_H . Sea $W\subset T^*Q$ un subfibrado de T^*Q .

Problema de estabilización

Hallar un campo vectorial vertical $Y \subset \operatorname{vlift}(W)$ tal que $\bar{\alpha}$ es un punto crítico (asintóticamente) estable de $X := X_H + Y$.

Un **método de estabilización (de Lyapunov)** F es un procedimiento que resuelve el problema anterior (exhibiendo una función de Lyapunov) para una familia de ternas $(H, \bar{\alpha}, W)$. El campo Y se denomina **ley o** señal de control.

Dados dos métodos F y F' definidos para la misma familia de ternas $(H,\bar{\alpha},W)$, decimos que F contiene a F' $(F'\subseteq F)$ si toda ley de control de F' es también ley de control de F.

Los métodos F y F' son **equivalentes** si $F' \subseteq F$ y $F \subseteq F'$.

Si fijamos V cumpliendo **L1** y una función no negativa μ , basta encontrar $Y \subset \mathrm{vlift}(W)$ tal que $Y(\bar{\alpha})=0$ y

$$\langle dV(\alpha), X_H(\alpha) + Y(\alpha) \rangle = -\mu(\alpha).$$
 (1)

Si fijamos V cumpliendo **L1** y una función no negativa μ , basta encontrar $Y \subset \mathrm{vlift}(W)$ tal que $Y(\bar{\alpha})=0$ y

$$\langle dV(\alpha), X_H(\alpha) + Y(\alpha) \rangle = -\mu(\alpha).$$
 (1)

Método basado en el Vínculo de Lyapunov (Grillo, 2009)

Fijar $V,\mu\in C^\infty(T^*Q)$, con μ no negativa y V cumpliendo ${\bf L1}$ y tomar $Y\in\mathfrak{X}(T^*Q)$ tal que

$$Y(\bar{\alpha}) = 0, \quad Y \subset \text{vlift}(W) \quad \mathsf{y} \quad \mathfrak{i}_{X_H + Y} \, \mathrm{d}V = -\mu.$$

Si fijamos V cumpliendo **L1** y una función no negativa μ , basta encontrar $Y \subset \mathrm{vlift}(W)$ tal que $Y(\bar{\alpha}) = 0$ y

$$\langle dV(\alpha), X_H(\alpha) + Y(\alpha) \rangle = -\mu(\alpha).$$
 (1)

Método basado en el Vínculo de Lyapunov (Grillo, 2009)

Fijar $V,\mu\in C^\infty(T^*Q)$, con μ no negativa y V cumpliendo ${\bf L1}$ y tomar $Y\in\mathfrak{X}(T^*Q)$ tal que

$$Y(\bar{\alpha}) = 0, \quad Y \subset \text{vlift}(W) \quad \text{y} \quad \mathfrak{i}_{X_H + Y} \, dV = -\mu.$$

► El método LCB es un método de estabilización de Lyapunov.

Si fijamos V cumpliendo **L1** y una función no negativa μ , basta encontrar $Y \subset \mathrm{vlift}(W)$ tal que $Y(\bar{\alpha}) = 0$ y

$$\langle dV(\alpha), X_H(\alpha) + Y(\alpha) \rangle = -\mu(\alpha).$$
 (1)

Método basado en el Vínculo de Lyapunov (Grillo, 2009)

Fijar $V,\mu\in C^\infty(T^*Q)$, con μ no negativa y V cumpliendo ${\bf L1}$ y tomar $Y\in\mathfrak{X}(T^*Q)$ tal que

$$Y(\bar{\alpha}) = 0, \quad Y \subset \mathrm{vlift}(W) \quad \mathsf{y} \quad \mathfrak{i}_{X_H + Y} \, \mathrm{d}V = -\mu.$$

- ▶ El método LCB es un método de estabilización de Lyapunov.
- ▶ El par (H, vlift(W)) define un sistema Hamiltoniano subactuado con espacio de actuación vlift(W).

Supongamos que H y V son funciones simples, i.e.

$$H=\mathfrak{h}+h\circ\pi,\qquad \mathfrak{h}(\alpha)=\frac{1}{2}\left\langle \alpha,\rho^{\sharp}(\alpha)\right\rangle$$

$$V = \mathfrak{v} + v \circ \pi, \qquad \mathfrak{v}(\alpha) = \frac{1}{2} \langle \alpha, \phi^{\sharp}(\alpha) \rangle$$

con ρ,ϕ métricas Riemannianas y $h,v\in C^\infty(Q).$

Supongamos que H y V son funciones simples, i.e.

$$H = \mathfrak{h} + h \circ \pi, \qquad \mathfrak{h}(\alpha) = \frac{1}{2} \langle \alpha, \rho^{\sharp}(\alpha) \rangle$$

$$V = \mathfrak{v} + v \circ \pi, \qquad \mathfrak{v}(\alpha) = \frac{1}{2} \langle \alpha, \phi^{\sharp}(\alpha) \rangle$$

con ho,ϕ métricas Riemannianas y $h,v\in C^\infty(Q)$. Puede verse que una condición necesaria y suficiente para la existencia de soluciones de (1) es

Supongamos que H y V son funciones simples, i.e.

$$\begin{split} H &= \mathfrak{h} + h \circ \pi, \qquad \mathfrak{h}(\alpha) = \frac{1}{2} \left< \alpha, \rho^{\sharp}(\alpha) \right> \\ V &= \mathfrak{v} + v \circ \pi, \qquad \mathfrak{v}(\alpha) = \frac{1}{2} \left< \alpha, \phi^{\sharp}(\alpha) \right> \end{split}$$

con ho,ϕ métricas Riemannianas y $h,v\in C^\infty(Q)$. Puede verse que una condición necesaria y suficiente para la existencia de soluciones de (1) es

$$\{\mathfrak{v},\mathfrak{h}\}(\sigma)=0, \qquad \forall \, \sigma \in \mathbb{F}\mathfrak{v}^{-1}(W^{\circ}),$$

$$\langle dv(q), \mathbb{F}\mathfrak{h}(\sigma) \rangle - \langle dh(q), \mathbb{F}\mathfrak{v}(\sigma) \rangle = 0, \quad \forall \sigma \in \mathbb{F}\mathfrak{v}^{-1}(W^{\circ}).$$

Supongamos que H y V son funciones simples, i.e.

$$\begin{split} H &= \mathfrak{h} + h \circ \pi, \qquad \mathfrak{h}(\alpha) = \frac{1}{2} \left< \alpha, \rho^{\sharp}(\alpha) \right> \\ V &= \mathfrak{v} + v \circ \pi, \qquad \mathfrak{v}(\alpha) = \frac{1}{2} \left< \alpha, \phi^{\sharp}(\alpha) \right> \end{split}$$

con ρ, ϕ métricas Riemannianas y $h, v \in C^{\infty}(Q)$.

Puede verse que una condición necesaria y suficiente para la existencia de soluciones de (1) es

$$\{\mathfrak{v},\mathfrak{h}\}(\sigma)=0, \qquad \forall\, \sigma\in \mathbb{F}\mathfrak{v}^{-1}(W^\circ),$$

ecuaciones cinéticas (EC)

$$\langle \, \mathrm{d} v \, (q) \, , \mathbb{F} \mathfrak{h} \, (\sigma) \rangle - \langle \, \mathrm{d} h \, (q) \, , \mathbb{F} \mathfrak{v} \, (\sigma) \rangle = 0, \qquad \forall \, \sigma \in \mathbb{F} \mathfrak{v}^{-1}(W^{\circ}).$$

ecuaciones potenciales (EP)

Supongamos que H y V son funciones simples, i.e.

$$H = \mathfrak{h} + h \circ \pi, \qquad \mathfrak{h}(\alpha) = \frac{1}{2} \langle \alpha, \rho^{\sharp}(\alpha) \rangle$$

$$V = \mathfrak{v} + v \circ \pi, \qquad \mathfrak{v}(\alpha) = \frac{1}{2} \langle \alpha, \phi^{\sharp}(\alpha) \rangle$$

con ρ, ϕ métricas Riemannianas y $h, v \in C^{\infty}(Q)$.

Puede verse que una condición necesaria y suficiente para la existencia de soluciones de (1) es

$$\{\mathfrak{v},\mathfrak{h}\}(\sigma)=0, \qquad \forall\, \sigma\in \mathbb{F}\mathfrak{v}^{-1}(W^\circ),$$

ecuaciones cinéticas (EC)

$$\langle dv(q), \mathbb{F}\mathfrak{h}(\sigma) \rangle - \langle dh(q), \mathbb{F}\mathfrak{v}(\sigma) \rangle = 0, \quad \forall \sigma \in \mathbb{F}\mathfrak{v}^{-1}(W^{\circ}).$$

ecuaciones potenciales (EP)

 $\mathrm{donde}\ \pi(\sigma)=q\ \mathrm{y}\ \{\cdot,\cdot\}\ \mathrm{es}\ \mathrm{el}\ \mathrm{corchete}\ \mathrm{de}\ \mathrm{Poisson}\ \mathrm{can\'{o}nico}\ \mathrm{en}\ T^*Q.$

$$\langle \sigma, \mathbb{F}\mathfrak{h}[\,\mathrm{d}v(q)] - \mathbb{F}\mathfrak{v}[\,\mathrm{d}h(q)] \rangle = 0, \qquad \forall \, \sigma \in \mathbb{F}\mathfrak{v}^{-1}(W^\circ),$$

$$\langle \sigma, \mathbb{F}\mathfrak{h}[dv(q)] - \mathbb{F}\mathfrak{v}[dh(q)] \rangle = 0, \quad \forall \sigma \in \mathbb{F}\mathfrak{v}^{-1}(W^{\circ}),$$

o bien, introduciendo el isomorfismo $\Psi:=\mathbb{F}\mathfrak{h}^{-1}\circ\mathbb{F}\mathfrak{v}$

$$(dv - \Psi \circ dh)|_{\Psi(W)^{\circ}} = 0.$$

$$\langle \sigma, \mathbb{F}\mathfrak{h}[\,\mathrm{d} v(q)] - \mathbb{F}\mathfrak{v}[\,\mathrm{d} h(q)] \rangle = 0, \qquad \forall \, \sigma \in \mathbb{F}\mathfrak{v}^{-1}(W^{\circ}),$$

o bien, introduciendo el isomorfismo $\Psi:=\mathbb{F}\mathfrak{h}^{-1}\circ\mathbb{F}\mathfrak{v}$

$$(dv - \Psi \circ dh)|_{\Psi(W)^{\circ}} = 0.$$

Observación

Si
$$\Psi(W) = span\{ dq^{n-m+1}, \dots, dq^n \}$$
 y

$$H(\mathbf{q}, \mathbf{p}) = p_i \mathbb{H}^{ij}(\mathbf{q}) p_j + h(\mathbf{q}), \qquad V(\mathbf{q}, \mathbf{p}) = p_i \mathbb{V}^{ij}(\mathbf{q}) p_j + v(\mathbf{q}),$$

podemos escribir

$$\frac{\partial v}{\partial a^{\mu}} = \mathbb{H}_{\mu l} \, \mathbb{V}^{lk} \, \frac{\partial h}{\partial a^k}, \qquad 1 \le \mu \le n - m,$$

$$\langle \sigma, \mathbb{F}\mathfrak{h}[\,\mathrm{d}v(q)] - \mathbb{F}\mathfrak{v}[\,\mathrm{d}h(q)] \rangle = 0, \qquad \forall \, \sigma \in \mathbb{F}\mathfrak{v}^{-1}(W^\circ),$$

o bien, introduciendo el isomorfismo $\Psi:=\mathbb{F}\mathfrak{h}^{-1}\circ\mathbb{F}\mathfrak{v}$

$$(dv - \Psi \circ dh)|_{\Psi(W)^{\circ}} = 0.$$

Observación

Si
$$\Psi(W) = span\{ dq^{n-m+1}, \dots, dq^n \}$$
 y

$$H(\mathbf{q}, \mathbf{p}) = p_i \mathbb{H}^{ij}(\mathbf{q}) p_j + h(\mathbf{q}), \qquad V(\mathbf{q}, \mathbf{p}) = p_i \mathbb{V}^{ij}(\mathbf{q}) p_j + v(\mathbf{q}),$$

podemos escribir

$$\frac{\partial v}{\partial a^{\mu}} = \mathbb{H}_{\mu l} \, \mathbb{V}^{lk} \, \frac{\partial h}{\partial a^k}, \qquad 1 \le \mu \le n - m,$$

Buscamos soluciones v tales que $v(\mathbf{q}) > 0$ para todo $\mathbf{q} \neq \mathbf{0}$ y $v(\mathbf{0}) = 0$

Teorema

Sea V solución de las ecuaciones cinéticas y supongamos que

a.
$$\Psi\left(W\right)=span\left\{ \,\mathrm{d}q^{m+1},\ldots,\,\mathrm{d}q^{n}\right\}$$
 ($\Leftrightarrow\Psi\left(W\right)^{\circ}$ es integrable) y

b.

$$\frac{\partial u_{\nu}}{\partial a^{\mu}} = \frac{\partial u_{\mu}}{\partial a^{\nu}} \qquad \text{para todo} \qquad 1 \leq \mu, \nu \leq n-m,$$

con
$$u_{\mu}:=\mathbb{H}_{\mu l}\,\mathbb{V}^{lk}\,rac{\partial h}{\partial q^k}$$
 ,

entonces existe una solución local v de EP. Si además

c. la forma bilineal

$$\mathbb{N}_{\mu\nu} := \mathbb{H}_{\mu l} \, \mathbb{V}^{lk} \, \mathit{Hess}(h)_{k\nu}$$

es definida positiva en 0,

tal solución puede tomarse definida positiva alrededor de 0.

1. Verificar que $\Psi\left(W\right)^{\circ}$ es integrable alrededor de $\mathbf{0}$;

- 1. Verificar que $\Psi\left(W\right)^{\circ}$ es integrable alrededor de $\mathbf{0}$;
- 2. hallar las coordenadas tales que $\Psi\left(W\right)=span\left\{ \,\mathrm{d}q^{n-m+1},...,\,\mathrm{d}q^{n}\right\} ;$

- 1. Verificar que $\Psi(W)^{\circ}$ es integrable alrededor de $\mathbf{0}$;
- 2. hallar las coordenadas tales que $\Psi\left(W\right)=span\left\{ \,\mathrm{d}q^{n-m+1},...,\,\mathrm{d}q^{n}\right\} ;$
- 3. ver que $\frac{\partial u_{\nu}}{\partial q^{\mu}} = \frac{\partial u_{\mu}}{\partial q^{\nu}}$ para todo $1 \leq \mu, \nu \leq n-m$ alrededor de $\mathbf{0}$;

- 1. Verificar que $\Psi(W)^{\circ}$ es integrable alrededor de 0;
- 2. hallar las coordenadas tales que $\Psi\left(W\right)=span\left\{ \,\mathrm{d}q^{n-m+1},...,\,\mathrm{d}q^{n}\right\} ;$
- 3. ver que $\frac{\partial u_{\nu}}{\partial q^{\mu}} = \frac{\partial u_{\mu}}{\partial q^{\nu}}$ para todo $1 \leq \mu, \nu \leq n m$ alrededor de $\mathbf{0}$;
- 4. definir v como

$$v(q^{1}, \dots, q^{n}) := \sum_{\mu=1}^{n-m} \int_{0}^{q^{\mu}} u_{\mu}(0, \dots, 0, t, q^{\mu+1}, \dots, q^{n}) dt$$
$$+ \frac{\kappa}{2} \sum_{a=1}^{m} (q^{n-m+a})^{2}$$

para alguna constante κ ;

- 1. Verificar que $\Psi(W)^{\circ}$ es integrable alrededor de $\mathbf{0}$;
- 2. hallar las coordenadas tales que $\Psi\left(W\right)=span\left\{ \,\mathrm{d}q^{n-m+1},...,\,\mathrm{d}q^{n}\right\} ;$
- 3. ver que $\frac{\partial u_{\nu}}{\partial q^{\mu}} = \frac{\partial u_{\mu}}{\partial q^{\nu}}$ para todo $1 \leq \mu, \nu \leq n m$ alrededor de $\mathbf{0}$;
- 4. definir v como

$$v(q^{1}, \dots, q^{n}) := \sum_{\mu=1}^{n-m} \int_{0}^{q^{\mu}} u_{\mu}(0, \dots, 0, t, q^{\mu+1}, \dots, q^{n}) dt$$
$$+ \frac{\kappa}{2} \sum_{a=1}^{m} (q^{n-m+a})^{2}$$

para alguna constante κ ;

5. verificar que \mathbb{N} es definida positiva en $\mathbf{0}$;

- 1. Verificar que $\Psi(W)^{\circ}$ es integrable alrededor de $\mathbf{0}$;
- 2. hallar las coordenadas tales que $\Psi\left(W\right)=span\left\{ \,\mathrm{d}q^{n-m+1},...,\,\mathrm{d}q^{n}\right\} ;$
- 3. ver que $\frac{\partial u_{\nu}}{\partial q^{\mu}} = \frac{\partial u_{\mu}}{\partial q^{\nu}}$ para todo $1 \leq \mu, \nu \leq n m$ alrededor de 0;
- 4. definir v como

$$v(q^{1},...,q^{n}) := \sum_{\mu=1}^{n-m} \int_{0}^{q^{\mu}} u_{\mu}(0,...,0,t,q^{\mu+1},...,q^{n}) dt + \frac{\kappa}{2} \sum_{a=1}^{m} (q^{n-m+a})^{2}$$

para alguna constante κ ;

- 5. verificar que \mathbb{N} es definida positiva en $\mathbf{0}$;
- 6. escoger κ tal que

$$\kappa > \frac{\sum_{b=1}^{m} \sum_{\mu=1}^{n-m} \left(\partial u_{\mu} / \partial q^{n-m+b}(\mathbf{0}) \right)^{2}}{\lambda_{\mu, \ell}^{\mathbb{N}}}.$$

- 1. Verificar que $\Psi(W)^{\circ}$ es integrable alrededor de 0;
- 2. hallar las coordenadas tales que $\Psi\left(W\right)=span\left\{ \,\mathrm{d}q^{n-m+1},...,\,\mathrm{d}q^{n}\right\} ;$
- 3. ver que $\frac{\partial u_{\nu}}{\partial a^{\mu}} = \frac{\partial u_{\mu}}{\partial a^{\nu}}$ para todo $1 \leq \mu, \nu \leq n m$ alrededor de $\mathbf{0}$;
- 4. definir v como

$$v(q^{1},...,q^{n}) := \sum_{\mu=1}^{n-m} \int_{0}^{q^{\mu}} u_{\mu}(0,...,0,t,q^{\mu+1},...,q^{n}) dt$$
$$+ \frac{\kappa}{2} \sum_{n=1}^{m} (q^{n-m+a})^{2}$$

para alguna constante κ ;

- 5. verificar que \mathbb{N} es definida positiva en $\mathbf{0}$;
- 6. escoger κ tal que

$$\kappa > \frac{\sum_{b=1}^{m} \sum_{\mu=1}^{n-m} \left(\partial u_{\mu} / \partial q^{n-m+b}(\mathbf{0}) \right)^{2}}{\lambda^{\mathbb{N}}}.$$

Observaciones

► La idea de estudiar la ecuación potencial a partir de una solución de la cinética ya se había utilizado en el contexto del energy shaping (Lewis, 2006).

Observaciones

- ▶ La idea de estudiar la ecuación potencial a partir de una solución de la cinética ya se había utilizado en el contexto del energy shaping (Lewis, 2006).
- ightharpoonup En dicha referencia, el autor da condiciones necesarias y suficientes de existencia de soluciones locales utilizando la teoría de integrabilidad de Goldschmidt, válida en la categoría C^{ω} .

- ▶ La idea de estudiar la ecuación potencial a partir de una solución de la cinética ya se había utilizado en el contexto del energy shaping (Lewis, 2006).
- ▶ En dicha referencia, el autor da condiciones necesarias y suficientes de existencia de soluciones locales utilizando la teoría de integrabilidad de Goldschmidt, válida en la categoría C^{ω} .
- \blacktriangleright En nuestro planteamiento, la construcción es válida en la categoría C^{∞}

- ▶ La idea de estudiar la ecuación potencial a partir de una solución de la cinética ya se había utilizado en el contexto del energy shaping (Lewis, 2006).
- En dicha referencia, el autor da condiciones necesarias y suficientes de existencia de soluciones locales utilizando la teoría de integrabilidad de Goldschmidt, válida en la categoría C^ω.
- \blacktriangleright En nuestro planteamiento, la construcción es válida en la categoría C^{∞}
- ▶ La solución puede construirse a partir de $\mathbb V$ calculando integrales ordinarias en las coordenadas que rectifican $\Psi(W)^\circ$.

- ▶ La idea de estudiar la ecuación potencial a partir de una solución de la cinética ya se había utilizado en el contexto del energy shaping (Lewis, 2006).
- En dicha referencia, el autor da condiciones necesarias y suficientes de existencia de soluciones locales utilizando la teoría de integrabilidad de Goldschmidt, válida en la categoría C^ω.
- \blacktriangleright En nuestro planteamiento, la construcción es válida en la categoría $C^{\infty}.$
- La solución puede construirse a partir de $\mathbb V$ calculando integrales ordinarias en las coordenadas que rectifican $\Psi(W)^{\circ}$.
- ► Además, damos condiciones necesarias y suficientes para que la solución sea definida positiva.

Supongamos que rank(W) = n - 1.

Supongamos que $\mathrm{rank}(W)=n-1.$ En tal caso, la codistribución W (y también $\Psi(W)$) son integrables. Luego, si tomamos coordenadas tales que $W=span\{\,\mathrm{d}q^2,\ldots,\,\mathrm{d}q^n\}$, vale que

Supongamos que $\mathrm{rank}(W)=n-1.\mathrm{En}$ tal caso, la codistribución W (y también $\Psi(W)$) son integrables. Luego, si tomamos coordenadas tales que $W=span\{\,\mathrm{d}q^2,\ldots,\,\mathrm{d}q^n\}$, vale que

Teorema

Existen soluciones locales de EC y EP definidas positivas alrededor de $\mathbf{0}$ si y sólo si (Chang, 2010 y Grillo et al. 2017)

$$\begin{split} \frac{\partial^2 h}{\partial q^1 \partial q^i}(\mathbf{0}) \mathbb{H}^{i,1+a}(\mathbf{0}) &\neq 0, \qquad \text{para algún} \qquad 1 \leq a \leq n-1, \\ \text{o bien} &\qquad \qquad \\ \frac{\partial^2 h}{(\partial q^1)^2}(\mathbf{0}) &> 0, \end{split} \tag{2}$$

Supongamos que $\mathrm{rank}(W)=n-1.\mathrm{En}$ tal caso, la codistribución W (y también $\Psi(W)$) son integrables. Luego, si tomamos coordenadas tales que $W=span\{\,\mathrm{d}q^2,\ldots,\,\mathrm{d}q^n\}$, vale que

Teorema

Existen soluciones locales de EC y EP definidas positivas alrededor de $\mathbf{0}$ si y sólo si (Chang, 2010 y Grillo et al. 2017)

$$\frac{\partial^{2}h}{\partial q^{1}\partial q^{i}}(\mathbf{0})\mathbb{H}^{i,1+a}(\mathbf{0}) \neq 0, \qquad \text{para algún} \qquad 1 \leq a \leq n-1,$$
o bien
$$\frac{\partial^{2}h}{(\partial q^{1})^{2}}(\mathbf{0}) > 0,$$
(2)

► Existen versiones intrínsecas de estas condiciones.

Supongamos que $\mathrm{rank}(W)=n-1.\mathrm{En}$ tal caso, la codistribución W (y también $\Psi(W)$) son integrables. Luego, si tomamos coordenadas tales que $W=span\{\,\mathrm{d}q^2,\ldots,\,\mathrm{d}q^n\}$, vale que

Teorema

Existen soluciones locales de EC y EP definidas positivas alrededor de 0 si y sólo si (Chang, 2010 y Grillo et al. 2017)

$$\begin{split} &\frac{\partial^2 h}{\partial q^1 \partial q^i}(\mathbf{0}) \mathbb{H}^{i,1+a}(\mathbf{0}) \neq 0, \qquad \text{para alg\'un} \qquad 1 \leq a \leq n-1, \\ &\text{o bien} \\ &\frac{\partial^2 h}{(\partial a^1)^2}(\mathbf{0}) > 0, \end{split} \tag{2}$$

- Existen versiones intrínsecas de estas condiciones.
- ► La demostración no construye una solución de las ecuaciones cinéticas y potenciales de manera explícita, lo cual es importante para definir la ley de control que pueda ser utilizada en aplicaciones.

Fijemos un complemento V de W en T^*Q , i.e. $T^*Q=V\oplus W$.

Fijemos un complemento V de W en T^*Q , i.e. $T^*Q=V\oplus W$. Dada $\mathfrak v$, podemos definir métricas l sobre W y δ sobre V y un morfismo $\gamma\in L(V,W)$ tales que

$$l(\sigma_1, \sigma_2) = \phi(i_W(\sigma_1), i_W(\sigma_2) = \phi(\sigma_1, \sigma_2),$$

$$\gamma = l^{\flat} \circ i_W^* \circ \phi^{\sharp} \circ i_V,$$

$$\delta(\lambda_1, \lambda_2) = \phi(i_V(\lambda_1), i_V(\lambda_2)) - l(\gamma(\lambda_1), \gamma(\lambda_2)).$$

para todo $\sigma_1, \sigma_1 \in W$ y $\lambda_1, \lambda_2 \in V$, con $i_{V,W} : V, W \hookrightarrow T^*Q$.

Fijemos un complemento V de W en T^*Q , i.e. $T^*Q=V\oplus W$. Dada $\mathfrak v$, podemos definir métricas l sobre W y δ sobre V y un morfismo $\gamma\in L(V,W)$ tales que

$$\begin{split} l(\sigma_1,\sigma_2) &= \phi(i_W(\sigma_1),i_W(\sigma_2) = \phi(\sigma_1,\sigma_2), \\ \gamma &= l^{\flat} \circ i_W^* \circ \phi^{\sharp} \circ i_V, \\ \delta(\lambda_1,\lambda_2) &= \phi(i_V(\lambda_1),i_V(\lambda_2)) - l\left(\gamma(\lambda_1),\gamma(\lambda_2)\right). \end{split}$$

para todo $\sigma_1, \sigma_1 \in W$ y $\lambda_1, \lambda_2 \in V$, con $i_{V,W} : V, W \hookrightarrow T^*Q$.

A la inversa, dadas δ, γ y l, definimos

$$\phi(\alpha, \beta) = \delta(p_V(\alpha), p_V(\beta)) + l(\gamma_+(\alpha), \gamma_+(\beta))$$

con

$$\gamma_+(\alpha) = p_W(\alpha) + \gamma(p_V(\alpha))$$
 y $p_{V,W}: T^*Q \to V, W$

Puede verse que el cambio

$$\phi \left(\mathbf{o} \; \mathfrak{v} \right) \leftrightarrow \left(\delta, \gamma, l \right)$$

es una biyección.

Puede verse que el cambio

$$\phi$$
 (o \mathfrak{v}) \leftrightarrow (δ , γ , l)

es una biyección.

Ecuaciones en variables (δ, γ, l)

Las ecuaciones cinéticas y potenciales en términos de estas nuevas variables son

$$\{\mathfrak{d} \circ p_V, \mathfrak{h}\}(\sigma) = 0,$$

$$\langle dv(q), \mathbb{F}\mathfrak{h}(\sigma) \rangle - \langle dh(q), \mathbb{F}(\mathfrak{d} \circ p_V)(\sigma) \rangle = 0,$$

para todo $\sigma \in \gamma_{-}(V)$, con $\pi(\sigma) = q$ y

$$\gamma_{-}(\lambda) = \lambda - \gamma(\lambda) \quad \text{y} \quad \mathfrak{d}(\lambda) = \frac{1}{2} \left\langle \lambda, \delta^{\sharp}(\lambda) \right\rangle$$

Puede verse que el cambio

$$\phi$$
 (o \mathfrak{v}) \leftrightarrow (δ , γ , l)

es una biyección.

Ecuaciones en variables (δ, γ, l)

Las ecuaciones cinéticas y potenciales en términos de estas nuevas variables son

$$\{\mathfrak{d} \circ p_V, \mathfrak{h}\}(\sigma) = 0,$$
$$\langle \operatorname{d} v(q), \mathbb{F} \mathfrak{h}(\sigma) \rangle - \langle \operatorname{d} h(q), \mathbb{F} (\mathfrak{d} \circ p_V)(\sigma) \rangle = 0,$$

para todo $\sigma \in \gamma_-(V)$, con $\pi(\sigma) = q$ y

$$\gamma_-(\lambda) = \lambda - \gamma(\lambda) \quad \text{y} \quad \mathfrak{d}(\lambda) = \frac{1}{2} \left< \lambda, \delta^\sharp(\lambda) \right>$$

Observación 1: La variable l no aparece en las ecuaciones.

Puede verse que el cambio

$$\phi$$
 (o \mathfrak{v}) \leftrightarrow (δ , γ , l)

es una biyección.

Ecuaciones en variables (δ, γ, l)

Las ecuaciones cinéticas y potenciales en términos de estas nuevas variables son

$$\{\mathfrak{d} \circ p_V, \mathfrak{h}\}(\sigma) = 0,$$

$$\langle dv(q), \mathbb{F}\mathfrak{h}(\sigma) \rangle - \langle dh(q), \mathbb{F}(\mathfrak{d} \circ p_V)(\sigma) \rangle = 0,$$

para todo $\sigma \in \gamma_{-}(V)$, con $\pi(\sigma) = q$ y

$$\gamma_-(\lambda) = \lambda - \gamma(\lambda) \quad \text{y} \quad \mathfrak{d}(\lambda) = \frac{1}{2} \left< \lambda, \delta^\sharp(\lambda) \right>$$

Observación 1: La variable l no aparece en las ecuaciones.

Observación 2: La variable γ no aparece diferenciada.

Fijemos ahora una función v.

Fijemos ahora una función $\mathfrak{v}.$ Siguiendo la definición de las variables (δ,γ,l) , tenemos

Observación

$$\Psi(W)^\circ = \left(\mathbb{F}\mathfrak{h}^{-1}\circ\mathbb{F}\mathfrak{v}(W)\right)^\circ = \mathbb{F}\mathfrak{h}(\mathbb{F}\mathfrak{v}^{-1}(W)) = \mathbb{F}\mathfrak{h}(\gamma_-(V))!!$$

Fijemos ahora una función $\mathfrak{v}.$ Siguiendo la definición de las variables (δ,γ,l) , tenemos

Observación

$$\Psi(W)^\circ = \left(\mathbb{F}\mathfrak{h}^{-1}\circ\mathbb{F}\mathfrak{v}(W)\right)^\circ = \mathbb{F}\mathfrak{h}(\mathbb{F}\mathfrak{v}^{-1}(W)) = \mathbb{F}\mathfrak{h}(\gamma_-(V))!!$$

¿Es posible escoger el morfismo γ de manera tal que $\Psi(W)^\circ=\mathbb{F}\mathfrak{h}(\gamma_-(V))$ sea integrable?

Fijemos ahora una función $\mathfrak{v}.$ Siguiendo la definición de las variables (δ,γ,l) , tenemos

Observación

$$\Psi(W)^\circ = \left(\mathbb{F}\mathfrak{h}^{-1}\circ\mathbb{F}\mathfrak{v}(W)\right)^\circ = \mathbb{F}\mathfrak{h}(\mathbb{F}\mathfrak{v}^{-1}(W)) = \mathbb{F}\mathfrak{h}(\gamma_-(V))!!$$

¿Es posible escoger el morfismo γ de manera tal que $\Psi(W)^\circ = \mathbb{F}\mathfrak{h}(\gamma_-(V))$ sea integrable?

En tal caso, ¿es posible encontrar las coordenadas que rectifiquen esa distribución?

Fijemos ahora una función $\mathfrak{v}.$ Siguiendo la definición de las variables (δ,γ,l) , tenemos

Observación

$$\Psi(W)^\circ = \left(\mathbb{F}\mathfrak{h}^{-1}\circ\mathbb{F}\mathfrak{v}(W)\right)^\circ = \mathbb{F}\mathfrak{h}(\mathbb{F}\mathfrak{v}^{-1}(W)) = \mathbb{F}\mathfrak{h}(\gamma_-(V))!!$$

¿Es posible escoger el morfismo γ de manera tal que $\Psi(W)^\circ = \mathbb{F}\mathfrak{h}(\gamma_-(V))$ sea integrable?

En tal caso, ¿es posible encontrar las coordenadas que rectifiquen esa distribución?

Si $\{E^1,\dots,E^{n-m}\}$ es un marco en V, la integrabilidad de la distribución implica que hay coordenadas en las cuales $\mathbb{F}\mathfrak{h}(\gamma_-(E^\mu))=\frac{\partial}{\partial q^\mu}$ En ese caso, las EP se escriben

$$\frac{\partial v}{\partial q^{\mu}} = u_{\mu}$$

Observación

$$\Psi(W)^\circ = \left(\mathbb{F}\mathfrak{h}^{-1}\circ\mathbb{F}\mathfrak{v}(W)\right)^\circ = \mathbb{F}\mathfrak{h}(\mathbb{F}\mathfrak{v}^{-1}(W)) = \mathbb{F}\mathfrak{h}(\gamma_-(V))!!$$

¿Es posible escoger el morfismo γ de manera tal que $\Psi(W)^\circ = \mathbb{F}\mathfrak{h}(\gamma_-(V))$ sea integrable?

En tal caso, ¿es posible encontrar las coordenadas que rectifiquen esa distribución?

Si $\{E^1,\dots,E^{n-m}\}$ es un marco en V, la integrabilidad de la distribución implica que hay coordenadas en las cuales $\mathbb{F}\mathfrak{h}(\gamma_-(E^\mu))=\frac{\partial}{\partial q^\mu}$ En ese caso, las EP se escriben

$$\frac{\partial v}{\partial q^{\mu}} = u_{\mu}$$

¡Ya lo sabíamos!

Soluciones locales por cuadraturas

Teorema

Sea $W\subset T^*Q$ un subfibrado vectorial de rango m y sea $\left(U,(q^1,\ldots,q^n)\right)$ una carta coordenada de Q con $\bar q\in U$ y tal que

$$W_{\bar{q}} = \{ dq^{n-m+1}|_{\bar{q}}, \dots, dq^n|_{\bar{q}} \}.$$

Entonces existen un subfibrado vectorial $V\subset T^*Q$ tal que $T_q^*Q=V_q\oplus W_q$ para todo $q\in U$, marcos locales sobre U para V y un morfismo de fibrados vectoriales $\gamma\in L(V,W)$ tales que

$$\mathbb{F}\mathfrak{h}(\gamma_{-}(E^{\mu})) = \frac{\partial}{\partial g^{\mu}}.$$

Soluciones locales por cuadraturas

Teorema

Sea $W\subset T^*Q$ un subfibrado vectorial de rango m y sea $\left(U,(q^1,\ldots,q^n)\right)$ una carta coordenada de Q con $\bar q\in U$ y tal que

$$W_{\bar{q}} = \{ dq^{n-m+1}|_{\bar{q}}, \dots, dq^n|_{\bar{q}} \}.$$

Entonces existen un subfibrado vectorial $V\subset T^*Q$ tal que $T_q^*Q=V_q\oplus W_q$ para todo $q\in U$, marcos locales sobre U para V y un morfismo de fibrados vectoriales $\gamma\in L(V,W)$ tales que

$$\mathbb{F}\mathfrak{h}(\gamma_{-}(E^{\mu})) = \frac{\partial}{\partial q^{\mu}}.$$

Más aun, la construcción de V, E^μ 's y γ es puramente algebraica.

Soluciones locales por cuadraturas

Teorema

Sea $W\subset T^*Q$ un subfibrado vectorial de rango m y sea $\left(U,(q^1,\ldots,q^n)\right)$ una carta coordenada de Q con $\bar q\in U$ y tal que

$$W_{\bar{q}} = \{ dq^{n-m+1}|_{\bar{q}}, \dots, dq^n|_{\bar{q}} \}.$$

Entonces existen un subfibrado vectorial $V\subset T^*Q$ tal que $T_q^*Q=V_q\oplus W_q$ para todo $q\in U$, marcos locales sobre U para V y un morfismo de fibrados vectoriales $\gamma\in L(V,W)$ tales que

$$\mathbb{F}\mathfrak{h}(\gamma_{-}(E^{\mu})) = \frac{\partial}{\partial q^{\mu}}.$$

Más aun, la construcción de V, E^μ 's y γ es puramente algebraica.

En estas coordenadas, las ecuaciones potenciales son

$$\frac{\partial v}{\partial a^{\mu}} = u_{\mu}$$

- 1. Verificar que $\Psi(W)$ es integrable alrededor de 0;
- 2. hallar las coordenadas tales que $\Psi\left(W\right)=span\left\{ \,\mathrm{d}q^{n-m+1},...,\,\mathrm{d}q^{n}\right\} ;$
- 3. ver que $\frac{\partial u_{\nu}}{\partial q^{\mu}}=\frac{\partial u_{\mu}}{\partial q^{\nu}}$ para todo $1\leq \mu,\nu\leq n-m$ alrededor de ${\bf 0}$;
- 4. definir v como

$$v(q^{1},...,q^{n}) := \sum_{\mu=1}^{n-m} \int_{0}^{q^{\mu}} u_{\mu}(0,...,0,t,q^{\mu+1},...,q^{n}) dt$$
$$+ \frac{\kappa}{2} \sum_{n=1}^{m} (q^{n-m+a})^{2}$$

- 5. verificar que \mathbb{N} es definida positiva en $\mathbf{0}$;
- 6. escoger κ tal que

$$\kappa > \frac{\sum_{b=1}^{m} \sum_{\mu=1}^{n-m} \left(\partial u_{\mu} / \partial q^{n-m+b}(\mathbf{0}) \right)^{2}}{\lambda_{\mu, \ell}^{\mathbb{N}}}.$$

- 1. Verificar que $\Psi(W)$ es integrable alrededor de $\emptyset; \to$ Elección de γ, δ, V
- 2. hallar las coordenadas tales que

$$\Psi(\mathcal{W}) = span\left\{\underline{\mathrm{d}q^{n-m+1},...,\mathrm{d}q^{n}}\right\}; \rightarrow \mathsf{Elección}\;\mathsf{de}\;\gamma,\delta,V$$

- 3. ver que $\frac{\partial u_{\nu}}{\partial a^{\mu}} = \frac{\partial u_{\mu}}{\partial a^{\nu}}$ para todo $1 \leq \mu, \nu \leq n m$ alrededor de $\bf 0$;
- 4. definir v como

$$v(q^{1}, \dots, q^{n}) := \sum_{\mu=1}^{n-m} \int_{0}^{q^{\mu}} u_{\mu}(0, \dots, 0, t, q^{\mu+1}, \dots, q^{n}) dt + \frac{\kappa}{2} \sum_{a=1}^{m} (q^{n-m+a})^{2}$$

- 5. verificar que \mathbb{N} es definida positiva en $\mathbf{0}$;
- 6. escoger κ tal que

$$\kappa > \frac{\sum_{b=1}^{m} \sum_{\mu=1}^{n-m} \left(\partial u_{\mu} / \partial q^{n-m+b}(\mathbf{0}) \right)^{2}}{\lambda_{\min}^{\mathbb{N}}}.$$

- 1. Escoger γ y V que rectifican;
- 2. Escoger δ solución de EC
- 3. ver que $rac{\partial u_{
 u}}{\partial q^{\mu}}=rac{\partial u_{\mu}}{\partial q^{
 u}}$ para todo $1\leq \mu,
 u\leq n-m$ alrededor de ${f 0}$;
- 4. definir v como

$$v(q^{1}, \dots, q^{n}) := \sum_{\mu=1}^{n-m} \int_{0}^{q^{\mu}} u_{\mu}(0, \dots, 0, t, q^{\mu+1}, \dots, q^{n}) dt$$
$$+ \frac{\kappa}{2} \sum_{a=1}^{m} (q^{n-m+a})^{2}$$

- 5. verificar que \mathbb{N} es definida positiva en $\mathbf{0}$;
- 6. escoger κ tal que

$$\kappa > \frac{\sum_{b=1}^{m} \sum_{\mu=1}^{n-m} \left(\partial u_{\mu} / \partial q^{n-m+b}(\mathbf{0}) \right)^{2}}{\lambda_{\min}^{N}}.$$

- 1. Escoger γ y V que rectifican;
- 2. Escoger δ solución de EC
- 3. ver que $\frac{\partial u_{\nu}}{\partial q^{\mu}} = \frac{\partial u_{\mu}}{\partial q^{\nu}}$ para todo $1 \leq \mu, \nu \leq n-m$ alrededor de $\mathbf{0}$ (condición sobre δ);
- 4. definir v como

$$v(q^{1},...,q^{n}) := \sum_{\mu=1}^{n-m} \int_{0}^{q^{\mu}} u_{\mu}(0,...,0,t,q^{\mu+1},...,q^{n}) dt$$
$$+ \frac{\kappa}{2} \sum_{a=1}^{m} (q^{n-m+a})^{2}$$

- 5. verificar que \mathbb{N} es definida positiva en $\mathbf{0}$;
- 6. escoger κ tal que

$$\kappa > \frac{\sum_{b=1}^{m} \sum_{\mu=1}^{n-m} \left(\partial u_{\mu} / \partial q^{n-m+b}(\mathbf{0}) \right)^{2}}{\lambda^{\mathbb{N}}}.$$

Construcción de soluciones por cuadraturas: subactuación 1

En el caso en que m=n-1, solo hay una ecuación cinética:

$$\frac{\partial \delta}{\partial q^1} = B\delta$$

Construcción de soluciones por cuadraturas: subactuación 1

En el caso en que m=n-1, solo hay una ecuación cinética:

$$\frac{\partial \delta}{\partial q^1} = B\delta$$

cuya solución es

$$\delta(q^1,\ldots,q^n) = P(q^2,\ldots,q^n) e^{\int_0^{q^1} B(t,q^2,\ldots,q^n) \, \mathrm{d}t}.$$

$$\operatorname{con} P > 0.$$

▶ En el caso de subactuación 1, las condiciones de integrabilidad de la EP se cumplen de inmediato, puesto que solo se trata del caso $\mu = \nu = 1$.

- ▶ En el caso de subactuación 1, las condiciones de integrabilidad de la EP se cumplen de inmediato, puesto que solo se trata del caso $\mu = \nu = 1$.
- ► Entonces, con esta solución de la EC **completamos** el procedimiento anterior a un conjunto de instrucciones para construir soluciones locales de las ecuaciones cinéticas y potenciales **por cuadraturas**.

- ▶ En el caso de subactuación 1, las condiciones de integrabilidad de la EP se cumplen de inmediato, puesto que solo se trata del caso $\mu = \nu = 1$.
- ► Entonces, con esta solución de la EC **completamos** el procedimiento anterior a un conjunto de instrucciones para construir soluciones locales de las ecuaciones cinéticas y potenciales **por cuadraturas**.
- ► Además, probamos que la positividad de la matriz M es equivalente a

$$\frac{\partial^2 h}{\partial (q^1)^2}(\mathbf{0}) > 0.$$

Soluciones explícitas de las ecuaciones cinéticas y potenciales para sistemas con simetría: subactuación 1

Si G es un grupo de Lie abeliano que actúa sobre Q de manera libre y propia, supongamos que

$$H(g \cdot \alpha) = H(\alpha) \quad \text{y} \quad g \cdot \beta \in W, \qquad \forall g \in G, \alpha \in T^*Q, \beta \in W,$$

Soluciones explícitas de las ecuaciones cinéticas y potenciales para sistemas con simetría: subactuación 1

Si G es un grupo de Lie abeliano que actúa sobre Q de manera libre y propia, supongamos que

$$\begin{split} H(g \cdot \alpha) &= H(\alpha) \quad \text{y} \quad g \cdot \beta \in W, \qquad \forall g \in G, \alpha \in T^*Q, \beta \in W, \\ \text{entonces, si } T_{\bar{q}}Q &= W_{\bar{q}}^{\circ} + T_{\bar{q}}(Orb(\bar{q})), \text{ existen coordenadas} \\ & (x,y^1,\ldots,y^{n-1}) \text{ tales que} \\ & \frac{\partial H}{\partial y^a} = 0, \quad \forall a = 1,\ldots,n-1. \end{split}$$

Soluciones explícitas de las ecuaciones cinéticas y potenciales para sistemas con simetría: subactuación 1

Si G es un grupo de Lie abeliano que actúa sobre Q de manera libre y propia, supongamos que

$$\begin{split} H(g \cdot \alpha) &= H(\alpha) \quad \text{y} \quad g \cdot \beta \in W, \qquad \forall g \in G, \alpha \in T^*Q, \beta \in W, \\ \text{entonces, si } T_{\bar{q}}Q &= W_{\bar{q}}^{\circ} + T_{\bar{q}}(Orb(\bar{q})), \text{ existen coordenadas} \\ & (x,y^1,\ldots,y^{n-1}) \text{ tales que} \\ & \frac{\partial H}{\partial y^a} = 0, \quad \forall a = 1,\ldots,n-1. \\ & \text{y} \\ & W = span\{\,\mathrm{d}y^a\}_{a=1}^{n-1} \end{split}$$

Soluciones explícitas de las ecuaciones cinéticas y potenciales para sistemas con simetría: subactuación 1

Si G es un grupo de Lie abeliano que actúa sobre Q de manera libre y propia, supongamos que

$$\begin{split} H(g \cdot \alpha) &= H(\alpha) \quad \text{y} \quad g \cdot \beta \in W, \qquad \forall g \in G, \alpha \in T^*Q, \beta \in W, \\ \text{entonces, si } T_{\bar{q}}Q &= W_{\bar{q}}^\circ + T_{\bar{q}}(Orb(\bar{q})), \text{ existen coordenadas} \\ & (x,y^1,\ldots,y^{n-1}) \text{ tales que} \\ & \frac{\partial H}{\partial y^a} = 0, \quad \forall a = 1,\ldots,n-1. \\ & \text{y} \\ & W = span\{\,\mathrm{d}y^a\}_{a=1}^{n-1} \end{split}$$

Las llamamos coordenadas G-adaptadas.

Esto se traduce en una simplificación de la ecuación cinética

$$\left(\mathbb{H}^{11} - \mathbb{H}^{1,1+b}\gamma_b\right) \,\delta_x = B\,\delta,$$

$$\text{donde }B=\mathbb{H}^{11}_x-2\mathbb{H}^{1,1+b}_x\gamma_b+\gamma_a\mathbb{H}^{1+a,1+b}_x\gamma_b.$$

Esto se traduce en una simplificación de la ecuación cinética

$$\left(\mathbb{H}^{11} - \mathbb{H}^{1,1+b}\gamma_b\right)\,\delta_x = B\,\delta,$$

donde $B=\mathbb{H}^{11}_x-2\mathbb{H}^{1,1+b}_x\gamma_b+\gamma_a\mathbb{H}^{1+a,1+b}_x\gamma_b.$ Integrando la ecuación

$$\delta(x) = P \, \exp\bigg(\int_0^x \frac{B(t)}{\mathbb{H}^{11}(t) - \mathbb{H}^{1,1+b}(t)\gamma_b(t)} \, \mathrm{d}t \bigg),$$

con
$$P$$
 positiva y $\left(\mathbb{H}^{11} - \mathbb{H}^{1,1+b}\gamma_b\right)(0) \neq 0$.

Esto se traduce en una simplificación de la ecuación cinética

$$\left(\mathbb{H}^{11} - \mathbb{H}^{1,1+b}\gamma_b\right)\,\delta_x = B\,\delta,$$

donde $B=\mathbb{H}^{11}_x-2\mathbb{H}^{1,1+b}_x\gamma_b+\gamma_a\mathbb{H}^{1+a,1+b}_x\gamma_b.$ Integrando la ecuación

$$\delta(x) = P \exp\left(\int_0^x \frac{B(t)}{\mathbb{H}^{11}(t) - \mathbb{H}^{1,1+b}(t)\gamma_b(t)} dt\right),\,$$

con
$$P$$
 positiva y $\left(\mathbb{H}^{11} - \mathbb{H}^{1,1+b}\gamma_b\right)(0) \neq 0$.

¿Cómo utilizamos el procedimiento desarrollado anteriormente?

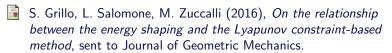
Buscamos las coordenadas que rectifiquen la distribución $\Psi(W)^{\circ}$. Tales coordenadas se encuentran por cuadraturas en un entorno de ${\bf 0}$.

Fin

Bibliografía

- S.D. Grillo, *Higher order constrained Hamiltonian systems*, Journal of Mathematical Physics, **50** (2009).
- D. E. Chang, *The Method of Controlled Lagrangians: Energy Plus Force Shaping*, SIAM J. Control and Optimization, 48 no. 8 (2010), 4821–4845.
- D.E. Chang, Stabilizability of Controlled Lagrangian Systems of Two Degrees of Freedom and One Degree of Under-Actuation, IEEE Trans. Automat. Contr., 55 no. 8 (2010), 1888–1893.
- S.D. Grillo, J. Marsden and S. Nair, *Lyapunov constraints and global asymptotic stabilization*, Journal of Geom. Mech., **3** (2011), 145–196.
- D. Chang, A. M. Bloch, N. E. Leonard, J. E. Marsden and C. Woolsey, *The equivalence of controlled Lagrangian and controlled Hamiltonian systems*, ESAIM: Control, Optimisation and Calculus of Variations, (2001).

Bibliografía



S. Grillo, L. Salomone, M. Zuccalli (2016), Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom and the Lyapunov constraint-based method, sent to ESAIM: Control, Optimisation and Calculus of Variations.

Consideremos $W^{\sharp}:=\rho^{\sharp}(W)$ y sea $V^{\sharp}\subset TQ$ tal que $TQ=V^{\sharp}\oplus W^{\sharp}$ sobre U.

Consideremos $W^\sharp:=\rho^\sharp(W)$ y sea $V^\sharp\subset TQ$ tal que $TQ=V^\sharp\oplus W^\sharp$ sobre U. Como ρ^\flat es un isomorfismo, el fibrado $V:=\rho^\flat(V^\sharp)$ complementa a W sobre U.

Consideremos $W^\sharp:=\rho^\sharp(W)$ y sea $V^\sharp\subset TQ$ tal que $TQ=V^\sharp\oplus W^\sharp$ sobre U. Como ρ^\flat es un isomorfismo, el fibrado $V:=\rho^\flat(V^\sharp)$ complementa a W sobre U. Definiendo

$$A_q := span \left\{ \frac{\partial}{\partial q^{\mu}} \right\}_{\mu=1}^{n-m}$$

vale que $A_{\bar{q}} \cap W_{\bar{q}}^{\sharp} = \{0\}.$

Consideremos $W^\sharp:=\rho^\sharp(W)$ y sea $V^\sharp\subset TQ$ tal que $TQ=V^\sharp\oplus W^\sharp$ sobre U. Como ρ^\flat es un isomorfismo, el fibrado $V:=\rho^\flat(V^\sharp)$ complementa a W sobre U. Definiendo

$$A_q := span \left\{ \frac{\partial}{\partial q^{\mu}} \right\}_{\mu=1}^{n-m}$$

vale que $A_{\bar q}\cap W_{\bar q}^\sharp=\{0\}$. Por continuidad, podemos suponer que vale para todo $q\in U$.

Consideremos $W^\sharp:=\rho^\sharp(W)$ y sea $V^\sharp\subset TQ$ tal que $TQ=V^\sharp\oplus W^\sharp$ sobre U. Como ρ^\flat es un isomorfismo, el fibrado $V:=\rho^\flat(V^\sharp)$ complementa a W sobre U. Definiendo

$$A_q := span \left\{ \frac{\partial}{\partial q^{\mu}} \right\}_{\mu=1}^{n-m}$$

vale que $A_{\bar q}\cap W_{\bar q}^\sharp=\{0\}$. Por continuidad, podemos suponer que vale para todo $q\in U$. Cada campo coordenado se descompone

$$\frac{\partial}{\partial q^{\mu}} = X^{V}_{\mu} + X^{W}_{\mu}, \qquad X^{V}_{\mu} \in V^{\sharp}, \, X^{W}_{\mu} \in W^{\sharp}.$$

Consideremos $W^{\sharp}:=\rho^{\sharp}(W)$ y sea $V^{\sharp}\subset TQ$ tal que $TQ=V^{\sharp}\oplus W^{\sharp}$ sobre U. Como ρ^{\flat} es un isomorfismo, el fibrado $V:=\rho^{\flat}(V^{\sharp})$ complementa a W sobre U. Definiendo

$$A_q := span \left\{ \frac{\partial}{\partial q^{\mu}} \right\}_{\mu=1}^{n-m}$$

vale que $A_{\bar q}\cap W_{\bar q}^\sharp=\{0\}$. Por continuidad, podemos suponer que vale para todo $q\in U$. Cada campo coordenado se descompone

$$\frac{\partial}{\partial q^{\mu}} = X_{\mu}^{V} + X_{\mu}^{W}, \qquad X_{\mu}^{V} \in V^{\sharp}, X_{\mu}^{W} \in W^{\sharp}.$$

Sea
$$p_{V^{\sharp}}:TQ\to V^{\sharp}.$$

Consideremos $W^{\sharp}:=\rho^{\sharp}(W)$ y sea $V^{\sharp}\subset TQ$ tal que $TQ=V^{\sharp}\oplus W^{\sharp}$ sobre U. Como ρ^{\flat} es un isomorfismo, el fibrado $V:=\rho^{\flat}(V^{\sharp})$ complementa a W sobre U. Definiendo

$$A_q := span \left\{ \frac{\partial}{\partial q^{\mu}} \right\}_{\mu=1}^{n-m}$$

vale que $A_{\bar q}\cap W_{\bar q}^\sharp=\{0\}$. Por continuidad, podemos suponer que vale para todo $q\in U$. Cada campo coordenado se descompone

$$\frac{\partial}{\partial q^{\mu}} = X_{\mu}^{V} + X_{\mu}^{W}, \qquad X_{\mu}^{V} \in V^{\sharp}, X_{\mu}^{W} \in W^{\sharp}.$$

Sea
$$p_{V^{\sharp}}:TQ\to V^{\sharp}$$
. Dado que

$$\ker(p_{V^{\sharp}}|_{A}) = \ker(p_{V^{\sharp}}) \cap A = W^{\sharp} \cap A = \{0\}.$$

Consideremos $W^{\sharp}:=\rho^{\sharp}(W)$ y sea $V^{\sharp}\subset TQ$ tal que $TQ=V^{\sharp}\oplus W^{\sharp}$ sobre U. Como ρ^{\flat} es un isomorfismo, el fibrado $V:=\rho^{\flat}(V^{\sharp})$ complementa a W sobre U. Definiendo

$$A_q := span \left\{ \frac{\partial}{\partial q^{\mu}} \right\}_{\mu=1}^{n-m}$$

vale que $A_{\bar q}\cap W_{\bar q}^\sharp=\{0\}$. Por continuidad, podemos suponer que vale para todo $q\in U$. Cada campo coordenado se descompone

$$\frac{\partial}{\partial q^{\mu}} = X_{\mu}^{V} + X_{\mu}^{W}, \qquad X_{\mu}^{V} \in V^{\sharp}, X_{\mu}^{W} \in W^{\sharp}.$$

Sea $p_{V^{\sharp}}: TQ \to V^{\sharp}$. Dado que

$$\ker(p_{V^{\sharp}}|_{A}) = \ker(p_{V^{\sharp}}) \cap A = W^{\sharp} \cap A = \{0\}.$$

Esto dice que $p_{V^{\sharp}}|_{A}$ es inyectivo y, en consecuencia, los campos X^{V}_{μ} son

Definamos como marco para ${\cal V}$ a

$$E^{\mu} = \rho^{\flat} \left(X_{\mu}^{V} \right) = \rho^{\flat} \left(p_{V^{\sharp}} \left(\frac{\partial}{\partial q^{\mu}} \right) \right)$$

Definamos como marco para ${\cal V}$ a

$$E^{\mu} = \rho^{\flat} \left(X_{\mu}^{V} \right) = \rho^{\flat} \left(p_{V^{\sharp}} \left(\frac{\partial}{\partial q^{\mu}} \right) \right)$$

y consideremos $\tilde{\gamma}:V^{\sharp}\to W^{\sharp}$ dado por

$$\tilde{\gamma}\left(X_{\mu}^{V}\right) = \frac{\partial}{\partial q^{\mu}} - X_{\mu}^{V}.$$

Definamos como marco para V a

$$E^{\mu} = \rho^{\flat} \left(X^{V}_{\mu} \right) = \rho^{\flat} \left(p_{V^{\sharp}} \left(\frac{\partial}{\partial q^{\mu}} \right) \right)$$

y consideremos $\tilde{\gamma}:V^{\sharp}\to W^{\sharp}$ dado por

$$\tilde{\gamma}\left(X_{\mu}^{V}\right) = \frac{\partial}{\partial q^{\mu}} - X_{\mu}^{V}.$$

Luego, definiendo

$$\gamma = -\rho^{\flat} \circ \tilde{\gamma} \circ \rho^{\sharp}$$

tenemos

$$\rho^{\sharp}(\gamma_{-}(E^{\mu})) = \rho^{\sharp}(E^{\mu} - \gamma(E^{\mu})) = \rho^{\sharp}\left[\rho^{\flat}(X_{\mu}^{V}) + (\rho^{\flat} \circ \tilde{\gamma} \circ \rho^{\sharp})(\rho^{\flat}(X_{\mu}^{V}))\right]$$
$$= X_{\mu}^{V} + \tilde{\gamma}(X_{\mu}^{V}) = X_{\mu}^{V} + \frac{\partial}{\partial a^{\mu}} - X_{\mu}^{V} = \frac{\partial}{\partial a^{\mu}}.$$

Supongamos que W tiene rango n-1. En este caso, existen coordenadas en un entorno U de \bar{q} en las cuales

$$W_q = span\{ \left. \mathrm{d}q^2 \right|_q, \dots, \left. \mathrm{d}q^n \right|_q \}, \quad \forall q \in U.$$

Supongamos que W tiene rango n-1. En este caso, existen coordenadas en un entorno U de \bar{q} en las cuales

$$W_q = span\{ \left. \mathrm{d}q^2 \right|_q, \dots, \left. \mathrm{d}q^n \right|_q \}, \qquad \forall q \in U.$$

Escogiendo

$$V_q = span\{ \left. dq^1 \right|_q \}, \qquad \forall q \in U,$$

Supongamos que W tiene rango n-1. En este caso, existen coordenadas en un entorno U de \bar{q} en las cuales

$$W_q = span\{ \left. \mathrm{d}q^2 \right|_q, \ldots, \left. \mathrm{d}q^n \right|_q \}, \qquad \forall q \in U.$$

Escogiendo

$$V_q = span\{ dq^1|_q \}, \qquad \forall q \in U,$$

y utilizando la representación de δ y γ en los marcos coordenados las ecuaciones cinéticas son

$$A^k \frac{\partial \delta}{\partial q^k} - B\delta = 0 \qquad \text{y} \qquad A^k \frac{\partial v}{\partial q^k} - \frac{\partial h}{\partial q^1} \delta = 0,$$

Supongamos que W tiene rango n-1. En este caso, existen coordenadas en un entorno U de \bar{q} en las cuales

$$W_q = span\{ dq^2 |_q, \dots, dq^n |_q \}, \quad \forall q \in U.$$

Escogiendo

$$V_q = span\{ dq^1 |_q \}, \quad \forall q \in U,$$

y utilizando la representación de δ y γ en los marcos coordenados las ecuaciones cinéticas son

$$A^k\frac{\partial \delta}{\partial q^k}-B\delta=0 \qquad {\rm y} \qquad A^k\frac{\partial v}{\partial q^k}-\frac{\partial h}{\partial q^1}\delta=0,$$

$$\begin{array}{c} \operatorname{donde} A^k := \mathbb{H}^{1k} - \mathbb{H}^{k,1+a} \gamma_a \operatorname{y} \\ B := \frac{\partial \mathbb{H}^{11}}{\partial q^1} - 2 \frac{\partial \mathbb{H}^{1,1+b}}{\partial q^1} \gamma_b + \gamma_a \gamma_b \frac{\partial \mathbb{H}^{1+a,1+b}}{\partial q^1}. \end{array}$$

Indices
$$a, b, c = 1, ..., n - 1$$
; $k = 1, ..., n$.

Estabilización de sistemas 1-subactuados

Usamos el Método de Características (MC) para resolverlas alrededor de $\mathbf{0}.$

Estabilización de sistemas 1-subactuados

Usamos el Método de Características (MC) para resolverlas alrededor de ${f 0}.$

Fijando una función positiva $\mathfrak{g}:\mathbb{R}^{n-1}\to\mathbb{R}$ y $\kappa>0$, imponemos condiciones de borde

$$\delta(q^1,\ldots,q^{n-1},0) = \mathfrak{g}(q^1,\ldots,q^{n-1})$$

$$v(q^1, \dots, q^{n-1}, 0) = \frac{\kappa}{2} \sum_{a=1}^{n-1} (q^a)^2$$

Estabilización de sistemas 1-subactuados

Usamos el Método de Características (MC) para resolverlas alrededor de $oldsymbol{0}$.

Fijando una función positiva $\mathfrak{g}:\mathbb{R}^{n-1}\to\mathbb{R}$ y $\kappa>0$, imponemos condiciones de borde

$$\delta(q^1, \dots, q^{n-1}, 0) = \mathfrak{g}(q^1, \dots, q^{n-1})$$
$$v(q^1, \dots, q^{n-1}, 0) = \frac{\kappa}{2} \sum_{i=1}^{n-1} (q^a)^2$$

Teorema

Existen constantes $\gamma_a(\mathbf{0})$ tales que las soluciones del MC son definidas positivas en un entorno de $\mathbf{0}$ si y sólo si

$$\begin{split} &\frac{\partial^2 h}{\partial q^1 \partial q^i}(\mathbf{0}) \mathbb{H}^{i,1+a}(\mathbf{0}) \neq 0, \qquad \text{para alg\'un} \qquad 1 \leq a \leq n-1, \\ &\text{o bien} & \qquad \qquad \\ &\frac{\partial^2 h}{(\partial a^1)^2}(\mathbf{0}) > 0, \end{split} \tag{3}$$

Corolario

Un sistema 1-subactuado es estabilizable con función de Lyapunov simple si y solo si se cumplen las condiciones (3) del Teorema.

► La condición suficiente fue probada por primera vez por Chang utilizando el ES. En su trabajo, Chang demostró que dichas condiciones equivalen a decir que la linealización del sistema en 0 es controlable o bien no controlable con modos no controlables dados por un par imaginario puro.

Corolario

Un sistema 1-subactuado es estabilizable con función de Lyapunov simple si y solo si se cumplen las condiciones (3) del Teorema.

- ▶ La condición suficiente fue probada por primera vez por Chang utilizando el ES. En su trabajo, Chang demostró que dichas condiciones equivalen a decir que la linealización del sistema en 0 es controlable o bien no controlable con modos no controlables dados por un par imaginario puro.
- ► Nuestra demostración fue desarrollada de manera independiente antes de conocer la equivalencia entre métodos.

Corolario

Un sistema 1-subactuado es estabilizable con función de Lyapunov simple si y solo si se cumplen las condiciones (3) del Teorema.

- ▶ La condición suficiente fue probada por primera vez por Chang utilizando el ES. En su trabajo, Chang demostró que dichas condiciones equivalen a decir que la linealización del sistema en 0 es controlable o bien no controlable con modos no controlables dados por un par imaginario puro.
- ▶ Nuestra demostración fue desarrollada de manera independiente antes de conocer la equivalencia entre métodos.
- ► Ninguna de las dos demostraciones construye una solución de las ecuaciones cinéticas y potenciales (o de las condiciones de matching) de manera explícita, lo cual es importante para construir una señal de control explícita que pueda ser utilizada en aplicaciones.

 Una condición necesaria y suficiente para la existencia de soluciones locales es

$$\frac{\partial f^{\nu}}{\partial q^{\mu}} = \frac{\partial f^{\mu}}{\partial q^{\nu}}, \qquad \mu, \nu = 1, \dots, n - m.$$

 Una condición necesaria y suficiente para la existencia de soluciones locales es

$$\frac{\partial f^{\nu}}{\partial q^{\mu}} = \frac{\partial f^{\mu}}{\partial q^{\nu}}, \qquad \mu, \nu = 1, \dots, n - m.$$

► La solución puede construirse por medio de cuadraturas, i.e. computando integrales de funciones conocidas.

► Una condición necesaria y suficiente para la existencia de soluciones locales es

$$\frac{\partial f^{\nu}}{\partial q^{\mu}} = \frac{\partial f^{\mu}}{\partial q^{\nu}}, \qquad \mu, \nu = 1, \dots, n - m.$$

- ► La solución puede construirse por medio de cuadraturas, i.e. computando integrales de funciones conocidas.
- ► Tal solución es definida positiva si y solo si la matriz de elementos

$$\mathbb{M}_{\mu\nu} := \left[\delta^{\mu\tau} \bar{p}_{\tau}^k \mathsf{Hess}(h)_{k\nu} \right] (\mathbf{0})$$

lo es.

 Una condición necesaria y suficiente para la existencia de soluciones locales es

$$\frac{\partial f^{\nu}}{\partial q^{\mu}} = \frac{\partial f^{\mu}}{\partial q^{\nu}}, \qquad \mu, \nu = 1, \dots, n - m.$$

- ► La solución puede construirse por medio de cuadraturas, i.e. computando integrales de funciones conocidas.
- ▶ Tal solución es definida positiva si y solo si la matriz de elementos

$$\mathbb{M}_{\mu\nu} := \left[\delta^{\mu\tau} \bar{p}_{\tau}^k \mathsf{Hess}(h)_{k\nu} \right] (\mathbf{0})$$

lo es.

► En tal caso, basta tomar

$$\kappa > \frac{\sum_{b=1}^{m} \sum_{\mu=1}^{n-m} \left(\partial f^{\mu} / \partial q^{n-m+b}(\mathbf{0}) \right)^2}{\lambda_{\min}^{\mathbb{M}}}.$$

Soluciones locales por cuadraturas de las ecuaciones potenciales

Por otro lado, las ecuaciones cinéticas son

$$\sum_{(\mu,\nu,\tau)} \left(A^{\tau k}(\mathbb{H}, \gamma) \frac{\partial \delta^{\mu\nu}}{\partial q^k} - B^{\mu\nu}_{\theta}(\mathbb{H}, \gamma) \delta^{\theta\tau} \right) = 0, \qquad \mu\nu\tau = 1, \dots, n - m,$$
(4)

Soluciones locales por cuadraturas de las ecuaciones potenciales

Por otro lado, las ecuaciones cinéticas son

$$\sum_{(\mu,\nu,\tau)} \left(A^{\tau k}(\mathbb{H}, \gamma) \frac{\partial \delta^{\mu\nu}}{\partial q^k} - B^{\mu\nu}_{\theta}(\mathbb{H}, \gamma) \delta^{\theta\tau} \right) = 0, \qquad \mu\nu\tau = 1, \dots, n - m,$$
(4)

Tenemos entonces el siguiente procedimiento para construir una solución de las ecuaciones potenciales:

1. tomar coordenadas (U,φ) , un complemento V y un morfismo γ como las del Teorema anterior;

Soluciones locales por cuadraturas de las ecuaciones potenciales

Por otro lado, las ecuaciones cinéticas son

$$\sum_{(\mu,\nu,\tau)} \left(A^{\tau k}(\mathbb{H}, \gamma) \frac{\partial \delta^{\mu\nu}}{\partial q^k} - B^{\mu\nu}_{\theta}(\mathbb{H}, \gamma) \delta^{\theta\tau} \right) = 0, \qquad \mu\nu\tau = 1, \dots, n - m,$$
(4)

Tenemos entonces el siguiente procedimiento para construir una solución de las ecuaciones potenciales:

- 1. tomar coordenadas (U,φ) , un complemento V y un morfismo γ como las del Teorema anterior;
- 2. tomar una solución δ de (4);

Por otro lado, las ecuaciones cinéticas son

$$\sum_{(\mu,\nu,\tau)} \left(A^{\tau k}(\mathbb{H}, \gamma) \frac{\partial \delta^{\mu\nu}}{\partial q^k} - B^{\mu\nu}_{\theta}(\mathbb{H}, \gamma) \delta^{\theta\tau} \right) = 0, \qquad \mu\nu\tau = 1, \dots, n - m,$$
(4)

Tenemos entonces el siguiente procedimiento para construir una solución de las ecuaciones potenciales:

- 1. tomar coordenadas (U, φ) , un complemento V y un morfismo γ como las del Teorema anterior:
- 2. tomar una solución δ de (4);
- 3. chequear que alrededor de 0 valen las ecuaciones

$$\frac{\partial f^{\mu}}{\partial a^{\nu}} = \frac{\partial f^{\nu}}{\partial a^{\mu}}, \qquad \forall \mu, \nu = 1, \dots, n - m;$$

4. definir v como

$$v(q^{1}, \dots, q^{n}) := \sum_{\mu=1}^{s} \int_{0}^{q^{\mu}} f^{\mu}(0, \dots, 0, t, q^{\mu+1}, \dots, q^{n}) dt$$
$$+ \frac{\kappa}{2} \sum_{a=1}^{m} (q^{n-m+a})^{2}$$

para alguna constante κ ;

4. definir v como

$$v(q^{1}, \dots, q^{n}) := \sum_{\mu=1}^{s} \int_{0}^{q^{\mu}} f^{\mu}(0, \dots, 0, t, q^{\mu+1}, \dots, q^{n}) dt$$
$$+ \frac{\kappa}{2} \sum_{a=1}^{m} (q^{n-m+a})^{2}$$

para alguna constante κ ;

5. verificar que la matriz M es definida positiva;

4. definir v como

$$v(q^{1}, \dots, q^{n}) := \sum_{\mu=1}^{s} \int_{0}^{q^{\mu}} f^{\mu}(0, \dots, 0, t, q^{\mu+1}, \dots, q^{n}) dt$$
$$+ \frac{\kappa}{2} \sum_{a=1}^{m} (q^{n-m+a})^{2}$$

para alguna constante κ ;

- 5. verificar que la matriz M es definida positiva;
- 6. escoger κ de manera que

$$\kappa > \frac{\sum_{b=1}^{m} \sum_{\mu=1}^{n-m} \left(\partial f^{\mu} / \partial q^{n-m+b}(\mathbf{0}) \right)^2}{\lambda_{\min}^{\mathbb{M}}}.$$

Usando la expresión explícita del LCB para la señal de control, podemos aplicar el principio de Invariancia de LaSalle para mostrar que en el caso n=2, la estabilizabilidad es de hecho **asintótica**.

Usando la expresión explícita del LCB para la señal de control, podemos aplicar el principio de Invariancia de LaSalle para mostrar que en el caso n=2, la estabilizabilidad es de hecho **asintótica**. Concretamente, a partir de

Lema (Algoritmo)

Dada una variedad P, un campo vectorial X sobre P, un punto crítico $\bar{\alpha}$ de X, una subvariedad $S_0 \subset P$ conteniendo a $\bar{\alpha}$, definamos

$$S_n := \{ \alpha \in S_{n-1} : X(\alpha) \in TS_{n-1} \}, \quad n \in \mathbb{N},$$
 (5)

donde suponemos que cada S_n es una subvariedad de S_{n-1} . Entonces, el mayor subconjunto X-invariante I de S_0 cumple

$$\{\bar{\alpha}\}\subseteq I\subseteq \bigcap_{n\in\mathbb{N}}\mathcal{S}_n.$$

En particular, si $S_k = \{\bar{\alpha}\}$ para algún $k \in \mathbb{N}$, entonces $I = \{\bar{\alpha}\}$.

Lema

Suponiendo que el sistema cumple las condiciones (3), existen condiciones de borde sobre el conjunto $\{q^2=0\}$ para las ecuaciones cinéticas y potenciales, una función γ y un subconjunto abierto $T\ni\bar{\alpha}$ de T^*Q , tal que:

- ▶ el subconjunto S_1 correspondiente a $S_0 = \mu^{-1}(0) \cap T$ es una subvariedad de S_0 ;
- \triangleright S_2 es una subvariedad de S_1 ;
- $\triangleright \mathcal{S}_3 = \{\bar{\alpha}\}.$

Lema

Suponiendo que el sistema cumple las condiciones (3), existen condiciones de borde sobre el conjunto $\{q^2=0\}$ para las ecuaciones cinéticas y potenciales, una función γ y un subconjunto abierto $T\ni \bar{\alpha}$ de T^*Q , tal que:

- ▶ el subconjunto S_1 correspondiente a $S_0 = \mu^{-1}(0) \cap T$ es una subvariedad de S_0 ;
- \triangleright S_2 es una subvariedad de S_1 ;
- $\triangleright \mathcal{S}_3 = \{\bar{\alpha}\}.$

Este lema, en combinación con el Principio de Invariancia de LaSalle, dice que

Teorema

Un sistema con dos grados de libertad puede ser asintóticamente estabilizado con función de Lyapunov simple si y sólo si el sistema cumple las condiciones (3).

Definamos
$$Z_0 := \mu^{-1}(0)$$

Definamos
$$Z_0 := \mu^{-1}(0)$$

▶ Es sencillo ver que Z_0 es el conjunto de nivel cero de la función $\mathfrak{F}(x,y,p_x,p_y):=\gamma(x,y)p_x+p_y$, que es una subvariedad de $\mathbb{R}^4\simeq U\subset T^*Q$.

Definamos
$$Z_0 := \mu^{-1}(0)$$

- ▶ Es sencillo ver que Z_0 es el conjunto de nivel cero de la función $\mathfrak{F}(x,y,p_x,p_y):=\gamma(x,y)p_x+p_y$, que es una subvariedad de $\mathbb{R}^4\simeq U\subset T^*Q$.
- Ahora necesitamos calcular los valores de $X = X_H + \lambda \operatorname{vlift}(\mathrm{d}y)$ sobre Z_0 , que a su vez implica calcular los valores de $\{V,H\}$ y λ sobre Z_0 . Luego, definamos Z_1 como el conjunto de nivel cero de $\mathfrak{G} := (\mathfrak{F}, \mathfrak{F}_*(X))$.

Definamos
$$Z_0 := \mu^{-1}(0)$$

- ▶ Es sencillo ver que Z_0 es el conjunto de nivel cero de la función $\mathfrak{F}(x,y,p_x,p_y):=\gamma(x,y)p_x+p_y$, que es una subvariedad de $\mathbb{R}^4\simeq U\subset T^*Q$.
- Ahora necesitamos calcular los valores de $X = X_H + \lambda \operatorname{vlift}(\mathrm{d}y)$ sobre Z_0 , que a su vez implica calcular los valores de $\{V,H\}$ y λ sobre Z_0 . Luego, definamos Z_1 como el conjunto de nivel cero de $\mathfrak{G} := (\mathfrak{F},\mathfrak{F}_*(X))$.
- ▶ Usando que $\mathbf{0}$ es un mínimo no degenerado de v, podemos probar que \mathfrak{G}_* tiene rango máximo en $(\mathbf{0},\mathbf{0})$ y por lo tanto, por continuidad, lo mismo es cierto en un entorno T_1 de $(\mathbf{0},\mathbf{0})$. Esto dice que $Z_1 \cap T_1$ es una subvariedad de $Z_0 \cap T_1$.

Consideremos ahora el conjunto $Z_2\subset Z_1\cap T_1$ dado por $\mathfrak{G}_*(X)(x,y,p_x,p_y)=0.$

Consideremos ahora el conjunto $Z_2 \subset Z_1 \cap T_1$ dado por $\mathfrak{G}_*(X)(x,y,p_x,p_y)=0.$

▶ Puede mostrarse que es posible escoger la constante $\gamma(\mathbf{0})$ y las condiciones de borde para δ y v de manera tal que Z_2 está dado localmente por el conjunto de nivel cero de la función $\mathfrak{H}(x,y,p_x,p_y):=(p_y,p_x,L(x,y))$, donde L tiene gradiente no nulo en $\mathbf{0}$.

Consideremos ahora el conjunto $Z_2\subset Z_1\cap T_1$ dado por $\mathfrak{G}_*(X)(x,y,p_x,p_y)=0.$

- ▶ Puede mostrarse que es posible escoger la constante $\gamma(\mathbf{0})$ y las condiciones de borde para δ y v de manera tal que Z_2 está dado localmente por el conjunto de nivel cero de la función $\mathfrak{H}(x,y,p_x,p_y):=(p_y,p_x,L(x,y))$, donde L tiene gradiente no nulo en $\mathbf{0}$.
- ▶ Nuevamente, calculando \mathfrak{H}_* en $(\mathbf{0},\mathbf{0})$, vemos que tiene rango máximo, y por lo tanto, existe un entorno T_2 de $(\mathbf{0},\mathbf{0})$ en el cual esto es cierto. Luego $Z_2 \cap T_2$ es una subvariedad de $Z_1 \cap T_1 \cap T_2$.

Consideremos ahora el conjunto $Z_2 \subset Z_1 \cap T_1$ dado por $\mathfrak{G}_*(X)(x,y,p_x,p_y)=0.$

- ▶ Puede mostrarse que es posible escoger la constante $\gamma(\mathbf{0})$ y las condiciones de borde para δ y v de manera tal que Z_2 está dado localmente por el conjunto de nivel cero de la función $\mathfrak{H}(x,y,p_x,p_y):=(p_y,p_x,L(x,y))$, donde L tiene gradiente no nulo en $\mathbf{0}$.
- ▶ Nuevamente, calculando \mathfrak{H}_* en $(\mathbf{0},\mathbf{0})$, vemos que tiene rango máximo, y por lo tanto, existe un entorno T_2 de $(\mathbf{0},\mathbf{0})$ en el cual esto es cierto. Luego $Z_2 \cap T_2$ es una subvariedad de $Z_1 \cap T_1 \cap T_2$.
- ▶ Definamos $Z_3 \subset Z_2 \cap T_2$ como el conjunto de nivel cero $\mathfrak{H}_*(x,y,p_x,p_y)=0$. Ahora, usando la no singularidad de \mathbb{H} , el hecho de que el gradiente de L es no nulo en $\mathbf{0}$ y la ecuación potencial, es posible mostrar que todos los puntos en $\pi(Z_3)$ son críticos para v. Sin embargo, gracias al lema de Morse, v tiene un punto crítico aislado en $\mathbf{0}$, de manera que existe un entorno T_3 de $(\mathbf{0},\mathbf{0})$ para el cual $Z_3 \cap T_3 = \{(\mathbf{0},\mathbf{0})\}$.

Consideremos ahora el conjunto
$$Z_2 \subset Z_1 \cap T_1$$
 dado por $\mathfrak{G}_*(X)(x,y,p_x,p_y)=0.$

- ▶ Puede mostrarse que es posible escoger la constante $\gamma(\mathbf{0})$ y las condiciones de borde para δ y v de manera tal que Z_2 está dado localmente por el conjunto de nivel cero de la función $\mathfrak{H}(x,y,p_x,p_y):=(p_y,p_x,L(x,y))$, donde L tiene gradiente no nulo en $\mathbf{0}$.
- Nuevamente, calculando \mathfrak{H}_* en $(\mathbf{0},\mathbf{0})$, vemos que tiene rango máximo, y por lo tanto, existe un entorno T_2 de $(\mathbf{0},\mathbf{0})$ en el cual esto es cierto. Luego $Z_2\cap T_2$ es una subvariedad de $Z_1\cap T_1\cap T_2$.
- ▶ Definamos $Z_3 \subset Z_2 \cap T_2$ como el conjunto de nivel cero $\mathfrak{H}_*(x,y,p_x,p_y)=0$. Ahora, usando la no singularidad de \mathbb{H} , el hecho de que el gradiente de L es no nulo en $\mathbf{0}$ y la ecuación potencial, es posible mostrar que todos los puntos en $\pi(Z_3)$ son críticos para v. Sin embargo, gracias al lema de Morse, v tiene un punto crítico aislado en $\mathbf{0}$, de manera que existe un entorno T_3 de $(\mathbf{0},\mathbf{0})$ para el cual $Z_3 \cap T_3 = \{(\mathbf{0},\mathbf{0})\}$.
- Finalmente, tomando $T:=T_1\cap T_2\cap T_3$ y $\mathcal{S}_0=Z_0\cap T$ se sigue que $\mathcal{S}_1=Z_1\cap T$, $\mathcal{S}_2=Z_2\cap T$ y $\mathcal{S}_3=Z_3\cap T=\{(\mathbf{0},\mathbf{0})\}$, que es lo que queríamos probar.